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—— Abstract

We present the first upper bound on the convergence time to consensus of the well-known h-majority
dynamics with k opinions, in the synchronous setting, for h and k that are both non-constant values.
We suppose that, at the beginning of the process, there is some initial additive bias towards some
plurality opinion, that is, there is an opinion that is supported by x nodes while any other opinion is
supported by strictly fewer nodes. We prove that, with high probability, if the bias is w(y/x) and the
initial plurality opinion is supported by at least x = w(logn) nodes, then the process converges to
plurality consensus in O(logn) rounds whenever h = w(nlogn/x). A main corollary is the following:
if k = o(n/logn) and the process starts from an almost-balanced configuration with an initial bias of
magnitude w(y/n/k) towards the initial plurality opinion, then any function h = w(klogn) suffices
to guarantee convergence to consensus in O(logn) rounds, with high probability. Our upper bound
shows that the lower bound of Q(k/h?) rounds to reach consensus given by Becchetti et al. (2017)
cannot be pushed further than ﬁ(k /h). Moreover, the bias we require is asymptotically smaller than
the Q(1/nlogn) bias that guarantees plurality consensus in the 3-majority dynamics: in our case,
the required bias is at most any (arbitrarily small) function in w(y/z) for any value of k > 2.
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1 Introduction

In this paper, we study the convergence time of the well-known h-majority dynamics. In
brief, the setting is the following: We are given a network of n agents that interact with each
other in synchronous rounds. At round 0, each agent supports one out of k£ possible opinions
in the set [k]: At round 7 > 0, each agent v samples uniformly at random h neighbors
Ui, ..., up (with repetition) which, in turn, send their opinions z1, ...,z to v. Then, v
adopts as its own opinion the mode of {x1,...,zp}, breaking ties uniformly at random. Let
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c:(7) count the number of agents supporting opinion ¢ after round number ¢. The h-majority
dynamics gives rise to a random process on the system graph, which we call the A-majority
process. The question is to determine the number of communication rounds that the process
needs to reach consensus, i.e., a configuration where all agents agree on some opinion i € [k].
Furthermore, we are interested in plurality consensus: Suppose that at the beginning of the
process there is a plurality opinion, that is, an opinion ¢* such that co(i*) > co(j) for all
j # i*. Plurality consensus is consensus on the opinion i*, and one wishes to quantify the
size of the initial bias that guarantees to obtain plurality consensus with high probability.!

1.1  QOur contribution

We give the first non-trivial upper bound to the consensus time of the h-majority process with
k opinions for non-constant h and k. Let us denote the difference max; min;;{c,(7) — c,(j)}
by B; and refer to it as the bias of the configuration c; at time ¢. In a nutshell, our main
result is the following.

» Theorem 1. Consider the h-majority dynamics with k opinions in the complete graph
of n nodes with self-loops 2. Let A1, A2, A3 be large enough positive constants. Assume that
opinion 1 is the initial plurality opinion with By > A1y/co(1) and co(1) > Aglogn. If
h > Agnlogn/co(1), then, with high probability, the h-majority process reaches plurality
consensus within O(logn) rounds.

Let us discuss Theorem 1 a bit more in details. First, notice that it always holds
co(1) > n/k since k > n/co(1). In the following, we say that a configuration is almost-
balanced if there exists a subset I C [k], with |I| = O(1), such that co(i) = O(co(1)) for all
i € [k]\ I, assuming that opinion 1 is the plurality opinion. Notice that, in this case, it must
hold that co(1) = ©(n/k) and co(i) = O(n/k) for all i € [k] \ I.

Case 1: k = O(n/logn).

Here we have two sub-cases depending on how we fix co(1). In the first sub-case, we fix
co(1) = O©(n/k) such that co(1) > Azlogn (which is always possible). Here, we must select
some large enough h = O(nlogn/cy(1)) = O(klogn) in order to apply Theorem 1, with
the required bias that is minimum, that is, By = 6(\/7%): observe that the configuration
is necessarily almost-balanced. If, instead, co(1) = w(n/k), it is guaranteed that co(1) =
w(logn). In this case, the configuration cannot be almost-balanced because the required bias
is By = ©(y/co(1)) = w(y/n/k). Here, we can pick h = O(nlogn/co(1)) = o(klogn).

Case 2: k = w(n/logn).

Since k = w(n/logn) and co(1) = N(logn) by hypothesis, we cannot have almost balanced
configurations: we can always choose some h = o(klogn) and we will have that the minimum
bias is Bo = w(/n/k). Note that in this setting, » may be larger than n, which we do not
exclude as the samples can contain repetitions.

1 The expression with high probability (in short, w.h.p.) refers to an event that holds with probability at
least 1 — n~ ¢, where ¢ > 0 is any constant that is independent of the size n of the distributed system.

2 Assuming self-loops is standard in the literature, as it simplifies the analysis without affecting the
possible outcomes.
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Observations

Despite the assumption h > Agnlogn/co(1) is undoubtedly a strong one (that is, h needs to
be at least roughly klogn for almost-balanced configurations), in Section 3 we show how
the analysis for such regime of h is already quite involved and we discuss what the main
difficulties to reduce such assumption are. Also, in Section 3 we will highlight why we believe
that h ~ n/co(1) is a “threshold” value, since the two settings h < n/co(1) and h > n/co(1)
seem to need complementary approaches, which is also why our analysis cannot be adapted to
the case h <« n/co(1l). However, since h is a “static” parameter of the h-majority dynamics,
in order to approach the case h < Agnlogn/cg(1), one has to show only that there is a time
t > 0 such that c;(1) > Asnlogn/h and that opinion 1 is still the plurality opinion with B,
that meets the hypothesis of Theorem 1, which implies that our analysis applies.

Prior to this work, the only result for the h-majority dynamics with non-constant h and
k was a lower bound of Q(k/h?) rounds to reach consensus given by [5] that holds with high
probability whenever max;cx{co(i)} < 3n/(2k). Hence, Theorem 1 shows that the lower
bound cannot be pushed to Q(k/h) (where the notation  hides polylog(n) factors), at least
as long as max;ey{co(i)} < 3n/(2k) is satisfied, e.g., when (n — Bo)/(co(1) —Bo) < k <
3n/(2co(1)), which is always realized when max{(n+(k—1)Bo)/k, A2 logn} < co(1) < 3n/(2k)
and k < 3n/(2)\2logn) for any value of By meeting the hypothesis of Theorem 1.

Furthermore, as we will discuss in the related works, in the context of opinion dynamics,
the minimum required bias in any other opinion dynamics is always asymptotically larger
than our minimum required bias. Interestingly, the hA-majority dynamics can amplify a very
small bias even when h = O(klogn) (this is easy to prove for very large h as we argue in
Section 3, but it is not at all trivial for our parameters).

A final remark that we stress is about the message complexity. According to Theorem 1,
the message complexity required to reach consensus is O(hnlogn), which can be as high as
O(kn log? n) in almost-balanced configurations. By recent work on the 3-majority dynamics
(see Section 1.2), the message complexity of the 3-majority dynamics is O(knlogn). We
believe that the gap between these two quantities is due to the fact that the analysis of the
h-majority dynamics is not yet tight.

1.2 Previous results

There is a vast body of research that investigated the h-majority dynamics when either h or k

are constant values, both in the synchronous and in the asynchronous settings [5,9,10,13,27,34].

Before exploring the results in the two settings, let us discuss the work [10]. The authors
compared the power of the h-majority dynamics and that of the (h+1)-majority dynamics with
k = 2 opinions. They proved that, starting from the same configuration, the consensus time
Th+1 of the (h + 1)-majority dynamics is stochastically dominated by the consensus time T},
of the h-majority dynamics in the following sense: for each ¢t > 0, Pr(T41 < t) > Pr(T} < t)
in both the synchronous and the asynchronous settings. However, to date no such extension
to the case of k > 2 opinions is known.

Synchronous setting

Let us specify that all the results we mention in this subsection and the next two ones hold
in the complete graph of n nodes with self-loops. The work [6] proved an upper bound of
O ((k*\logn + klogn)(k + logn)) rounds to reach consensus that holds w.h.p., provided
that £ < n® for a suitable positive constant o < 1.

27:3
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In [5], the authors showed that the synchronous 3-majority dynamics with &k opinions
converges in O(min{k, (n/logn)% }logn) with high probability, provided that the bias of

the initial configuration is at least C\/ min{2k, (n/logn)s }nlogn for some constant ¢ >
0. Moreover, the authors provided a lower bound of Q(klogn) on the convergence time
to consensus, w.h.p., whenever the initial configuration is sufficiently balanced, that is,
max;e(r{co(i)} < n/k+ (n/k)'~ for some ¢ > 0 and k < (n/logn)'/4.

The work [9] compared the synchronous 3-majority dynamics with the synchronous
2-choices dynamics. The 2-choices dynamics works as follows: At each round, each agent
picks two neighbors (with repetition) u.a.r. If the two sampled neighbors support the
same opinion, the agent adopts that opinion. Otherwise, the agent keeps its own opinion.
The authors first proved a generic lower bound of Q(min{k,n/logn}) rounds to reach
consensus starting from the initial perfectly balanced configuration, w.h.p. Furthermore,
they proved that the 3-majority dynamics works better in symmetric configurations (i.e.,
with no initial bias) when, e.g., max;ex){co(i)} = O(logn). In particular, w.h.p., the 3-
majority takes time at most O(n3/ 4 log7/ 8 n) to reach consensus w.h.p., regardless of any
other hypothesis on the initial configuration, while the 2-choices needs time Q(n/logn)
whenever max;cx{co(i)} = O(logn). This was the first work to notice that, for a large
number of opinions, the 3-majority dynamics is polynomially (in k) faster than the 2-choices
dynamics.

The work [27] improved upon [5] and showed that, for the 2-choices with k = O(1/n/logn)
and for the 3-majority with k& = O(n'/3/,/logn), the convergence time to consensus is
O(klogn), with high probability. Notice that this upper bound is tight according to the lower
bound by [5], at least as long as k < (n/logn)'/*. Furthermore, the authors showed that
the convergence time on the 3-majority dynamics is O(n2/ 3 log3/ 2 n) with high probability,
regardless of the number of opinions.

Very recently, [34] settled almost tightly the complexity of both the 3-majority and
the 2-choices dynamics. The authors proved that, w.h.p., the 3-majority dynamics reaches
consensus in O(klogn) rounds whenever k = o(y/n/logn), while it takes time O(y/nlog? n)
for other values of k. Furthermore, [34] proved that plurality consensus is ensured w.h.p. as
long as the initial bias is By = w(y/nlogn). As for the 2-choices, they showed that, w.h.p.,
the dynamics reaches consensus in O(klogn) rounds whenever k = o(n/log®n), while it
takes time O(n log® n) otherwise. In this case, plurality consensus is ensured w.h.p. as long
as the initial bias is By = w(y/co(1)logn).? These results almost match the generic lower
bound given by [9], up to logarithmic factors.

Asynchronous setting

The only works that analyzed the 3-majority dynamics in the asynchronous setting are [10,13].
In [10], the authors consider the binary opinion case and show that the convergence time
of the asynchronous 3-majority dynamics is O(nlogn) rounds, w.h.p., and that a bias of
©(y/nlogn) is sufficient to ensure plurality consensus, w.h.p. The authors of [13] showed
that the convergence time is O(min{kn log?® n, n®/? log3/? n}), w.h.p., no matter the number
of initial opinions. They also provided a generic lower bound of Q(min{kn,n3/?/\/logn})
rounds to reach consensus (starting from balanced configurations), w.h.p. The work [13]
(which came before [34]) was the first to establish exactly how the linear-in-k dependence in

3 This is the only example of initial bias that gets “close enough” to what we require in Theorem 1, but
with an exceeding +/logn factor.
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the consensus time of the 3-majority dynamics breaks when the number of opinions grows
over /n, in which case the consensus time is sublinear in the number of opinions. The
reader may observe that the asynchronous setting has exactly the same convergence time
as the synchronous model, but for a multiplicative factor n. This is to be expected: In the
asynchronous setting, in a round only one agent (sampled u.a.r.) updates its state, and hence

we need roughly n rounds to activate all agents at least once (up to polylogarithmic factors).

For processes with small variance (smaller w.r.t. the voter model), convergence times from
the synchronous to the asynchronous setting usually scale with such a factor. Note that this
is not true for processes with large variance [7].

On the h-majority dynamics

As previously discussed, [10] established the “hierarchy” of the h-majority dynamics when
the number of opinions is k = 2, by showing that the (h + 1)-majority is “faster” than
the h-majority (both in the synchronous and asynchronou settings), and [5] exhibited the
lower bound of €2(k/h?) rounds to reach consensus (that holds w.h.p.). Apart for the two
aforementioned works, there is no theoretical result on the h-majority dynamics for h > 1,
which makes it one of the open problems in consensus dynamics. [34] put the h-majority
dynamics in the “Open Question” section of their recent work, and wondered whether the
techniques developed in [34] applied to the h-majority dynamics as well. We do not know the
answer to this question: As we will discuss in Section 3, in the h-majority the main difficulty
is to compute the expectation of c;y1(¢) conditional on the whole configuration c; at the
previous rounds, while this is straightforward when A = 3 and is at the core of every paper
analyzing the 3-majority dynamics [5,6,13,27,34]. More in general, there is no non-trivial
upper bound to the consensus time of the h-majority dynamics with k£ > 1 opinions. In this
paper, we take a first step into the analysis of the h-majority dynamics. As we will show,
our main effort basically is providing a lower bound to E[ci+1(1) — ¢t+1(2) | ¢¢], supposing
that opinion 1 is the plurality opinion at round ¢, and opinion 2 is the opinion supported by
the second-largest community.

Other related works

The 3-majority, the h-majority, and other majority-based dynamics have been investigated
also in other settings. For example, in presence of communication noise (which corrupts
the exchanged messages) or in presence of stubborn agents [18,19], or when some opinion
is preferred among the others, that is, there is some probability that an agent, instead
of running the protocol, spontaneously switches to the preferred opinion with some fixed
probability [14,32].

Other opinion dynamics for the (plurality) consensus problem have been investigated
both in the synchronous and asynchronous settings. One of the most prominent is the
undecided-state dynamics. In the undecided-state dynamics there is an extra opinion, the
undecided opinion. The update rule works as follows: A node samples one neighbor u.a.r.
and pulls its opinion. If the received opinion is different from the supported one, the node
becomes undecided. If the node is undecided, it just copies whatever opinion receives. The
undecided-state dynamics has been studied both in the synchronous setting and in the
population protocol model (asynchronous setting) [1-4,8,12,15,16] and performs roughly
the same as the 3-majority dynamics for a small number of opinions (while its analysis for
the unconstrained general case is still open). More in general, work on opinion dynamics
fits into the recent trend in the distributed computing community of drawing inspiration
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from social and biological systems. Other then the consensus problem, researchers have
analyzed distributed search problems but also more generic problems (MIS, leader election,
etc.) in extremely weak computational models (such as the beeping model or the stone-age
model) [11,20,22-24,26,28,29, 31, 35].

A special mention goes to [25]. Here, the authors considered noisy distributed systems,
i.e., systems in which exchanged messages can be corrupted and changed with some positive
probability, a setting that takes inspiration by biological societies, where environmental
factors can disturb communication. They characterized the type of noise for which the
tasks of information spreading and plurality consensus can be solved, when the number of
opinions is constant.* The protocol designed by [25] to solve plurality consensus relies on
some majority-based rule, and proves a technical result that is at the heart of our analysis.
We will discuss this in more details in Section 3. We nevertheless stress the fact that [25]
only considers the case where the number of opinions k is a constant.

2 Preliminaries

We work on a complete graph of n nodes with self-loops. Initially, each node supports
one out of k opinions in the set [k]. Time is synchronous and controlled by some global
clock. At each round, in parallel, every node v samples h neighbors u.a.r. with repetition
and pulls their opinions. Then, v adopts the unique majority opinion, if any, breaking ties
u.a.r. among the opinions that are in the majority. For each opinion ¢ € [k], we denote by
c¢(7) the number of nodes supporting opinion 4 at time after performing the update-rule at
time ¢t. Let ¢; = (c(1),...,ci(k)) denote the configuration of the system at time ¢. Notice
that the random variable c; defines a Markov chain: for any sequence of configurations
Yi,... ¥ € [n]¥, it holds that Pr(c; =y, | N2 {c; = yi}) =Pr(ci =y | com1 = ye—1) .

Without loss of generality, we assume that at the beginning of the process we have
co(1) > co(2) > ...co(k). At any time ¢, we call plurality opinion at time ¢ the opinion &
such that c;(i) > c4(j) for all j € [k]. At any time ¢, the bias of a configuration c; is the
quantity By = max;ey) minji{c:(i) — c¢(j)}, that is, of how many nodes the community
supporting the plurality opinion exceeds the community supporting the second largest one.
Note that B; = 0 if there are multiple plurality opinions, while B; > 0 the plurality opinion
is unique.

We work from the perspective of a single node. When a node v samples h neighbors u.a.r.,
we are drawing from a multinomial distribution. In particular, given a configuration c; at
time ¢ and a node v, let X(*)(v) = (Xl(t) (v),... ,X,gt)(v)) be a multinomial random variable
where Xi(t) (v) ~ Bin(n,pgt)), with pgt) = c¢¢(i)/n, counts the number of neighbors supporting
opinion 4 that v samples at time ¢: it must hold that Zle Xi(t)(v) = n, so the variables are
negatively correlated. Let us denote the event that v supports opinion ¢ at the end of round
t by W ().

For the rest of the paper, we will use only p(lt), ceey pff), since these are the probabilities
defining the multinomial distribution of interest. We define the normalized bias to be
0 = max;c[y minj¢i{p§t) —p;t)}, which is equal to B;/n. When the round we are referring to
is clear from the context, we only write p1,...,pg, 6, X(v) = (X1(v),..., Xk (v)), and W;(v),
omitting the dependency on ¢, to refer to pgt), e ,pg), 5y, XD () = (Xl(t) (v),..., X,gt) (v)),

4 Information spreading is defined as follows: In the distributed system there is only one node that is
informed about one out k opinions, while all other nodes are not informed. The task is to design a
protocol that informs all nodes as fast as possible.
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and Wi(t) (v). Also, since in any given round ¢ the random variables {X(v)},ev are i.i.d.,
and the events {W;(v)}yey are mutually independent, when analyzing the distribution of
some X(v) or the probabilities of some W;(v), we omit the dependency on v and only write
X = (Xl, . ,Xk) and Wl

From now on, we will refer to the normalized bias d; simply as the bias of the configuration,
as we will not make use of B; anymore. With this notation, our main theorem can be rewritten
as follows:

» Theorem 2. Let \i, Ao, A3 be large enough positive constants. Assume that opinion 1
is the initial plurality opinion with g > A1+/p1/n and p1 > Aglogn/n. If hpy > Aslogn,
then, with high probability, the h-majority process reaches plurality consensus within O(logn)
rounds.

3 Overview of our analysis and technical challenges

The whole analysis is an effort to estimate the quantity Pr(/V;) — Pr(Ws) from below
(assuming that p; > pa > ... > pi), and use it to get a lower bound on the expect round-by-
round growth of the bias §. Notice that, for any given configuration c; at time ¢, it holds
that

Ct:|

E[5t+1 | Ct] >E [Erelz[%]s](rjné? {Pr(Wi(t+1)> . Pr(WJ(t+1))}

= [ {pe ) i)} [
> E[Pr(W") — pr(WiHY) ‘ e (1)

Suppose that pgt) = p(;) + 6 > p(;) > ... > pg). This implies that Pr(WfH_l) | ct) —
Pr (Wi(H_l) | ct) > Pr (Wftﬂ) | c;) — Pr (W2(t+1) | c;) for all 4 > 3 since pgt) > pz(-t) for ¢ > 3.
If we proved that Pr(Wl(tH) | ct) — Pr (WQ(tH) | ct) > 6:(1 + x) for some constant x > 0,
then we would get E[d;41 | ¢t] > 6¢(1 + ), which allows us to concentrate and establish that
dt+1 > 04(1 4+ 2/2) w.h.p. (conditional on c¢;), for a suitable choice of z > 0 and for a large
enough d;, thanks to the Hoeffding bound (Lemma 23).

Notice that, in general, the probability of W; is the probability that X; is either the
unique maximum or, if it is a maximum and is not unique, it must win the tie broken u.a.r.
In formulas, the probability is

k
1
Pr(Wi):ZE > Prl ({Xi=Xx3n( [ Xi>xb|. @
m=1"" 1<i;<...<im<k: j€[m)] JE{,01,-.im }

Using directly Equation (2) to bound Pr(W;) — Pr(Ws) is difficult, and we did not find
general estimations in the literature.

Trivial case: very large h

If, e.g., h is very large compared to ¢, in one round all nodes would adopt the plurality
opinion with high probability. The reason follows.

Suppose p1 = p2 + 90 > pa > ... > pg. Then, by the multiplicative Chernoff bound
(Lemma 22 in Section B) we get that

Pr(X; > hpi (1 —z)) > 1 — exp(—O(z*hp1)).

27:7

DISC 2025



27:8

On the h-Majority Dynamics with Many Opinions

Similarly,
Pr(X; <hps(142))>1- exp(f@(zzhpg)).

Suppose p; and po are comparable, that is, p; = O(p2) (anyway the bias we require is always
an o(p1)). Then, X1 > hp1(1 — z) and X; < hpy(1 + ) for all ¢ > 2 hold w.h.p. as long
as h > Clogn/(p12?) for a large enough constant C' > 0. If hp; (1 — x) > hpa(1 + ), then
Wi holds w.h.p., that is, a node would adopt opinion 1 in just 1 round w.h.p. Playing
with constants, by the union bound, one would obtain plurality consensus w.h.p. in just
1 round. The condition is satisfied whenever § > z(p; + p2), that is, for x < §/(p1 + p2).
Since h > C'logn/(p12?) and x < §/(p1 + p2) must hold at the same time, it is sufficient to
choose h > C'py logn/§? for a large enough constant C’ > C. Notice that, since our bias
can be such that § ~ \/p1/n, we must have that hp; > (C’/A?)p; - nlogn > logn for any
choice of p; = Q(logn/n). The minimum that h can be with this approach is ©(log? n/p;)
and can be as large as h = Q(n?/3/p1) if p; > 1/n'/3. Our Theorem 2 guarantees us that
we can always set h = O(logn/p1) as long as p; > Ay logn/n for a large enough constant
A2 > 0. For the minimum bias § = A\jy/p1/n, we have that po = p; — o(p1). Hence,
E[X2] = hpa = hp1 — o(hp1) = E[X1] — o(logn). Unfortunately, we cannot capture such a
deviation from the average of X using concentration bounds, so we need to adopt a different
approach.

3.1 Our approach

At the heart of our analysis, there is a technical lemma that was proved in [25, Lemma 9.

The lemma can be reformulated as follows. Suppose we are performing the h-majority
when in the system there are only & = 2 opinions. Then, [25, Lemma 9] provides a tight lower
bound on the expected bias after one round, i.e., on Pr (W;) — Pr (W,). Notice that, when
k=2, Pr W) —Pr (W,) = Pr(X; > Xo)+Pr(X; = X3)/2—Pr(Xs > X1)—Pr(X; = X3)/2,
which is equal to Pr(X; > X5) — Pr(X3 > X3).

» Lemma 3 (Lemma 9 in [25]). For any integer h > 0, let X; ~ Binomial(h,p) and
Xo = h — X, ~ Binomial(h, 1 — p), with p > 1/2. Let § = 2p — 1 be the bias. Then, we have
that

/2h
Pr (X1 >X2)—PI‘(X2 >X1) > ?'g((;,h),

where
5(1-62) 7T  if5< L,
9(6,h) = 1( )1 azt \/15
- (1-7) ifo> 7=

We show how to adapt the proof of [25, Lemma 9] to get Lemma 3 in the full version
of the paper [17]. Basically, Lemma 3 makes explicit the minimum sample size required by
the expectation of the bias in the next round to increase by a constant multiplicative factor
relative to the current bias, to which we refer here as §. More specifically, it is sufficient that
the number of samples h satisfies \/% (1 — 52) = > fr—}é > ¢ for some positive constant
c>0aslongas6<ﬁ
of the bias is more than a constant, which allows us to show that the bias increases just by
standard concentration arguments around the averages of X; and X, (through Berry-Esseen’s
inequality or Chernoff bounds depending on how large § is w.r.t. h).

. If, instead, § > %’ the lemma states that the new expected value
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We would like to exploit something that is similar, in spirit, to Lemma 3 when k > 1,
in order to get that the bias increases each round. However, X; ~ Binomial(h,p;) and
X5 ~ Binomial(h, p3) but p; + p2 < 1 and X5 # h — X;. In order to overcome this issue, let
us define few events.

» Definition 4 (Winning events). Let i € [k]. We define W, yies to be the event in which

“y

opinion “i” is the most sampled opinion, including possible ties. Formally,

Wi ties = Njerp iy {Xi > X} (3)

@0
1

Similarly, we define W strict to be the event in which opinion is the most sampled opinion,

without ties. Formally,
Wi,strict = mje[k)]\{i} {X'L' > Xj} : (4)

Finally, fOT’i 7£j S [k], we deﬁne Wi,j =W, U Wj, Wi,j,strict = Wi,strict U Wj,strict; and
Wi jties = Wi ties U Wj ties-

Clearly, W strict © Wi € Wi ties and W j sirice © Wi,j © Wi j ties- The idea is to perform
a conditional analysis: if we condition on W, 5, then we already know that either X; or Xs
win at the next round. However, we do not quite get that the conditional random variable
(X1 | Wi,2) is a binomial one. At the same time, it is not true that (X | Wi 2) counts the
number of failures of (X7 | Wy,2). The whole Section 4.1 presents the analytical effort to
demonstrate that, in practice, we can get some result that is similar to Lemma 3. The section
is quite technical and involved, with ad-hoc results that are needed for this adaptation. We
stress that we actually use, as conditional event, the event W 2 strict. The reason being that
(as we show in Lemma 7)

Pr(Wl | W1,2,strict) —Pr (Wz \ Wl,z,smct)
= Pr(X; > Xo | Wh 2 strict) — Pr (X2 > X1 | WA 2. strict) 5 (5)
while the equality is not true if instead of W 2 strict We use W o, because we need to take

ties into account. Observe that Equation (5) gives a formula that resembles the one that is
estimated in Lemma 3.

In Section 4.2, we estimate the probability of W; 2 strict With respect to Wi o and Wi 2 ies-
In order to do that, we classify the k opinions in two classes: the strong and the rare opinions.

The strong ones are opinions whose probabilities are comparable to p1, say, p; > p1/2. The
rare ones are all the others. Through concentration arguments, we can show that rare
opinions disappear in one round w.h.p., and it is easy to see, by symmetry arguments, that
Wi = Q(p1). The main result that we obtain in Section 4.2 is that, basically, under the
hypothesis that hp; > C'logn for some large enough constant C' > 0, p1/8 < Pr (W) gies) /8 <
PrOWi strict) < Pr(Wh) < Pr (W sies), that is, ties do not matter that much. Notice that
the latter fact is, again, trivial if hp; = Q(max{p3n,log®n} > O(logn), while we require a
smaller (and, possibly, much smaller) h. Also, observe that Pr(W; surict) > p1/8 implies that
PrWi 2 strict) = (p1 + p2). Computing directly the probability of ties in the multinomial is
hard, but we resolve this issue mapping injectively events in which opinion 1 wins with a tie
to an event in which opinion 1 wins without a tie. We show that this mapping preserves
probabilities up to small constants, therefore we can conclude that events with ties (where
opinion 1 wins) have probability weights that are comparable to events without ties (where
opinion 1 wins). See Lemma 13 for more details (and note that no initial bias is required for
the result of Lemma 13 to hold).
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Finally, in Section 4.3 we show how to combine all the ingredients that we have proved in
Sections 4.1 and 4.2 to obtain the round-by-round expected growth of the bias and the final
statement on plurality consensus. As for the round-by-round expected growth of the bias,
we just use the law of total probability which implies that

Pr(W;) — Pr (Ws) (6)
> Pr (Wi 2strict) [Pt W1 | Wh 2.strict) — Pr (Wa | Wi 2 gtrict )]
= Pr (Wi 2,strict) [P (X1 > Xo | Wi 2strict) — Pr(Xo > X1 | Wi 2 strict)] (7)

and then use Equation (1). Given the expected growth of the bias, we make use of the
Bernstein’s inequality (Lemma 24 in Section B) to show its round-by-round increase in high
probability, and we need to make sure that all other surrounding conditions of the growth
are still satisfied in order to iterate in high probability each round.

3.2 Final discussion and open questions

In this paper we present an analysis of the A-majority dynamics when hp; > C'logn for a
large enough constant C. Interestingly, Theorem 2 answers (partially) a long-standing open
question on mathoverflow [30] which basically asks how to estimate Pr(W;) — Pr(Ws) when
h = 0(1/42), that is, when § = o(1/1/h). With Lemma 16 we answer to this question under
the hypothesis that hp; > Clogn, and we also show that the bias increases w.h.p. each
round as long as C’+/p1/n < 6 = o(1/p1/logn) for some large enough constant C’ > 0.

We also remark that 6 ~ /p;/n is the smallest bias that was ever required in the
literature on opinion dynamics (see Section 1.2). Indeed, in the proof of Theorem 17, we
show that the standard deviation of the bias at the next round is no smaller than some
function ©(4/p1/n), while its expected growth is at least a multiplicative factor ~ y/logn. It
remains open to understand whether the bias can be reduced for h ~ klogn, which would
imply that the growth of the bias is higher than a multiplicative factor ~ v/logn: however,
we conjecture that this growth is optimal in the regime h ~ klogn.

The main open question here is whether the lower bound Q(k/h?) given by [5] is tight or
not. To understand this, one has to improve the assumption on Ap; and analyze especially
the case where hp; < 1. We argue more in the next subsection.

We remark that our work does not deal with perfectly-balanced configurations: one simply
has to show that in short time the system reaches a configuration with the bias specified
in the hypotheses of Theorem 2. We leave the analysis of the symmetry-breaking phase for
future research.

On the multinomial distribution

Our analysis offers a corollary for the multinomial distribution that is interesting per-se, and
is just a reformulation of Lemma 13.

» Corollary 5. Consider a multinomial random wvariable (X1,...,Xy) where each X; ~
Binomial(h, p;), with p1 > ... > pg. If hpy > Clogn for a large enough constant C > 0,
then Pr(ﬂi?:Q{Xl > XZ}) > cpy for some small enough constant ¢ > 0.

We do not know how the statement of Corollary 5 changes when hp; decreases, which
remains an open question. This is linked to the generalized birthday paradox, which asks as
follows: If p; = ... = pg, what is the probability that there exists i € [k] such that X; > 1?7
In fact, if hp? = ©(1), we are in the standard birthday paradox: with constant probability,
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we have that max;cx) {X;} =1, which means that whenever opinion 1 is the maximum, the
number of ties is h with constant probability. In contrast, Corollary 5 suggests that when
hp1 = Q(logn) the number of ties that involve opinion 1 when it is the maximum is small.
Since the number of ties among the maxima increases when hp, gets smaller, we conjecture
that, for hp; < 1, Pr(OWi suict) = o(p1), implying that our approach, that entirely builds
around the fact that Pr(W; sirict) ~ Pr(Wh), cannot apply, and new ideas are required.
Another open question is to quantify the number of ties among the maxima, in general,

and especially when opinion 1 is in the maxima for a generic configuration where p; > ... > py.

This would help bridging the two cases hp; < 1 and hp; > 1.

4  Analysis

In this section we present the proof of Theorem 2, following the overview presented in
Section 3. Most of the technical proofs either are deferred to Section A or can be found in
the full version [17].

4.1 Conditional analysis of the expected behavior of the process

Due to space limitations, the interested reader can find the proofs in the full version [17].
Lemma 3 shows a good lower bound of Pr (W;) — Pr (W) for the h-majority when the

number of opinion is 2. In order to use this result for & opinions, our plan is to condition on

the event that either opinion 1 or 2 wins, without ties. Let z = max;>3 {X;} the mode of

the sample among the opinions {3,...,k}. This event can be written as max { X1, Xa} > .

In the following lemma, we adapt the result of Lemma 3 to work under the additional
conditioning event that opinion 1 or 2 is sampled more than z times.

» Lemma 6. For any integer m > 0, let Y1 ~ Binomial(m,q) and Yo = m — Y] ~
Binomial(m, 1 — q), with ¢ > 1/2. We have, for any m/2 < x < m,

Pr (Y1 > Yz | max(Yy,Ys) > 2)—Pr(Yy > Y] | max(Yy,Ys) > ) > Cp-min(v/m-(2¢g—1),1),
for some constant C; > 0.

The next lemma shows that the expected bias at the next round, i.e. Pr (W;) — Pr (W),
is equal to Pr(X; > X5) — Pr(X, > X;), conditioning on the event either opinion 1 or 2
wins, without ties. The last quantity is easier to estimate, because we don’t have to handle
possible ties. This is to get a formula that resembles that of Lemma 3.

» Lemma 7. Recall the Definition 4 of the event Wi 2 strict- We have

Pr Wi | Wi 2.strict) — Pr (Wa | Wi 2 strict)
= Pr(X; > Xa | Wi 2strict) — Pr (X2 > X1 | Wi 2 strict)

We remark that the statement of Lemma 7 does not hold if we condition on the event
Wi 2, which includes possible ties. In fact, the event {W;, W 2} contains sub-events for
which opinion 1 ties with many other opinions, and we could not find a simple close expression
for the probability of these sub-events.

To use Lemma 6 after conditioning on the fact either opinion 1 or 2 wins, we need to
estimate the number of total samples of opinion 1 and 2. Since, at the end, we assume
hp1 > logn, we can apply the Chernoff bound (Lemma 22 in Section B) to show that
X1+ Xy > (p1 + p2)/2 wh.p., but we must ensure that this remains true under the
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aforementioned conditioning. The following lemma shows this is indeed the case. Despite the
intuitive nature of the statement (the fact either opinion 1 or 2 wins is positively correlated
with the absolute value of X7 and X2) we need to use an involved coupling argument to
formally prove it.

» Lemma 8. It holds that

Pr(Xi+ X2 >h-(p1+p2)/2 | Wi2strict) > Pr(Xi +Xo > h-(p1 +p2)/2).

4.2 Estimating the probability of the conditional event

In this section our goal is to estimate a lower bound for Pr (W 2 girict). More specifically, we
show that Pr W1 2 strict) = C(p1 + p2) for some constant C' > 0. As we already argued after
Lemma 7, it is important to exclude ties in the event we condition on.

The next definitions introduce terms to refer to opinions that will disappear w.h.p. at the
next round, the weak opinions, and their counter part, the strong opinions.

» Definition 9 (Rare opinions). Denote with R, = {i € [k] : p; <z -p1} be the set of the
x-rare opinions, for 0 < x < 1.

» Definition 10 (Strong opinions). Denote with S := {i € [k] : p; > $p1} be the set of the
strong opinions, for 0 < z < 1.

Note that the set of the strong opinions and the set of 1/2-rare opinions are complementary.
In the next lemma we show that w.h.p. all weak opinions will be sampled less than

the opinion 1, and therefore, they will disappear at the next round. The proof is just an

application of Chernoff bounds (Lemma 22 in Section B) and we defer it to Section A.1.

» Lemma 11. Let Cs5,C3 be two constants s.t. 0 < Cy < 1 and C3 > 2. If hpy > Cylogn,
2
with Cy = (3Cs ;) then

1

PI' (mieRCQ {Xl > X7}) Z 1 — W

To bound Pr (W1 sirict), we plan to first show that there exists a constant C' s.t. Wi gies >
Cp1, and, therefore, show that Pr (Wi sirict) > CPr(Wi ties), for some other constant
C'. Hence, in the next lemma we show that Pr(W;) > Cp; which, in turn, implies that
Pr(W ties) > Cp1. The idea is to use Lemma 11 to show that only strong opinion compete
for the win and in the worst case they have all same probability to win without ties. The
thesis follows after showing that the number of strong opinions is at most 2/p;, and that
> ics Pr(W;) > 1. Again, the proof is deferred to Section A.1.

» Lemma 12. Let Cy = (18)%. If pyh > Cylogn, then

Pr(W1) > 21

The next Lemma plays a key role in avoiding the computation of the probability of ties.
Assuming that hp; = O(logn), we can map each realization of the multinomial in which
opinion 1 wins with ties to a realization in which opinion 1 wins without ties. We will show
that these two realizations have the same probability up to a constant. Therefore, we can
conclude that tie events have a comparable weight to events without ties. We present its
proof in Section A.1 as we believe this is an interesting result per-se, which also proves
Corollary 5 in Section 3.2.
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» Lemma 13. Let hp, > Cylogn for Cy = 182. It holds that
1 1
Pr Wi sirict) > 5 Pr (W1 ties) > =P

The goal of this section was to show that Pr W 2 srics) > C (p1 + p2) for some constant
C > 0. This can be easily obtained by applying Lemma 13, because p; + p2 < 2p; and
Wi strict © W1,2 strict-

» Corollary 14. Let hp, > Cylogn for Cy = 182. It holds that

1
Pr W12, strict) > 36 (p1 + p2) -

4.3 Putting everything together

In this section we can finally put together all the results to give a lower bound to Pr (W) —
Pr (W;) and to use it to prove Theorem 2. Next lemma is the statement that is “equivalent
in spirit” to Lemma 3 but for many opinions, conditional on W, 2 strict. 1ts proof involves a
mix of the previous results and is quite intricate.

» Lemma 15. Let p1 h > C4 logn, with Cy = 182. We have

(pl —p2)\/ﬁ 1}
v 2(p1 +p2),

Pr (W1 | W 2 strict) — Pt Wa | Wh 2 strict) > Cmin{

for some constant C > 0.

Proof of Lemma 15. Let
M={meN:Pr(X;+Xo=m|Wi2stict) > 0N {m>h-(p1+p2)/2}
and

L,={xeN:Pr <m>a§<Xj =z | X1+ X2 = m7W1,2,strict) > 0}.
iz

We have

Pr Wi | Wi 2strict) — Pr (Wa | Wi 2 strict)
= Pr (X1 > Xo | Wi 2strict) — Pr (X2 > X1 | Wi 2 strict)
(5) m% Pr(Xi + Xo =m | Wi 2 strict) [PT (X1 > Xo | Wh 2 strict, X1 + Xo = m)
— Pr(Xs > X | Wi 2 strict, X1 + X2 = m)]
Z Pr(Xi + X2 =m | W1 2 strict)

meM
‘ E Pr <m>a§(Xj =z | X1+ X = maW1,2,strict>
i>
€Ly,

. |:PI‘ <X1 > Xo | Wi 2 strict, X1 + Xo = m7m>a§( Xj= 1‘)
J=

— Pr <X2 > X1 | Wi 2 strict, X1 + Xo = m,mgng = 95)}
i>

= Z Pr (Xl + Xo=m | Wl,?,strict)
meM
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. Z Pr (m>a§<Xj =z | X1+ Xy = m7W1,2,strict>
3>

TE Ly,

. [Pr <X1 > Xo | max{Xy, Xo} >z, X1 + X5 =m, mg;(Xj = z)
i>

— Pr (Xg > Xp | max{Xy,Xo} >z, X1+ X = m,m>a§<Xj = .I‘):l , (8)
3>

where in (7) we used Lemma 7, in (i), (¢i¢) we used the law of total probabilities, and in (iv)
we used that, by Definition 4,

<Wl,2,strict7Xl + X2 =1m, maij = a’:)
Jj=3
= (maX{X17X2} > -T,Xl +X2 = m7m>a§(Xj — x) .
Jj=Z

Conditioning on { X7+ X2 = m}, makes X1, X5 independent from X3, ..., Xy, and distributed
as Y1,Ys, where Y7 ~ Binomial(m,q;) with ¢ = —2-— and Y5 = m — Y;. We obtain, by

pP1+p2

Equation (8)

Pr (W1 | Wi 2 strict) — Pr W2 | Wh 2 strict)

> Z Pr (Xl -+ X2 =m | Wl,Z,strict)
meM
. Z Pr (m>a§< Xi=z| X1+ Xy = m7W1,2,strict)
3>
€Ly,

<[Pr(Y; > Yy | max{Y7,Y2} > z) — Pr (Y2 > Y7 | max{Y7, Y2} > 2)]
> Z Pr (X1 + Xo = m | Wi 2 strict)

Q) meM
. Z Pr (3133),{ Xj =T | X1 + X2 =m, Wl,2,strict>
$EL77L B

-Cl-min(\/rn< 02 ),1)
p1+p2

é
Z Pr (Xl + XQ =m | Wl,Q,strict) . Cl - min (ﬂ ( 2 > ,1)

meM p1+ P2

(i)

8o/ I
> Pr(Xq+Xo>h-(p1+p2)/2 ] Wi2strict) - C1-min [ | ———=],1
(iit) V2(p1 + p2)

2 0 (1o (B e ) (5222 )
2o (i) (i) )

> C'min % 1,
V2(p1 + p2)
where in (i) we used Lemma 6, in (ii) we used the law of total probabilities, in (i7) we used
that by definition of M, m > h(p1 + p2)/2, in (iv) we used Lemma 8 and the multiplicative

Chernoff bound (Lemma 22 in Section B), and in (v) we used that hp; > 16logn. This
concludes the proof of Lemma 15. <
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In the next lemma, we finally remove the conditional event W 3 strict and bound Pr Wy ) —
Pr (W,) from below. We need to use Lemmas 13 and 15, but its proof consists in just mixing
in the “right way” previous results, hence we defer it to Section A.2. From now on, we denote
the difference p; — p; by (7).

» Lemma 16. Let py h > Cy logn, with Cy = 182, If §(5) < 4/ M, then there exists a
constant Cs > 0 s.t.

h
p1+ P2

Pr (Wl) —Pr (WJ) Z C5 (5(]) ) Pr (Wl)

Instead, if 6(5) > %, there exists a constant 0 < Cg < 1 s.t.

Pr (W) > 1_7106 Pr(W)).

Given a configuration (p1,...,px), we denote by p’; the probability associated to opinion
j at the next round. Fix an opinion j # 1. Let 6(j)" be the bias between opinion 1 and
opinion j at the next round, i.e. pj — pj.

Before proceeding in the analysis presentation, let us comment Lemma 16. Note that
Pr (W;) is the expected value of p}. In the case the bias between opinion 1 and opinion j is

more than 4/ M, at the next round we have p} > (1 + C)p); in expectation, for some

constant C' > 0. In the case the bias is smaller than 4/ W, by the fact h = Q (p; logn)
and Pr(W;) = Q(p1 + p2), Lemma 16 implies that at the next round the expected bias
grows of a € (logn) factor. Thanks to standard concentration bounds (Chernoff Bound and

Bernstein Inequality) we show that w.h.p. the new bias is sufficiently close to its expectation.

Now we all have all ingredients to prove Theorem 2. Next theorem is just a reformulation
of Theorem 2.

» Theorem 17. Consider an initial configuration (p1,...,px) s.t. p1 > Cr 105", and py —p; >

Cg\/% for all 5 > 2. Then the h-majority dynamics with hpy > Cylogn converges in time
O(logn) to opinion 1, w.h.p., for some constants Cy,C7,Cs > 0.

The proof relies on first quantifying the increase in the bias between the first opinion and
other opinions after one round. Then it iterates the same reasoning until consensus (for the
complete proof, see the full version [17]). For the first point, we use concentration bounds on
the results obtained in Lemma 16. In particular, we distinguish three sub-cases based on the
size of the bias between two opinions. For the second point, we need to show that the initial
hypotheses are still satisfied after one round to ensure that we can iterate.

In the next lemma, we show that if p; > (1 + C)p; for some constant C' > 0, opinion j
disappears at the next round, by simply applying the Chernoff bound.

» Lemma 18 (Opinion j-disappear at the next round). Let hp; > Cylogn. If 6(5) >
(1 — ﬁ) p1 for the constant Cg defined in Lemma 16, with probability at least 1 — #
opinion j will disappear at the next round

The next Lemma shows that if the bias is Q2 (\ /p1/ h), then the new bias will fall within
the hypothesis of Lemma 18 in one step. Therefore, we conclude that, in two steps, opinion
j will disappear if the bias is large enough. The proof relies on the results obtained in
Lemma 16, combined with the Chernoff bound.
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» Lemma 19 (Opinion j-disappear in two rounds). Let hp; > Cylogn. If p; > 0710% and

\ /M <6(j) < (1 — ﬁ) p1 for the constant Cg > 0 defined in Lemma 16 and for a
constant C7 > 0, we have that

1 2
i > —— )P >1-=.
Pr (5(‘7) = (1 1+Cﬁ)p1) =1=73

The next Lemma addresses the minimum possible bias. We show that, until we fall back
into the hypotheses of Lemmas 18 and 19, the bias grows exponentially. The proof is more
complex than the previous two lemmas because it requires bounding the second moment of
the bias to apply the Bernstein inequality.

» Lemma 20 (Bias exponential growth). Let hpy > Cylogn. If p1 > Cylo% and Cg\/B <

i(j) < 2(p1}7jrp2) for the constant Cg > 0 defined in Lemma 16 and for some constants
C7,Cs > 0, we have that

1

n4

Pr(d(j)’ 2 ed(j)) 21—

The next Lemma ensures that the hypothesis of Theorem 2 on the bias is always satisfied
so that we can iterate Lemma 20.

» Lemma 21 (The new bias satisfies the initial hypothesis). Let 6(j) > /2%, and a constant
Cg > 0. For n large enough we have

/
Pr (6(]’)’ > cq/pl> >1- 2
n n
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A Missing proofs

A.1 Omitted proofs from Section 4.2

Proof of Lemma 11. Define the event C; = {|X; — hp;| < \/3Cs hp;logn} and C = Nk_,C;.
The event C; can be rewritten as

¢, = {Xj e (hpj — \/3C5 hp; log n, hp; + /3C3 hp; 1ogn)}. 9)
For i € R, we have
hp1 — /3 C3 hpy logn — (hpz- +/3C5 hp; log n)
> (1—Co)hpy — /3C5 hpi logn (i€ R = hp; <hCy-p1)

> 0,

2
by taking hp; > Cylogn, with Cy = (3 Cs ﬁ) . This fact, together with Equation (9),

implies that C C {mieRc2 {X1 > X,}}, and therefore Pr (miGRCZ {X1 > X;}) > Pr(C). By
the multiplicative Chernoff bound we have

Pr(C;) =Pr (\Xj — hpj| < /3Cs hp; logn)
=1-Pr (|Xj — hp;| > /3Cs hp; logn>

3Cs1
> 1 2exp <_sogﬂ>
3
2
=l

and by the union bound and by the fact the number of opinion k& < n, we obtain

2k 1
Pr (mieR {X1 > Xl}) > Pr (C) >1-— E >1-— nCa—2"

concluding the proof of Lemma 11. <

Proof of Lemma 12. Recall § := {z € k] : pi > %pl} be the set of the strong opinions. By
definition of S we have

Slp1
1> p > S0

JjES
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and therefore we have

2
S| < —. 10
S1< = (10)

Recall that Ry 5 := {i € [k] : p; < 1p1} is the set of the 1/2-rare opinions. If i € Ry /2, we
have that

Pr (Wl | mgele {Xl > Xz}) =0.

By this fact, and by noticing that an opinion is either strong or 1/2-rare,

1=Pr U W]‘ | ﬂgenlm {Xl > X@} < ZPI‘ (W] | ﬁgeR1/2 {Xl > Xg}) . (11)
Jjes jeSs

Since X; ~ Binomial(p;,h) and p; > p;, for all j € [k], we have that X stochasti-
cally dominates X; for all j > 2. This fact remains true also conditioning on the event
{ﬁ(e'Rl/Q {X1 > Xg}}. Therefore, we have

Pr (Wl ‘ m€€R1/2 {Xl > XZ}) > Pbr (WJ | m56721/2 {Xl > X[}) )
for all j € S,j > 2. This fact, together with Equation (11), implies

[S|-Pr (Wi | Neery o {X1 > Xe}) 2D Pr(W; | Neer, . {X1 > X0}) > 1,
jJES

and, by using Equation (10), we obtain

Pr(Wi | Neem, o {X1 > Xi}) 2 = = B

1
S|
We can conclude the proof of Lemma 12 noticing that, by Lemma 11 with C5 = 3 and
Co = 1/2 (which implies Cy = (18)?, we have

1
Pr(Wi) > Pr (Neer, ,, {X1 > X¢}) - Pr(Wn | Neer, , { X1 > X¢}) > (1 - n) %1 > %’

for n large enough. |

Proof of Lemma 13. Define the event C; = {|Xj — hpj| < \/9hp; 1ogn} and C = N;j>1C;.
By the multiplicative Chernoff bound (Lemma 22 in Section B), we obtain

Pr(C;) =Pr (\Xj — hpj| < \/9hp; logn>
=1-—Pr <|Xj—hpj\ > \/thjlogn)

1
>1—2exp (—9 (;gn)
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Recall § := {z € k] :p; > %pl} be the set of the strong opinions. We first note that

C C ﬂ {Xj > hp; — /9hp; logn}

jES
1 1
- ﬂ {Xj > §hp1 — v/ 9hpy logn} (pl- > 5P1:Pi <p, forallie S)
jes
€ Njes {X; > 0}. (hpy > 36logn)  (13)

Let us denote a particular realization of a multinomial in the following way.
X1, o) ={X1=21,..., Xp =2k }.

We define the event X' (x1,...,2x) a 1-tie if z1 > a; for all ¢ > 1 and there exists a j # 1
s.t. ; = 1. In other words, opinion 1 is the most sampled, together with at least another
opinion. We denote the set of 1-tie as 77.

We map a 1-tie to an event in which the opinion 1 gets one extra sample which is
stolen from the least scoring strong opinion. Formally, if X(zq,...,25) € 71 and j =
max {i : X; = min,es {X,}}, we define:

fl X((El,...,ifk) n—)X(xl—i—l,...,xj,hxj —].,LCjJrl,...,{L'k).

The map is well-defined if and only if z; > 0. If X(z1,...,2x) € C, by Equation (13), we
have X (x1,...,25) € Njes {X; > 0}, and, since j € S by definition, we obtain that z; > 0.
Therefore, f is well-defined on C.

Moreover, the map is injective. Using the probability mass function of the multinomial
distribution, we compute the following:

PI'(f (X(xlavxk))) Ty 'pl > ZLj

Pr(X(z1,...,7))  x1+1 p; ~ o+ 1

where we used that p; > p;. Therefore we obtain

Z Pr(f (X(21,...,7%)))

xXeT,XeC
T
> Y (X))
O
hp; — +/9hp; lo
> p; — \/9hp;logn . Z Pr(X(x1,...,zx)) (by definition of C)
L+ hpy + vOhpy logn XeTi,xeC
lhplf 9hpy logn 1
> 2 ' Pr Xxl;“ka <pi>p1api§p1a forzES)
1+ hpy ++/9hpy logn XeTlZXEC e ) 2
1W_1
logn
_ 2V 9loen Z Pr(X(z1,...,2x))
hpi 2
9Tog + XeTi,XeC
1
> 1 Z Pr(X(z1,...,21)), (14)
XeT,,xeC

1.
where the last inequality holds because = — 2;_‘_21 is increasing and hp; > 182 logn. Recall

Definition 4. Since 71 = Wi ties \ Wi strict and f (71 NC) € Wy, we can write

Pr (W1 ties, C)
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Pr (Wl,strict7 C) + Pr (Wl,ties \ Wl,strict7 C)

> Y Pr(f(X(@y.m)+ Y, Pr(X(a,...,ax)
XeT,XeC XeT,XeC
1 .
> (1 + 4> Z Pr(X(z1,...,2x)) (by Equation (14))
XeT1,XeC
1
= <1 + 4> Pr (Wl,ties \ Wl,stricta C) .
Hence,
4
Pr (Wl,ties \ Wl,strictac) S 3 - Pr (Wl,tiesac) )
and
PI‘ (Wl,strict) Z PI‘ (Wl,strich C) = PI‘ (Wl,ticsa C) - PI‘ (Wl,tics \ Wl,stricta C)
1
Z g : PI‘ (Wl,tie57 C)
1
=z (Wi ties + Pr (C) — Pr W1 ties U C)) (by the inclusion—exclusion princ.)
1
Z g (Wl,ties + Pr (C) - 1) (PY (Wl,ties U C) S 1)
1 1
> £ (letics — ) (by Equation (12))
n
1 1
> W i > —
= 6W1,t1es = 18p1
for n large enough. This concludes the proof of Lemma 13. <

Proof of Corollary 14. By Lemmas 12 and 13, we obtain

1 1 1
Pr (Wl,2,strict) Z Pr (Wl,strict) Z 6 Pr(Wl,tics) > (Pl +p1) Z

_Em:% (p1 + p2)-

€
36
This concludes the proof of Corollary 14. <

A.2 Omitted proofs from Section 4.3

Proof of Lemma 16. Since p» > p; for all j > 2, we have that Pr (W;) < Pr(W,), and,
therefore,

Pr (Wl) —Pr (Wg) = Pr (Wl) —Pr (Wj),

and,

1 1
Pr(Wy) > e Pr(W,) = Pr(Wy) > T

— Y6 — V6

Pr (Wj> .

Hence, we will focus on the proof statement for j = 2.
Consider the case §(2) < 4/ w, that, in particular, implies that

o () ) - ()
2(p1 +p2) )’ 2(p1 +p2) )
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We have
Pr (W;) — Pr(Ws)

Z Pr (Wl,Z,strict) : [Pr (Wl | Wl,&strict) —Pr (W2 | W1,2,strict)}

Z Pr (Wl,strict) ° [PI‘ (Wl | W1,2,strict) —Pr (W2 | Wl,Q,strict)] (Wl,strict g Wl,2,strict)
1

> 5 Pr Wi ties) - [Pr W1 | Wi 2 strict) — Pr (Wa | Wi 2 strict)] (by Lemma 13)
1

> G Pr(Wy) - [Pr Wh | Wh 2. strict) — Pr (Wa | Wi 2 strict)] W1 C W ties)
C h

> — Pr(Wi)d(2 by Lemma 15

Z 5 (1)()p1+p2 (by )

Setting C5 = %, we conclude the proof of the first statement of Lemma 16. Now consider

the case § > 1/ 22LtP2) that implies that (M) =1.
R o
p1+p2)

Pr(Wi) — Pr (W)
> Pr (Wi 2.strict) - [Pr (W1 | W12 strict) — Pr (W2 | Wh 2 strict)]
> Pr (Wi 2 strict) - C (by Lemma 15)
> Pr (Wi strict) - C (W strict € WA strict)
> % Pr (W1 ties) (by Lemma 13)
C
= Pr (W) (W1 €W ties)
> CePr(Wy),
if we set 0 < Cg = min (%, %) < 1. This concludes the proof of Lemma 16. <
B Tools

» Lemma 22 (Multiplicative forms of Chernoff bounds [21]). Let Xi,..., X, be independent
binary random variables. Let X = Y"1 | X; and p = E[X]. Then:
1. For any 6 € (0,1) and any p < py < n, it holds that

Pr(X > (1+6)us) < exp(—6°us/3).
2. For any d € (0,1) and any 0 < u_ < p, it holds that
Pr(X < (1-6)p-) <exp(—6pu_/2).

» Lemma 23 (Hoeffding bounds [33]). Let a < b) be two constants, and Xi,...,X, be
independent binary random variables such that Pr(a < X; <b) = 1 for all i € [n]. Let
X =" ,X; and p=E[X]. Then:

1. For any t > 0 and any p < py, it holds that

212

2. Foranyt >0 and any 0 < p_ < p, it holds that

Pr(X <p-—1) < exp(—n(;tzay)
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» Lemma 24 (Bernstein Inequality [21]). Let X, Xo,..., X, be i.i.d. random variables such
that | X; — E[X;]] < C and |[E[X;]| < C for some C > 0. Define the sum of centered variables
Sn =Y i (X; —E[X;]). Then, for allt >0,

t2
Pr(|S,| > ) < 2 - .
r(Snl 2 1) < Zexp ( 2nVar(X7) + 23&)
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