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Abstract
We study a multi-call variant of the classic PUSH&PULL rumor spreading process where nodes can
contact k of their neighbors instead of a single one during both PUSH and PULL operations. We show
that rumor spreading can be made faster at the cost of an increased amount of communication
between the nodes. As a motivating example, consider the process on a complete graph of n nodes:
while the standard PUSH&PULL protocol takes Θ(log n) rounds, we prove that our k-PUSH&PULL variant
completes in Θ(logk n) rounds, with high probability.

We generalize this result in an expansion-sensitive way, as has been done for the classic PUSH&PULL
protocol for different notions of expansion, e.g., conductance and vertex expansion. We consider
small-set vertex expanders, graphs in which every sufficiently small subset of nodes has a large
neighborhood, ensuring strong local connectivity. In particular, when the expansion parameter
satisfies ϕ > 1, these graphs have a diameter of o(log n), as opposed to other standard notions of
expansion. Since the graph’s diameter is a lower bound on the number of rounds required for rumor
spreading, this makes small-set expanders particularly well-suited for fast information dissemination.
We prove that k-PUSH&PULL takes O(logϕ n · logk n) rounds in these expanders, with high probability.
We complement this with a simple lower bound of Ω(logϕ n + logk n) rounds.
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1 Introduction

Rumor spreading, which is loosely inspired by biological and social phenomena, is one of the
most well-studied stochastic processes on graphs with a rich history in refined analyses [30,
48, 27, 38, 44, 28, 13, 11, 21, 52, 20, 22, 29, 34, 6, 32, 23, 25, 33, 41, 1, 46, 17, 31, 24]. In
the classic random phone call model [19], an arbitrary node of the graph initially knows
a piece of information, the rumor, which spreads across the graph in synchronous rounds
until eventually all nodes are informed. In each round, every node calls one of its neighbors
uniformly at random: in the PUSH protocol each informed node informs the node it calls,
in the PULL protocol each uninformed node is informed by the node it called, and in the
PUSH&PULL protocol both of these information exchanges happen simultaneously.
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It is well known that PUSH, PULL, and PUSH&PULL on a complete graph with n nodes
require Θ(log n) rounds to complete rumor spreading with high probability1 [30, 38]. Rumor
spreading has been also extensively studied on expander graphs, with known tight bounds
that relate the completion time of the process with different notions of expansion. In the
following, we discuss only PUSH&PULL, due to strong lower bounds that exist for both PUSH
and PULL in isolation [11, 52]. In particular, the protocol with high probability requires
Θ(φ−1 log n) rounds for graphs with conductance φ ∈ [0, 1] [11], and Θ(ϕ−1 log n log ∆)
rounds for graphs with maximum degree ∆ and vertex-expansion ϕ ∈ [0, 1] [34, 32]. It is also
known that PUSH&PULL requires Ω(

√
n) rounds with high probability in graphs with constant

edge-expansion [13]. The study of rumor spreading protocols on expanders, subsequently,
has been used as a building block for designing distributed information dissemination
algorithms [9, 10, 8, 35], some of which are based on expander decompositions [54].

Faster rumor spreading can be achieved on specific topologies or by modifying the process.
On power-law degree distributed graphs, the process completes in O(log log n) rounds if the
exponent of the power-law β is between 2 and 3, while it needs Ω(log n) rounds if β is greater
than 3 [29]. A variant of the process, where nodes can use direct addressing, i.e., are able to
contact neighbors whose address was learned before, takes Θ(log log n) rounds [36, 6].

With the goal of making rumor spreading even faster, in this paper we study a multi-call
variant of the classical protocol. We call this the k-PUSH&PULL protocol, where in each
round every informed node samples k neighbors and sends the rumor to them, while every
uninformed node samples k neighbors and requests the rumor from them. The sampling
happens uniformly at random and with replacement in both PUSH and PULL operations.

This process naturally interpolates between classical single-call rumor spreading and full
broadcasting. It involves random selective communication, as in the former, while nodes
simultaneously interact with multiple neighbors, as in the latter. This interpolation intuitively
results in a trade-off between the amount of communication and the spreading time of the two
processes. Classical rumor spreading requires minimal communication, while broadcasting is
optimal in spreading time, matching the graph’s diameter in the worst case.

Somewhat similar processes have been studied for the special case k = 4 on random regular
graphs [7], with a randomized number of simultaneous calls on the complete graph [47, 24],
and in the asynchronous setting considering multiple pulls on the complete graph [42, 50].
For the related random-walk process, a multi-walk extension similar in spirit to our multi-call
extension for rumor spreading has been studied by Alon et al. [2]. Apart from these works
we are not aware of any paper studying the multi-call setting explicitly. While the analogy
to a biological or social process might not be given anymore for the multi-call variant, we
still believe that increasing the number of simultaneous calls is a quite natural generalization
that captures a relevant aspect of information dissemination under bandwidth constraints.
Furthermore, note that the classic “single-call” variant allows each node to receive multiple
calls at the same time.2 Therefore, it seems natural to also allow nodes to initiate several
calls at the same time.

This leads to the central question of our work:

Question: How much communication is required for sub-logarithmic time rumor spreading?

1 We say that a statement holds with high probability (w.h.p. for short) if it holds with probability at
least 1 − n−c, where c is a positive constant hidden in the asymptotic notation.

2 Restricted variants in which nodes receiving multiple calls can spread the rumor only to a single neigh-
bor [17] cannot achieve performance guarantees comparable to the unrestricted variant in conductance
expanders and vertex expanders [31].



E. Cruciani, S. Forster, and T. de Vos 26:3

1.1 Our Contribution
The starting point of our investigation is the study of multi-call rumor spreading on the
complete graph. Using standard arguments that we present as a warm-up in Section B, we
show that the k-PUSH&PULL protocol requires Θ(logk n) rounds with high probability. This
gives an interesting trade-off between the classic single-call bound of Θ(log n) and a constant
number of rounds for a polynomial number of simultaneous calls.

Next, we extend our question to expander graphs. Our goal is to generalize the trade-off
that we get for k-PUSH&PULL on the complete graph to incorporate an expansion parameter ϕ,
similarly to the works mentioned above for the single-call model. While this is an intriguing
combinatorial question in its own right, we believe that the recent use of expanders in
graph neural networks [18, 53] adds additional motivation for revisiting the foundations of
information dissemination in expanders.

Our focus is on small-set expanders, that have initially been studied for the notion
of conductance (see e.g., [49, 3]), and later for edge expansion (see e.g., [43]) and vertex
expansion (see e.g., [16, 39, 14]). Small-set vertex expansion has also been identified as a
crucial property of networks for designing routing protocols [4]. A non-negligible part of
our contribution consists of studying properties of small-set vertex expanders in a particular
regime where the vertex expansion ϕ is larger than 1. In particular, we establish upper
and lower bounds on the diameter of such graphs (Section C), which, unlike other standard
notions, is sub-logarithmic.

This property is crucial for achieving sub-logarithmic rumor spreading time, as the graph
diameter provides a fundamental lower bound on the number of rounds required. Roughly
speaking, our main result (see Section 2 and Theorem 2) implies that, with high probability,
a constant number of rounds suffices for multi-call rumor spreading in a wide regime of
small-set vertex expanders when both the number of calls k and the expansion parameter ϕ

are polynomial in n. We also give a complementary lower bound (see Theorem 3) showing
that both parameters need to be polynomial to achieve a constant number of rounds.

1.2 Formal Statement of Our Results
Small-set vertex expanders

Let G = (V, E) be an unweighted graph. For every S ⊆ V , we write S := V \ S for
the complement of S. We also define the neighborhood of a set S as N(S) := {v ∈ V :
∃s ∈ S, {s, v} ∈ E} and its boundary ∂S := N(S) ∩ S. For a single node v, we write
N(v) := N({v}). Note that v /∈ N(v), but N(S) ∩ S can be nonempty for larger S. Using
this notation, we are ready to define the class of small-set vertex expanders (see, e.g.,
[16, 39, 14]).

▶ Definition 1. Let ϕ ∈ (0, n) and α ∈ (0, 1
2 ]. We say a graph G with n nodes is a

(ϕ, α)-(vertex) expander if

min
S⊆V s.t.

0<|S|≤αn

|∂S|
|S|

≥ ϕ.

The name small-set comes from the fact that the expansion property holds for sets of size at
most αn, opposed to the classical definition where α = 1

2 . The regime α < 1
2 is conceptually

different and has implications on the expansion parameter ϕ, allowing ϕ > 1. When α = 1
2 , in

fact, we cannot have ϕ > 1. Indeed, any set S with |S| = n/2 nodes satisfies |∂S|
|S| ≤ |V \S|

|S| = 1.
More generally, there are no (ϕ, α)-expanders for α > 1

1+ϕ (see Lemma 18).

DISC 2025
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However, if we take α = 1
1+ϕ , we only get a very restricted class of graphs: such (ϕ, α)-

expanders have extremely low diameter and are very dense; they have diameter 2 and
minimum degree Θ(n) (see Lemma 19). On the other hand, if we take α too small, the
expansion property becomes local and the graph is no longer necessarily connected. To be
precise, for α ≤ 1

2+2ϕ , there exist (ϕ, α)-expanders that are disconnected (see Lemma 20).
In between these two bounds, we get a guarantee on the diameter that depends on ϕ. For

1
2+2ϕ < α ≤ 1

1+ϕ , we have that (ϕ, α)-expanders have diameter at most O(logϕ n) (see
Lemma 21). We note that for ϕ = ω(1) the diameter is o(log n) and that for polynomial ϕ it
becomes constant.

Next, we provide two examples of vertex expanders where the bound on the diameter is
tight. First of all, we obtain that complete graphs are (ϕ, α)-vertex expanders for 0 < ϕ ≤ n−1
and α ≤ 1

1+ϕ (see Lemma 22). Secondly, we show that random graphs are vertex expanders.
More precisely, we show that Erdős-Rényi random graphs, where between each pair of nodes
there is an edge with probability p = 3ϕ

n , are (ϕ, α)-vertex expanders for α ≤ 1
1+1.6ϕ (see

Lemma 23). We note that in this regime of p these graphs have diameter Θ(logϕ n) with
high probability [15].

We also note that concurrent work by Hsieh et al. [37] gives an explicit Θ(ϕ)-regular
construction for small-set vertex expanders.

Rumor Spreading

For 1
2+2ϕ < α ≤ 1

1+ϕ , we study rumor spreading on (ϕ, α)-vertex expanders through the
k-PUSH&PULL protocol.

▶ Theorem 2. Let ϕ > 1, α > 1
2+2ϕ , let G = (V, E) be a (ϕ, α)-expander, and let k > log3 n.

Then w.h.p. rumor spreading with the k-PUSH&PULL protocol requires the following number
of rounds:

O
((

logϕ n + ϕ−1(α − 1
2+2ϕ

)−1
)

logk n
)

.

Before commenting on this round complexity, we give a lower bound that follows immediately
from the fact that on complete graphs we need Ω(logk n) rounds (see Lemma 17) and on
Erdős-Rényi random graphs (which are (ϕ, α)-expanders by Lemma 23) we need Ω(logϕ n)
rounds, since they have diameter Ω(logϕ n) [15].

▶ Theorem 3. Let n ≥ 1, ϕ > 1 , α ≤ 1
1+1.6ϕ and k ≥ 2. Then there exist a (ϕ, α)-expander

G = (V, E) on n nodes such that w.h.p. rumor spreading with the k-PUSH&PULL protocol
requires Ω(logϕ n + logk n) rounds.

We make the following observations about the round complexity we get in Theorem 2:
The round complexity goes to infinity as α approaches 1

2+2ϕ , where expanders can be
disconnected and hence rumor spreading never finishes. Interestingly, an analogous term
appears in the analysis of the classic protocol on random graphs, making the rumor
spreading time go to infinity in the non-connected regime [46].
For α ≥ 1

2+2ϕ + Ω
(

1
ϕ logϕ n

)
the number of rounds simplifies to O(logk n logϕ n).

If additionally ϕ = nΩ(1), then we obtain O(logk n), which is optimal due to Theorem 3.
If instead k = nΩ(1), then we obtain O(logϕ n), which is optimal due to Theorem 3.

We believe that our work opens several interesting research directions for the community.
Closing the gap between our upper and lower bound is left as an open problem. Extending
the proof technique of the state of the art analysis [32] to the multi-call setting in our opinion
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appears to be non trivial; it is also not clear if this would be sufficient to actually close the
gap. Another direction is to explore the use of such expanders in applications beyond rumor
spreading. They can serve as a natural alternative to traditionally used low-diameter graphs,
with the benefit of having combinatorial expansion properties.

Lower bounds

The fact that small-set vertex expanders allow ϕ > 1 and hence sub-logarithmic diameter
is fundamental to achieve our results. We observe that the classical notions of expansions
considered in the literature do not have these properties and, therefore, the multi-call variant
cannot speed up the rumor spreading time on these graphs. The most studied notions of
expanders for which these properties do not hold are the following:
1. ϕ-conductance expanders, where for ϕ ∈ (0, 1) we have

min
S⊆V s.t.

0<Vol(S)≤m/2

|E(S,S)|
Vol(S) ≥ ϕ,

where |E(S, S)| is the number of edges crossing the cut (S, S), and Vol(S) :=
∑

u∈S deg(u)
is the volume of S, with deg(u) being the degree of a node u ∈ V .

2. ϕ-edge expanders, where for ϕ ∈ (0, n) we have

min
S⊆V s.t.

0<|S|≤n/2

|E(S,S)|
|S| ≥ ϕ.

3. ϕ-vertex expanders, where for ϕ ∈ (0, 1) we have

min
S⊆V s.t.

0<|S|≤n/2

|∂S|
|S| ≥ ϕ.

Regarding conductance-expanders, the following statement holds.

▶ Lemma 4. Let n ≥ 1, ϕ ∈ (0, 1) and k ≥ 1. There exists a ϕ-conductance expander on n

nodes such that k-PUSH&PULL takes Θ(ϕ−1 log n) rounds.

The proof follows since the same upper bound holds already for k = 1, and the lower bound
comes from the diameter of ϕ-conductance expanders [11].

Rumor spreading on ϕ-edge expanders on the other hand, is not very appealing in the
first place due to the strong lower bound of Ω(

√
n) rounds for the single-call variant – which

even holds in edge expanders with low diameter [13].
Regarding vertex expanders, we have the following statement.

▶ Lemma 5. Let n ≥ 1, ϕ ∈ (0, 1) and k ≥ 1. There exists a ϕ-vertex expander on n nodes
such that k-PUSH&PULL takes Ω(ϕ−1 log n) rounds.

The lemma follows from a lower bound on the diameter of ϕ-vertex expanders [34]. A
tight bound of Θ(ϕ−1 log n log ∆) is known for the single-call variant when ϕ ≤ 1 [34, 32].
This means that the potential for savings in the multi-call variant is limited to a single
log ∆-factor compared to the single-call variant; eliminating this factor is, to the best of our
judgment, a quite fine-grained endeavor that we deliberately omit from this paper with its
more conceptual focus.

Another class of graphs with very good expansion properties is that of Ramanujan graphs,
whose spectral gap in the matrix representation of the graph is almost as large as possible.
In particular, they can achieve sublogarithmic diameter, but only under very restrictive
conditions, i.e., when they are Θ(n)-regular [51]. In contrast, our class of small-set vertex
expanders allows sublogarithmic diameter while being significantly sparser.

DISC 2025
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1.3 Technical Challenges
The proof we provide for rumor spreading in vertex expanders with ϕ > 1 is based on the
ideas for the case of expansion at most 1, by Giakkoupis and Sauerwald [34]. There are three
complications we need to overcome. Let It denote the informed nodes in round t. We will
show that in any round either It grows significantly or the boundary ∂It grows significantly.
While this growth is a constant factor for the case ϕ < 1, leading to a log n in the round
complexity, we need to grow more aggressively. Intuitively, if the expected growth in one
round is µ, then the expected growth in a round with k-parallel calls is kµ. However, this
brings us to the first issue.

Overlap of Parallel Calls

To some extent this challenge already appears in the PUSH model: the fact that two nodes
individually push the rumor to a neighbor does not mean two new nodes are informed; they
can push the rumor to the same node. This phenomenon is exacerbated when we call k

times. Moreover, it now also impacts pulling: if one node has two successful parallel pulls
in a round, then this does not contribute as two nodes pulling. In other words, we cannot
simply sum the expected gain from separate pushes and pulls to obtain the expected number
of newly informed nodes. Let us consider these probabilities to understand this situation
better.

Let u ∈ ∂It be an uninformed node. The probability that u pulls the rumor from It in
one round of k-PUSH&PULL is

1 −
(

1 − |N(u) ∩ It|
deg(u)

)k

= p.

Now if deg(u) ≥ k|N(u)∩It|, we can use a binomial expansion to lower bound this probability
by k|N(u)∩It|

2 deg(u) , which is a factor k/2 higher than the probability that a single call succeeds. For
nodes with lower degree we note that p ≥ 1/2, so we can still say that they get informed with
good probability. However, this does not carry over a factor k compared to the single-call
situation. We are able to show a sufficient growth by carefully analyzing the number of nodes
with high and low degrees and using different arguments for each case.

In this brief description we have only highlighted the issue. The actual solution is more
involved but based on this intuition. For details see Section 3.2 and Section 3.3.

Probabilistic Guarantees

The second issue we need to deal with is the probability of successfully growing It or ∂It

through k-PUSH&PULL. Intuitively, there are two sides to what is going on here: on the
negative side, we have only a sub-logarithmic number of rounds, which is often not great to
give bounds with high probability. On the positive side, we have significant growth in each
step, which is good for tail bounds.

From this second observation, we see that in some cases a Chernoff bound suffices.
However, in some situations, we cannot use a simple Chernoff bound since the random
variables are neither independent nor negatively correlated. In particular, this happens when
we want to show that the boundary ∂It grows. Let u ∈ ∂It be a node in the boundary
of It and v1, v2 ∈ N(u) \ It be two uninformed neighbors of u. The events “v1 ∈ ∂It+1”
and “v2 ∈ ∂It+1” are not independent nor negatively associated as both may occur as a
consequence of the event “u ∈ It+1”. In some cases we can use the bounded difference
inequality, see Section A, that can give tail bounds on functions of independent random
variables which we design to be equal to the sum of the correlated ones discussed above. See
for example Section 3.2 and Section 3.3.
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In other cases, the function that measures progress does not satisfy the conditions for
the bounded difference inequality. Here we use an additional trick: we do not use the full
potential of k parallel calls, but only k/ log n calls. Each batch of k/ log n call succeeds with
constant probability, and since we have log n of these independent batches in parallel, at
least one succeeds with high probability. This comes at the drawback that we only grow a
factor k/ log n. By our assumption that k > log3 n, we get k/ log n > k2/3, which means that
logk/ log n n = O(logk n).

No Expansion for Large Sets

The last complication we point out here is that small-set expansion is, by definition, only
guaranteed for sets S of size at most αn. Therefore, we cannot use the expansion property
to argue that It keeps growing until it hits n/2 nodes – at which point a standard symmetry
argument shows that the process completes within a factor 2 in the round complexity. To
handle the case where more than αn nodes are informed, we show that the size of the boundary
∂It is at least a constant fraction of n, meaning that if the set of informed nodes It keeps
growing by a constant fraction of the boundary ∂It, the process still completes in a constant
number of additional iterations. To be precise, this leads to the factor ϕ−1(α − 1

2+2ϕ )−1 in
our round complexity.

2 Multi-Call Rumor Spreading on Small-Set Vertex Expanders

The goal of this section is to prove the following theorem, which extends the study of multi-call
rumor spreading on small-set vertex expanders with expansion ϕ > 1 (see Definition 1).

▶ Theorem 2. Let ϕ > 1, α > 1
2+2ϕ , let G = (V, E) be a (ϕ, α)-expander, and let k > log3 n.

Then w.h.p. rumor spreading with the k-PUSH&PULL protocol requires the following number
of rounds:

O
((

logϕ n + ϕ−1(α − 1
2+2ϕ

)−1
)

logk n
)

.

The proof of this theorem is based on the ideas for the case of expansion at most 1, by
Giakkoupis and Sauerwald [34]. Where applicable, we follow their notation.

Let It denote the set of informed nodes in round t. Our intermediate goal is to show that
either It grows or ∂It grows. We do this by partitioning the nodes in the boundary according
to their degree, and then analyzing each set separately. More formally, we partition the
nodes in the boundary ∂It into different sets Ai defined as

Ai := {u ∈ ∂It : di ≤ deg(u) < 2di}, with di := 2i−1.

Note that there are at most log n of such sets. We consider only those Ai’s that are sufficiently
big and such that the degree of the nodes in the set is bounded by quantities depending on
the size of the set itself or is large with respect to the size of the boundary ∂It. Formally, let

I :=
{

i : |Ai| ≥ |∂It|
4 log n

∧
(
di ≤ 16 |Ai| ∨ di ≥ 2 |∂It|

)}
(1)

be the set of indices of the Ai’s we take into account. We note that by considering such
sets only, we consider at least half of the nodes in the boundary ∂It. We include a proof for
completeness.

▶ Lemma 6 ([34]). It holds that
∣∣⋃

i∈I Ai

∣∣ ≥ |∂It|/2.

DISC 2025
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Proof. The worst case with respect to the condition |Ai| ≥ |∂It|
4 log n is that all but one of the

Ai’s have size |Ai| = ⌈|∂It|/4 log n⌉ − 1 < |∂It|/4 log n. The worst case with respect to the
condition di ≤ 16 |Ai| ∨ di ≥ 2 |∂It| is that |Ai| = ⌈di/16⌉ − 1 ≤ di/16 and di < 2|∂It|, for
all i < log(2|∂It|). Hence, since the Ai’s are disjoint, we have∣∣∣∣∣∣
⋃
i ̸∈I

Ai

∣∣∣∣∣∣ =
∑
i ̸∈I

|Ai| ≤ |∂It|
4 log n

log n+ 1
16 (2|∂It| + |∂It| + |∂It|/2 + |∂It|/4 + . . . + 2) ≤ |∂It|

2

which implies the thesis. ◀

In Section 3 we show the following lemma, which is the main technical lemma used in
the proof of Theorem 2.

▶ Lemma 7. For each i ∈ I and at every round t, we have that with high probability either
at least |Ai|

128 nodes from Ai are informed within r = O(logk n) rounds, or the boundary ∂It

grows by at least k1/6

64 |∂It| within O(1) rounds.

Lemmas 6 and 7 lead to the following claim.

▶ Lemma 8. If |It| ≤ n
2 , for r = O(logk n) we have that with high probability

|It+r \ It| ≥ 1
256 |∂It|.

Proof. First, we show that in each phase of r′ rounds with high probability we are in either
of the following cases:
a) |It+r′ \ It| ≥ 1

256 |∂It|, for r′ = O(logk n),
b) |∂It+r′ \ ∂It| ≥ k1/6

64 |∂It|, for r′ = O(1).

Lemma 7 guarantees that for each i ∈ I with high probability either |Ai|
128 nodes from Ai

are informed within r = O(logk n) rounds, or the boundary ∂It grows by at least k1/6

64 |∂It|
within r = O(1) rounds.

The thesis follows by considering two cases. If there is i ∈ I such that the boundary
grows then the thesis follows immediately. Otherwise, it must hold that for all i ∈ I there
are at least |Ai|

128 nodes in Ai which get informed. Since the Ai’s are disjoint, by Lemma 6 we
conclude that

|It+r \ It| ≥
∑
i∈I

|Ai|
128 = 1

128

∣∣∣∣∣⋃
i∈I

Ai

∣∣∣∣∣ ≥ |∂It|
256 .

Next, we notice that Case b can only occur O(log k1/6

64
n) = O(logk n) consecutive times

before we cover the entire graph. Hence after r = O(logk n) + O(logk n) = O(logk n) rounds,
Case a holds. ◀

Next, we use this lemma to show that we reach more than half of the graph. We show
that in O(logϕ n) phases of O(logk n) rounds we reach αn nodes. Let I(t) denote the set of
informed nodes in phase t.3 We start by showing by induction that until |I(t)| ≥ αn, we have
|∂I(t)| ≥ ( ϕ

256 )t.

3 Note that we use It for the set of informed nodes in round t.
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Base case. By expansion, every node v ∈ V has deg(v) = |∂{v}| ≥ ϕ|{v}| = ϕ. So we
have that |∂I(1)| ≥ ϕ.
Induction step. Suppose that |∂I(t)| ≥ ( ϕ

256 )t. By Lemma 8 have |I(t+1)| ≥ 1
256 |∂I(t)|.

So suppose |I(t+1)| ≤ αn, then we have |∂I(t+1)| ≥ ϕ|I(t+1)| by expansion of I(t+1). We
obtain |∂I(t+1)| ≥ ϕ

256 |∂I(t)| ≥ ϕ
256 ( ϕ

256 )t ≥ ( ϕ
256 )t+1, using the induction hypothesis.

So we conclude that in O(logϕ/256(αn)) = O(logϕ n) phases of O(logk n) rounds we cover αn

nodes, using in total O(logϕ n · logk n) rounds.
Now suppose that αn < |I(t)| ≤ n

2 . Let S ⊆ I(t) be any subset of size exactly |S| = αn,
so |I(t) \ S| ≤ n

2 − αn. By expansion of S, we have |∂S| ≥ ϕ|S| = ϕαn. We now see that

|∂I(t)| ≥ |∂S \I(t)| = |∂S \(I(t) \S)| ≥ |∂S|−|I(t) \S| ≥ ϕαn−( n
2 −αn) = (ϕ+1)αn−n/2.

By Lemma 8 we now have to have that in each phase of O(logk n) rounds, I(t) grows by

1
256 |∂I(t)| ≥ 1

256((ϕ + 1)αn − n/2).

So we cover more than n/2 nodes in the following number of phases

n/2
1

256 ((ϕ + 1)αn − n/2)
= O

(
1

(ϕ + 1)α − 1/2

)
= O

(
1

ϕ(α − 1
2+2ϕ )

)
.

As each phase last O(logk n) rounds, in total, we see that the rumor spreads to more
than n/2 nodes in the following number of rounds

R = O

((
logϕ n + 1

ϕ
(
α − 1

2+2ϕ

)) logk n

)
.

Now Lemma 15 states that the number of rounds we need to spread the rumor from It to
a node u ∈ V \ It is the same as the number of rounds we would need to spread the rumor
from u to anywhere in It. Since we have shown that we reach more than half of the graph
in R rounds, and that |It| > n/2, a rumor started at u reaches It in another R rounds. We
conclude that the spreading process finishes after 2R rounds in total, proving Theorem 2.

3 Proof of Lemma 7

We look at each set Ai for i ∈ I separately, and we upper bound the number of rounds until
either a large fraction of nodes in Ai gets informed or the size of the boundary increases by a
large factor as a result of nodes in Ai being informed. We distinguish three cases informally
involving sets of nodes with low, medium, and high degree. We define these cases according
to the following conditions:
1. Low degree: di ≤ 1024 · 96 · k.
2. Medium degree: 1024 · 96 · k < di ≤ 16 |Ai|.
3. High degree: di ≥ 2 |∂It|.
Note that the three cases do not cover all nodes in the boundary ∂It. However, they do cover
all nodes in the |Ai|’s for i ∈ I. This is important since, due to Lemma 6, it implies that we
consider at least half of the nodes in ∂It.

We analyze the above three cases separately in the three following subsections, that will
be further subdivided into a total of 7 cases: in 4 cases It grows, while in 3 cases ∂It grows,
always with high probability. By summarizing all of them we get with high probability that
either

|It+r \ It| ≥ min
{

1
4 ,

1
20 ,

1
128 ,

1
8

}
|Ai| = |Ai|

128
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26:10 Towards Constant Time Multi-Call Rumor Spreading on Small-Set Expanders

within r = O(max{1, logk n, 1, 1)} = O(logk n) rounds or

|∂It+r \ ∂It| ≥ min
{

k

32 log n
,

√
k

4 ,
k

64

}
|Ai| ≥ k1/6

64 |∂It|

within r = O(1) rounds, since by definition |Ai| ≥ |∂It|
4 log n and by assumption k > log3 n.

3.1 Sets with low degree nodes
Recall that in this case every u ∈ Ai is such that

di ≤ 1024 · 96 · k.

Since the degree of these boundary nodes is low, it is likely that many of them will directly
pull the rumor. We prove a more general lemma that will be used in other cases as well and
formalizes the fact that nodes that are “well-connected” to It are likely to pull the rumor
directly. In particular we consider nodes of a generic subset B ⊆ ∂It of the boundary of It

and bound the number of rounds needed by a constant fraction of nodes in B to pull the
rumor from It, with high probability.

▶ Lemma 9. Let B ⊆ ∂It be such that |B| = Ω(log n). Let 0 < q ≤ 1 and suppose that for
every node u ∈ B at least a q-fraction of its neighbors is in It. Then with high probability at
least |B|

4 nodes of B have pulled the rumor from It in ⌈ 1
qk ⌉ rounds.

Proof. We consider two different cases, depending on the value of q. We show for both cases
that the probability of pulling from an informed node is at least 1/2.
Case 1. If qk > 1, we show we only need 1 round. The probability that any u ∈ B pulls from
It in one round is 1 −

(
1 − |N(u)∩It|

deg(u)

)k

≥ 1 − (1 − q)k. Since qk > 1, then 1 − (1 − q)k ≥ 1/2.
Case 2. If qk ≤ 1, then the probability that a node pulls the rumor in ⌈ 1

qk ⌉ rounds is
1 − (1 − q)k· 1

qk ≥ 1 − e−1 ≥ 1/2.
This means that the expected number of nodes that pull in this many rounds is at least

|B|/2. Since these pulls are independent random variables and |B| = Ω(log n), a Chernoff
bound gives us that at least |B|/4 nodes are informed with high probability. ◀

We are now ready to show that the set Ai grows sufficiently. For each node u ∈ Ai the
fraction of neighbors that u has in It is at least 1/ deg(u) ≥ 1/(2di). Then Lemma 9 gives
that with high probability a fraction 1/4 of the nodes in Ai pull the rumor from It in at
most r = ⌈2 · 1024 · 96 · k/k⌉ = O(1) rounds. By definition of I in Equation (1), with high
probability it follows that

|It+r \ It| ≥ 1
4 |Ai|.

3.2 Sets with medium degree nodes
Recall that in this case every u ∈ Ai is such that

1024 · 96 · k < di ≤ 16 |Ai|.

Unlike the previous case, nodes with medium degree can either contribute directly to the
growth of It or to the growth of ∂It. To describe these different types of contributions, for
each node v ∈ V let us denote the number of neighbors of v in Ai as

hi(v) := |N(v) ∩ Ai|.
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Moreover, let us define the set of nodes that are neither informed or in the boundary of the
informed nodes as

St := V \ (It ∪ ∂It).

We further distinguish three cases, depending on the volume of Ai, we define the volume
of a set S as Vol(S) :=

∑
v∈S deg(v).

i) It holds that
∑

v∈St s.t.hi(v)≤di log n/k hi(v) ≥ 1
2 Vol(Ai).

ii) It holds that
∑

v∈V s.t.hi(v)≥di log n/96k hi(v) ≥ 1
3 Vol(Ai).

iii) None of the above conditions are met, i.e., it holds that
∑

v∈St s.t.hi(v)≤di log n/k hi(v) <
1
2 Vol(Ai) and

∑
v∈V s.t.hi(v)≥di log n/96k hi(v) < 1

3 Vol(Ai).
In the remainder of this subsection we prove that in case i) ∂It grows, while in cases ii) and
iii) it is It to grow directly.

Case i)

It holds that∑
v∈St s.t.

hi(v)≤di log n/k

hi(v) ≥ 1
2 Vol(Ai). (2)

In this case we give a lower bound on the number of new nodes in the boundary and
prove that it holds with high probability. We start by noting that the probability that a
fixed node u ∈ Ai pulls the rumor from It in a given round is

1 −
(

1 − |N(u) ∩ It|
deg(u)

)k

≥ 1 −
(

1 − 1
deg(u)

)k

≥ 1 −
(

1 − 1
2di

)k

≥ k

4di
=: p,

where we use that 2di > k.
Let us pessimistically assume that such a probability exactly equals p for every node

u. For each u ∈ Ai, let Xu denote the 0/1 random variable that is 1 iff u pulls the rumor
from It in round t + 1. Then we have P[Xu = 1] = p. Further, for each v ∈ St such that
hi(v) ≤ di log n/k, let Yv denote the 0/1 random variable which is 1 exactly when v has
a neighbor u with Xu = 1. Finally let Y =

∑
v∈V Yv be the number of new nodes in the

boundary only considering the contribution from pull. Our goal is to prove a lower bound
on Y .

We see that

P[Yv = 1] ≥ 1 −
(

1 − k

4di

)hi(v)
≥ 1 −

(
1 − k

4di

)hi(v)/ log n

≥ khi(v)
8di log n

,

where the last inequality follows from Taylor series expansion, which needs that khi(v)
8di log n ≤ 1,

as ensured by the second to last inequality4. This gives us that in expectation

E[Y ] =
∑

v∈St s.t.
hi(v)≤di log n/k

P[Yv = 1] ≥
∑

v∈St s.t.
hi(v)≤di log n/k

khi(v)
8di log n

≥ k

16di log n
Vol(Ai) ≥ k

16di log n
· di|Ai| = k

16 log n
|Ai|.

4 Note that without the extra log n the rightmost term could be bigger than 1, rendering the inequality
trivially false.
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26:12 Towards Constant Time Multi-Call Rumor Spreading on Small-Set Expanders

Next, we need to show that Y is concentrated around its expectation. A simple Chernoff
bound does not suffice: the Yv are not independent, nor negatively correlated. Instead,
we use the method of bounded differences (see Theorem 13). In particular, we apply this
theorem with Ri = Xu, f({Xu}u∈Ai) = Y , so µ = E[Y ] and b := max |f(x) − f(x′)| ≤ 2di.
With λ = k

32 log n |Ai| we get

P
[
Y <

k

32 log n
|Ai|

]
= P

[
Y <

k

16 log n
|Ai| − k

32 log n
|Ai|

]
≤ exp

(
− k|Ai|

322(2 + 1/24) · di log2 n

)
≤ exp

(
− k|Ai|

2091 · di log2 n

)
.

Using that di ≤ 16|Ai|, and that k > log3 n, we get with high probability that

|∂It+1 \ ∂It| ≥ k

32 log n
|Ai|.

Case ii)

It holds that∑
v∈V s.t.

hi(v)≥di log n/96k

hi(v) ≥ 1
3 Vol(Ai). (3)

Intuitively, we want to formalize the fact that the number of informed nodes in Ai must grow
even if the nodes are not likely to pull directly from It. We do this by looking at a subset A′

i

of the nodes in Ai that have many connections. More formally we have the following fact,
for a proof we refer to [34].

▷ Claim 10 (Section 3.4 in [34]). Let ℓ = di log n/96k. Then there exist sets A′
i ⊆ Ai and

V ′ ⊆ V such that each node in A′
i has at least di/8 neighbors in V ′ and each node in V ′ has

at least ℓ/8 neighbors in A′
i, and the size of A′

i is at least |A′
i| ≥ |Ai|/20.

We will show that each node of s ∈ A′
i gets informed in O(logk n) rounds with high

probability. By Lemma 15, this is the same as a rumor from s reaching It after O(logk n)
rounds. First, we show that a rumor started at s ∈ B reaches ℓ/1024 nodes in A′

i in O(logk n)
rounds w.h.p. Note that ℓ/1024 ≥ 1 since di ≥ 1024 · 96k. Then the probability that one of
these nodes pushes the rumor to It in the next c · 2048 · 96 rounds is at least

1 −
(

1 − 1
2di

)k ℓ
1024 c·2048·96

= 1 −
(

1 − 1
2di

)c·2di log n

≥ 1 − n−c,

where the equality follows from the definition of ℓ.
To show that a rumor from s ∈ A′

i reaches ℓ/1024 nodes in A′
i in O(logk n) rounds, we

show that in logk n phases of O(1) rounds, the number of informed nodes in A′
i grows by a

factor k. We do this in two steps. First we show that by push A′
i informs nodes in V ′, and

then by pull nodes from A′
i pull the rumor from V ′.

Let m denote the number of informed nodes of A′
i at the start of the phase. We show

that by O(1) push rounds we have at least min{km, ℓ/16} informed nodes in V ′. Suppose we
have less than min{km, ℓ/16} informed nodes V ′

i in V ′ after i pushes. Then the probability
of a successful push from u ∈ A′

i is at least

|(N(u) ∩ V ′) \ V ′
i |

deg(u) ≥ |N(u) ∩ V ′| − |V ′
i |

deg(u) ≥ di/8 − min{km, ℓ/16}
2di

≥ di/8 − di/16
2di

≥ 1
32 .



E. Cruciani, S. Forster, and T. de Vos 26:13

So the expected number of informed nodes in V ′ after 1 round is at least min
{

mk
32 , ℓ/16

}
.

Since these pushes are negatively correlated, Chernoff, Theorem 12, gives that we have with
high probability that the number of informed nodes in V ′ after 1 round is at least

min
{

mk

64 , ℓ/16
}

.

Now we consider pulling from V ′. Suppose m′ nodes V ′
inf in V ′ are informed, now the

expected number of informed nodes in A′
i after 96 pull rounds is at least

∑
u∈A′

i

1 −
(

1 − |N(u) ∩ V ′
inf|

deg(u)

)96k

=
∑

u∈A′
i

1 −
(

1 − |N(u) ∩ V ′
inf|

deg(u)

)di log n/ℓ

≥
∑

u∈A′
i

1 −
(

1 − |N(u) ∩ V ′
inf|

2di

)di

ℓ
≥
∑

u∈A′
i

di

ℓ

|N(u) ∩ V ′
inf|

4di

= 1
4ℓ

∑
v∈V ′

inf

|N(v) ∩ A′
i| ≥ 1

4ℓ

∑
v∈V ′

inf

ℓ

8 = |V ′
inf|

32 ,

where the second inequality uses that |N(u) ∩ V ′
inf| ≤ |V ′

inf| ≤ ℓ/16. So we conclude that in
expectation, we have at least min

{
mk

32·64 , ℓ
32·16

}
informed nodes in A′

i. Since all pulls are
independent, Chernoff, Theorem 12, gives us that with high probability we have at least

min
{

mk

4096 ,
ℓ

1024

}
.

informed nodes in A′
i.

We conclude that in r = O(logk n) rounds we have

|It+r \ It| ≥ |A′
i| ≥ |Ai|

20 ,

where the last inequality comes from Claim 10.

Case iii)

None of the previous conditions holds, i.e., we have that∑
v∈St s.t.

hi(v)≤di log n/k

hi(v) <
1
2 Vol(Ai) and

∑
v∈V s.t.

hi(v)≥di log n/96k

hi(v) <
1
3 Vol(Ai).

By using the two above conditions on the volume of Ai, we can see that the number of
edges going from Ai to some v ∈ V \ St with hi(v) < di/96k is at least a constant fraction of
the volume of Ai, namely∑

v∈V \St s.t.
hi(v)<di log n/96k

hi(v) =
∑
v∈V

hi(v) −
∑

v∈V s.t.
hi(v)≥di log n/96k

hi(v) −
∑

v∈St s.t.
hi(v)<di log n/96k

hi(v)

> Vol(Ai) −
∑

v∈V s.t.
hi(v)≥di log n/96k

hi(v) −
∑

v∈St s.t.
hi(v)≤di log n/k

hi(v)

≥ 1
6 Vol(Ai).
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26:14 Towards Constant Time Multi-Call Rumor Spreading on Small-Set Expanders

Moreover, the number of such edges going to ∂It is at most di log n
96k |∂It|, since hi(v) <

di log n/96k. Therefore, using the condition on |Ai| in Equation (1), that deg(u) ≥ di for
every u ∈ Ai, and that k > log2 n, we get

|E(Ai, It)| ≥ 1
6 Vol(Ai) − di log n

96k
|∂It| ≥ di|Ai|

6 − di log n

96k
(4 log n · |Ai|) ≥ di|Ai|

8 . (4)

Let B ⊆ Ai be the set of nodes in Ai that have at least di/16 neighbors in It. Then,
using that deg(u) < 2di for every u ∈ Ai, we get

|E(Ai, It)| ≤ |B| · 2di + (|Ai| − |B|) di

16 . (5)

By combining Equations (4) and (5) it follows that |B| ≥ |Ai|
32 .

Note that each node u ∈ B in the set has a fraction of at least di/16
deg(u) ≥ di/16

2di
= 1/32

neighbors in It. We can then apply Lemma 9 and get that with high probability at least
|B|/4 ≥ |Ai|/128 nodes in Ai pull the rumor from It in at most ⌈1/⌈k/32⌉⌉ = 1 round, since
k > log2 n. Hence with high probability it follows that

|It+1 \ It| ≥ |Ai|
128 .

3.3 Sets with high degree nodes
Recall that in this case every u ∈ Ai is such that

di ≥ 2|∂It|.

As in the previous case, also here nodes can either contribute directly to the growth of It

or to that of the boundary ∂It. Recall that St := V \ (It ∪ ∂It). Let us denote the set of
nodes in Ai that have more neighbors toward St than It as

B := {u ∈ Ai : |N(u) ∩ St| ≥ k|N(u) ∩ It|}.

We distinguish three cases:
i) |B| ≥ 1

2 |Ai|, and deg(u) ≥
√

k|B|.
ii) |B| ≥ 1

2 |Ai|, deg(u) <
√

k|B|.
iii) |B| < 1

2 |Ai|.
As before in the remainder of this subsection we prove separately for each of these cases
that either It or ∂It grows sufficiently. In particular in cases i) and ii) the boundary grows
sufficiently, while in case iii) it is It to grow.

Case i)

It holds that

|B| ≥ 1
2 |Ai| and deg(u) ≥

√
k|B|.

In this case, we start by showing that after ⌈ |It|+|∂It|
|B| log n ⌉ rounds, we inform at least one

node u ∈ B with high probability.
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The probability that a fixed node v ∈ It does not push to any neighbor in B is 1− hi(v)
deg(v) ≤

1 − hi(v)
|It|+|∂It| . Hence, the probability that no v ∈ It pushes to B within |It|+|∂It|

|B| log n rounds of
k-PUSH&PULL is upper bounded by

∏
v∈It

(
1 − hi(v)

|It| + |∂It|

)k
|It|+|∂It|

|B| log n

≤ e
−k/ log n 1

|B|

∑
v∈It

hi(v) ≤ e−k/ log n.

This uses that
∑

v∈It
hi(v) =

∑
v∈Ai

|N(u) ∩ It| ≥ |Ai| ≥ |B|, since Ai ⊆ ∂It.
Hence, the probability that push informs at least one node in these rounds is at least

1 − e−k/ log n, namely with high probability, since k > log2 n.
Therefore, since deg(u) ≥

√
k|B|, and by definition of the set B, we get with high

probability that

|∂It+r \ ∂It| ≥
√

k|B|
2 ≥

√
k|Ai|
4 ≥

√
k|∂It|

16 log n

for a number of rounds r = ⌈ |It|+|∂It|
|B| log n ⌉ = O(1) since |B| ≥ 1

2 |Ai| ≥ |∂It|
8 log n , where |Ai| ≥ |∂It|

4 log n

since we consider i ∈ I.

Case ii)

It holds that

|B| ≥ 1
2 |Ai| and deg(u) <

√
k|B|.

We start by noting that the probability that a fixed node u ∈ Ai pulls the rumor from It

in a given round is

1 −
(

1 − |N(u) ∩ It|
deg(u)

)k

≥ 1 −
(

1 − 1
deg(u)

)k

≥ 1 −
(

1 − 1
2di

)k

≥ k

4di
=: p,

where we use in the last inequality that 2di > k.
Formally, let Xu be the 0/1 random variable that is 1 iff u pulls the rumor. Note that the

Xu’s are independent since they come from pull operations. Let us pessimistically assume
that such a probability exactly equals p for every node u. For each node v ∈ N(B) ∩ St let
Yv be the 0/1 random variable that is 1 iff v has at least a neighbor u with Xu = 1.

We look at v ∈ N(B) ∩ St and consider the probability that no neighbor of v in B pulls
the rumor, which is at least

1 −
∏

u∈B∩N(v)

(
1 − k

4di

)
≥ 1 − exp

−k/4
∑

u∈B∩N(v)

1
di

 ≥ k

8
∑

u∈B∩N(v)

1
di

,

where the last inequality follows from the assumption on nodes u ∈ B. The expected number
of nodes v ∈ N(B) ∩ St that join ∂It is now at least∑

v∈N(B)∩St

k

8
∑

u∈B∩N(v)

1
di

= k

8
∑
u∈B

|N(u) ∩ St|
di

≥ k

16 |B|,

where the second to last equality follows by definition of B and the fact that di > 2|∂It|.
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We now show that the expected number of new nodes in the boundary is not far from that
lower bound. Formally we lower bound Y :=

∑
v∈N(B)∩St

Yv. Hereto, we use the method
of bounded differences (Theorem 13) with Ri = Xu, f({Xu}u∈B) = Y , and b ≤ 2di. Since
E[Y ] ≥ k

16 |B|, with λ = k
32 |B| we get

P
(

Y <
k

32 |B|
)

≤ exp
(

− k|B|
2091 · di

)
.

Since deg(u) < 2di < 2
√

k|B| and k > log2 n, the previous bound holds with high probability.
Therefore with high probability we have

|∂It+1 \ ∂It| ≥ k

64 |Ai|.

Case iii)

It holds that

|B| <
1
2 |Ai|.

It follows directly from the above condition that |Ai \ B| > |Ai|/2 and by the definition
of B that each node u ∈ Ai \ B iff |N(u) ∩ St| < k|N(u) ∩ It|. Recall that we are in the
case of high degree nodes: |N(u)| ≥ 2|∂It|, equivalently, we have |∂It| ≤ 1

2 |N(u)|. Hence
|N(u) ∩ ∂It| ≤ |∂It| ≤ 1

2 |N(u)|, and |N(u) ∩ It| + |N(u) ∩ St| ≥ 1
2 |N(u)|, so |N(u) ∩ ∂It| ≤

|N(u) ∩ It| + |N(u) ∩ St|. Combining this, we obtain

|N(u) ∩ It|
|N(u)| = |N(u) ∩ It|

|N(u) ∩ It| + |N(u) ∩ St| + |N(u) ∩ ∂It|

≥ |N(u) ∩ It|
2(|N(u) ∩ It| + |N(u) ∩ St|)

>
|N(u) ∩ It|

2(k + 1)|N(u) ∩ It|
= 1

2(k + 1) .

We conclude that u has a 1
2(k+1) -fraction of all its neighbors in It. Then we apply

Lemma 9 and get that with high probability at least one fourth of the nodes in |Ai \ B| pull
the rumor from It in at most ⌈ 2(k+1)

k ⌉ = O(1) rounds. Hence we get with high probability
that

|It+r \ It| ≥ |Ai \ B|
4 ≥ |Ai|

8
for a number of rounds r = O(1).
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A Concentration Bounds

▶ Definition 11 (Negatively Associated Random Variables). The random variables X1, . . . , Xn

are said to be negatively associated if for all disjoint subsets I, J ⊆ {1, . . . , n} and all
non-decreasing functions f and g it holds that

E[f(Xi, i ∈ I) · g(Xj , j ∈ J)] ≤ E[f(Xi, i ∈ I)] · E[g(Xj , j ∈ J)].

▶ Theorem 12 (Chernoff Bounds [26]). Let X1, . . . , Xn be independent 0/1 random variables.
Let X :=

∑n
i=1 Xi and let µL ≤ E[X] ≤ µH . It holds that

P[X < (1 − δ)µL] ≤ e− δ2
2 µL , ∀δ ∈ (0, 1);

P[X > (1 + δ)µH ] ≤ e− δ2
2+δ µH , ∀δ > 0.

The bounds also hold if X1, . . . , Xn are negatively associated.

▶ Theorem 13 (Bounded Differences Inequality [40]). Let R1, . . . Rn be independent 0/1
random variables with P[Ri = 1] ≤ p ≤ 1/2. Let f be a bounded real function defined on
{0, 1}n. Define µ := E[f(R1, . . . , Rn)], and b := max |f(x) − f(x′)|, where the maximum is
over all x, x′ ∈ {0, 1}n that differ only in one position. Then for any λ > 0

P[f(R1, . . . , Rn) ≤ µ − λ] ≤ exp
(

− λ2

2pnb2 + 2bλ/3

)
.

▶ Theorem 14 ([5]). Let B(n, p) denote a random variable following the binomial distribution
with n trials and success probability p. Then, for p < a < 1, we have that

P[B(n, p) ≥ an] ≤ exp
(

−n

(
a log

(
a

p

)
+ (1 − a) log

(
1 − a

1 − p

)))
.

B Warm-Up: Multi-Call Rumor Spreading on Complete Graphs

This section serves as a warm-up for our main result; we investigate what impact parallel
calls have on rumor spreading on complete graphs. We provide a full characterization with
matching upper and lower bounds. For k = 1, we know that rumor spreading takes Θ(log n)
rounds [30, 38], so we only consider k ≥ 2. The analysis in [24] yields precise results that
include the leading constant (in fact tight apart from an additive number of rounds) for the
case k = O(1). However, it does not extend to super-constant values of k, where it leads to
an upper bound of O(k · logk n), which is asymptotically worse than ours.

The proofs in the section are generalizations of standard arguments for rumor spreading
on cliques. Independent work by Out, Rivera, Sauerwald, and Sylvester [45] considers rumor
spreading with a time-dependent credibility function. Some of their proofs resemble the
results in this section.

In the proof for the upper bound, we use the following standard lemma, which is a trivial
generalization of the version with k = 1 (see, e.g., [12, Lemma 3], [34, Lemma 3.3], or [8,
Lemma 2.1]).

▶ Lemma 15. For S, T ⊆ V , let Tk-PUSH&PULL(S, T ) be the number of rounds for k-PUSH&PULL
until a rumor that is initially known to all nodes in S to spread to at least one node of v ∈ T .
Let V1, V2 ⊆ V . Then the random variables Tk-PUSH&PULL(V1, V2) and Tk-PUSH&PULL(V2, V1) have
the same distribution.
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▶ Lemma 16. Rumor spreading in a complete graph with the k-PUSH&PULL protocol for every
k ≥ 2 requires O(logk n) rounds with high probability.

Proof. An upper bound of O(log n) has been known for a long time for k = 1 [30, 38].
Since parallel spreading can only make the process faster, we have this upper-bound for
any k. In particular, for any constant k we have that the k-PUSH&PULL protocol requires
O(log n) = O(logk n) rounds with high probability. In the following we assume k ≥ 17.

Let It denote the informed nodes at round t. First we show using only k-PUSH that
|It| ≥ (k/4)t until k|It| > n − 1. Assume k|It| ≤ n − 1. Each node receives a message from at
least one node in It with probability 1− (1− 1

n−1 )k|It| = k|It|
n−1 − 1

2 k|It|(k|It|−1) 1
(n−1)2 + · · · ≥

k|It|
2(n−1) where we use binomial expansion. Now we see that

E[|It+1 \ It|] ≥ (n − |It|)
k|It|

2(n − 1) ≥
(

n − n − 1
k

)
k|It|

2(n − 1) ≥ k−1
2 |It|.

|It+1\It| can be written as a sum of 0/1 random variables. Note that they are not independent,
but they are negatively associated since the probability that u receives a push can only
decrease under the assumption that v receives a push. Hence, as discussed in the appendix
(see Theorem 12), Chernoff still gives

P[|It+1 \ It| < k−1
4 |It|] ≤ e−(k−1)|It|/16.

For k ≥ 16(c + 1) log n, this is bounded by n−(c+1), which gives the required probability. For
smaller k, we need to analyze the process more carefully.

We consider β · 2 logk n rounds, for some constant β = β(c) ≥ 2 to be decided later. By a
Chernoff bound, the probability that any such round does not have the required growth is
bounded by e−(k−1)/16. We compute the probability that more than (β − 1) · 2 logk n rounds
fail in reaching the required growth. In fact, if at most (β − 1) · 2 logk n rounds fail, we have
at least 2 logk n ≥ log(n/k)

log(k/4) successes which is enough to reach |It| > (n − 1)/k nodes.
To count the number of failures, we see that this is dominated by a binomial random

variable B(N, p) with N = β · 2 logk n trials and probability of success p = e−(k−1)/16. We
bound the probability that B(N, p) ≥ (β − 1) · 2 logk n = β−1

β N . By using standard tail
bounds on the binomial distribution (see Theorem 14) we get that for p < β−1

β we have

P
[
B(N, p) ≥ β − 1

β
N

]
≤ exp

(
−N

(
β − 1

β
log
(

β−1
β

p

)
+
(

1 − β − 1
β

)
log
(

1 − β−1
β

1 − p

)))
.

Note that we have p < β−1
β , since p = e−(k−1)/16 ≤ e−1 < 1/2 ≤ β−1

β , where the last
inequality follows from the assumption that β ≥ 2.

Now we simplify this bound

P
[

B(N, p) ≥ β − 1
β

N

]
≤ exp

(
−N

(
β − 1

β
log

(
β−1

β

p

)
+
(

1 − β − 1
β

)
log

(
1 − β−1

β

1 − p

)))

= exp

(
−β2 logk(n)

(
β − 1

β
log

(
β−1

β

e−(k−1)/16

)
+ 1

β
log
( 1

β

1 − e−(k−1)/16

)))

≤ exp
(

−2 logk(n)
(

(β − 1)
(

log
(

β − 1
β

)
+ (k − 1)/16

)
− log β

))
.
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We add the constraint that β ≥ 3, so that log
(

β−1
β

)
> −1/2 ≥ −(k − 1)/32, hence we have

P
[
B(N, p) ≥ β − 1

β
N

]
≤ exp (−2 logk(n) · (β − 1)(k − 1)/32 − log β)

= exp
(

−2 logk(n) · (β − 1)
(

(k − 1)/32 − log β

β − 1

))
.

We add the further constraint that β ≥ 11, so that log β
β−1 < 1/4 ≤ (k − 1)/64. This gives

P
[
B(N, p) ≥ β − 1

β
N

]
≤ exp (−2 logk(n) · (β − 1)(k − 1)/64)

= exp
(

− log(n) · β − 1
32 · k − 1

log k

)
≤ n−(c+1),

where the last inequality holds for β ≥ 32c + 33. In other words, we have shown that with
high probability after at most O(logk n) rounds we have that k|It| > n − 1.

Next, we show that |It+1| > n/2 w.h.p., so assume |It| ≤ n/2. Let v ∈ V \ It. Then the
probability that v pulls from It is

1 −
(
1 − |It|

n−1
)k ≥ 1 − (1 − 1

k )k ≥ 1 − 1/e.

So the expected number of nodes that pull is at least (n−|It|)(1−1/e). In this case, |It+1 \It|
is a standard binomial random variable (i.e., sum of independent 0/1 random variables).
Hence, using Chernoff we see that

P[|It+1 \ It| ≤ n−|It|
2 ] = P[|It+1 \ It| ≤ (1 − 1+1/e

2 )(n − |It|)(1 − 1/e)]

≤ e
−
(

1+1/e
2

)2
(n−|It|)(1−1/e)/2

≤ e−n/14,

using that n − |It| ≥ n/2. Now we have that |It+1| > |It| + n−|It|
2 ≥ n/2.

By a standard symmetry argument, see Lemma 15, we see that we use at most 2O(logk n) =
O(logk n) rounds with probability 1 − n−c. ◀

Next, we show the matching lower bound.

▶ Lemma 17. Rumor spreading in a complete graph with the k-PUSH&PULL protocol for every
k ≥ 2 requires Ω(logk n) rounds with high probability.

Proof. We show that it takes Ω(logk n) rounds to get n/k nodes informed. First, let us
assume that we are at a round t0 such that 54(c + 1) log n ≤ |It0 | ≤ 216(c + 1) k log n for
some positive constant c. We will later show that this round exists w.h.p. With such an
assumption, we show by induction that |It0+t| ≤ (3k)t|It0 |, until |It| ≥ n/k.5 Clearly k-PUSH
can inform at most k|It| nodes in one round. So it remains to show that the new informed
nodes due to k-PULL in one round are at most 2k|It| w.h.p.

Let v ∈ V \ It. Then the probability that v pulls from It equals

1 −
(

1 − |It|
n − 1

)k

≤ 3
2k

|It|
n − 1 .

5 Note that this requires that 216(c + 1) k log n < n/k ⇐⇒ k <
√

n/(216(c + 1) log n), which we can
assume since 1 = Ω(logk n) is a trivial lower bound for such k.
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So we can bound the expected gain from pull |I(pull)
t+1 | by

E[|I(pull)
t+1 |] ≤ (n − |It|) · 3

2k
|It|

n − 1 ≤ 3
2k|It|.

Note that |I(pull)
t+1 | is a binomial random variable, hence we can use Chernoff to bound the

probability that this is bigger than 2k|It| and get

P[|I(pull)
t+1 | > 2k|It|] = P

[
|I(pull)

t+1 | >

(
1 + 1

3

)
3
2k|It|

]
≤ e− E[|I(pull)

t+1 |]/27.

To see that this probability is indeed low, we lower bound the expected increase |I(pull)
t+1 | as

well. The probability that any v ∈ V \ It pulls from It equals

1 −
(

1 − |It|
n − 1

)k

≥ k
|It|

2(n − 1) ,

since we are assuming |It| ≤ n/k. So we see

E[|I(pull)
t+1 |] ≥ (n − |It|)k

|It|
2(n − 1) ≥ n − n/k

2(n − 1)k|It| = n(k − 1)
2(n − 1) |It| ≥ k − 1

2 |It| ≥ |It|
2 .

Since we have by assumption that |It| ≥ |It0 | ≥ 54(c + 1) log n the result holds at each step
with probability at least 1 − n−(c+1). If |It0+t| ≤ (3k)t|It0 |, then we need

log
(

n/k
|It0 |

)
log(3k) = Ω(logk n)

rounds to inform at least n/k nodes.
It remains to show that until we inform 54(c+1) log n nodes, we cannot suddenly overshoot

216(c + 1) k log n nodes. We note that It+1 = It ∪ I
(push)
t+1 ∪ I

(pull)
t+1 . It is clear that k-PUSH can

inform at most k · 54(c + 1) log n nodes. So it remains to show that it is very unlikely that the
process reaches more than 216(c + 1) k log n nodes through k-PULL. We do this by applying a
Chernoff bound in a different way. More precisely, assume that |It| ≤ 54(c + 1) log n, then
we show that the probability that |I(pull)

t+1 | > 108(c + 1) k log n is small:

P[|I(pull)
t+1 | > 108(c + 1) k log n]=P

[
|I(pull)

t+1 |>

(
1 +

(
1
2 + 3

2

)
(54(c + 1) k log n

E[|I(pull)
t+1 |]

− 1
)
E[|I(pull)

t+1 |]
]

≤ P

[
|I(pull)

t+1 |>

(
1 + 27(c + 1) k log n

E[|I(pull)
t+1 |]

)
E[|I(pull)

t+1 |]
]

≤ exp

−

(
27(c+1) k log n

E[|I(pull)
t+1 |]

)2

2 + 27(c+1) k log n

E[|I(pull)
t+1 |]

· E[|I(pull)
t+1 |]


≤ exp (−(27/7)(c + 1) k log n) ≤ n−(c+1). ◀

C On Small-Set Vertex Expanders with Expansion Larger than 1

As previously discussed, when the parameter α < 1/2 we talk about small-set expanders.
These graphs are substantially different from the classical notion of expanders, where α = 1/2.
In fact, if α = 1/2 it holds that the vertex-expansion of the graph is bounded, having ϕ ≤ 1.
The following lemma formalizes this fact.

▶ Lemma 18. Let ϕ > 0. There are no (ϕ, α)-expanders for α > 1
1+ϕ .

DISC 2025
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Proof. Let S be any set of size n
1+ϕ < |S| ≤ αn. We demand that ϕ(S) ≥ ϕ, in other words:

|S ∪ N(S)| = |S| + |∂S| ≥ |S| + ϕ|S| > (1 + ϕ) n
1+ϕ = n,

which clearly is not possible. ◀

Now the follow-up question is: why do we not simply take α = 1
1+ϕ ? The answer is that

this is a very restricted graph class as we show next. Recall that the neighborhood of S is
defined as N(S) := {v ∈ V : ∃s ∈ S, {s, v} ∈ E}. We now define the inclusive neighborhood
of a set S as N [S] := S ∪ N(S). We define the i-th neighborhood as N i[v] := {u ∈ V :
d(u, v) ≤ i} = N [N i−1[v]] where d(u, v) is the shortest-path distance between u and v.

▶ Lemma 19. Let ϕ ≥ 1. If G is a
(

ϕ, 1
1+ϕ

)
-expander, then G has diameter at most 2 and

minimum degree ϕ
1+ϕ n.

Proof. Let D denote the diameter of G. Let u, v ∈ V be a pair of nodes with distance D.
Then we have that u ∈ ND[v]\ND−1[v]. That means that ND−1[v] ̸= V , so |ND−2[v]| < n

1+ϕ ,
and |ND[v] \ ND−1[v]| < n

1+ϕ . That means that

|ND−1[v] \ ND−2[v]| = n − |ND−2[v]| − |ND[v] \ ND−1[v]| > n − 2 n
1+ϕ = (ϕ − 1) n

1+ϕ .

But that means that the nodes at distance D − 1, i.e., ND−1[v] \ ND−2[v], have edges to the
entire graph, so also to v. Hence ND−1[v] \ ND−2[v] = N [v] \ v, and thus D = 2.

For the minimum degree we now note that

deg(v) = |N(v)| = n − |N2[v] \ N [v]| − 1 ≥ n − n
1+ϕ = ϕ

1+ϕ n,

since |N2[v] \ N [v]| < n
1+ϕ , so |N2[v] \ N [v]| + 1 ≤ n

1+ϕ . ◀

So to make the definition less restrictive, we allow for α to take more values. However, for
small values of α, the expansion property becomes local, which does not help us for rumor
spreading.

▶ Lemma 20. Let α ≤ 1
2+2ϕ . For any even n ∈ N, there exists a (ϕ, α)-expander G that is

not connected.

Proof. Let G = Kn/2 + Kn/2 be the sum of two disjoint complete graphs, which is clearly
not connected. We show that G is a (ϕ, α)-expander. Let S ⊂ V with |S| ≤ αn. We have

|∂S| ≥ n

2 − |S| ≥ n

2 − αn ≥ n

2 − n

2 + 2ϕ
= n

2

(
1 − 1

1 + ϕ

)
= ϕn

2 + 2ϕ
≥ ϕαn ≥ ϕ|S|. ◀

We conclude that for rumor spreading we can focus on the regime 1
2+2ϕ < α ≤ 1

1+ϕ . We
show that in this regime a (ϕ, α)-expander has small diameter.

▶ Lemma 21. If G is a (ϕ, α)-expander for α > 1
2+2ϕ , then it has diameter at most O(logϕ n).

Proof. Let v ∈ V be an arbitrary node, we show that |N⌈logϕ n⌉[v]| > n/2, hence for any
pair of nodes u, v ∈ V , we have N⌈logϕ n⌉[u] ∩ N⌈logϕ n⌉[v] ̸= ∅, so there is a path from u to v

of length at most 2⌈logϕ n⌉.
By expansion we have that |N i[v]| ≥ ϕi, if |N i−1[v]| ≤ αn. Now if |N⌈logϕ n⌉[v]| ≥

ϕlogϕ n = n, we are done. So suppose not, i.e., suppose |N⌈logϕ n⌉−1[v]| > αn. For every
S ⊂ N⌈logϕ n⌉−1[v] with |S| = αn it holds that |S ∪ ∂S| ≥ (1 + ϕ) · αn since G is a (ϕ, α)-
expander. Hence |N⌈logϕ n⌉[v]| ≥ |S ∪ ∂S| ≥ (1 + ϕ) · αn. Since we assume α > 1

2+2ϕ we have
that (1 + ϕ)αn > 1+ϕ

2+2ϕ n = n
2 , which completes the proof. ◀
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D Examples of Small-Set Vertex Expanders

A trivial example of (ϕ, α)-expanders are complete graphs.

▶ Lemma 22. The complete graph on n nodes is a (ϕ, α)-vertex expander for every 0 < ϕ ≤
n − 1 and α ≤ 1

1+ϕ .

However, we can show also the existence of significantly sparser graphs that are (ϕ, α)-
expanders. We consider Erdős-Rényi random graphs G(n, p) on n nodes, where there is an
edge between any pair of nodes with probability p. We also know that w.h.p. the graphs
G(n, ϕ/n) have diameter Θ(logϕ n) for ϕ = ω(1) [15].

▶ Lemma 23. Let α < 1
1+ϕ/(1−e−1) ≈ 1

1+1.58ϕ . Let a be such that α = 1
1+aϕ and ϕ ≥

Θ
((

1
a(1−e−1)−1

)2
log n

)
. Erdős-Rényi random graphs G(n, p) with p ≥ 3ϕ

n are (ϕ, α)-vertex

expanders with high probability.
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