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—— Abstract

Because strongly-linearizable objects provide stronger guarantees than linearizability, they serve as
valuable building blocks for the design of concurrent data structures. Yet, many objects that have
linearizable implementations from base objects weaker than compare&swap objects do not have
strongly-linearizable implementations from the same base objects. We focus on one such object: the
bag, a multiset from which processes can take unspecified elements.

We present the first lock-free, strongly-linearizable implementation of a bag from interfering
objects (specifically, registers and test&set objects). This may be surprising, since there are provably
no such implementations of stacks or queues.

Since a bag can contain arbitrarily many elements, an unbounded amount of space must be used
to implement it. Hence, it makes sense to also consider a bag with a bound on its capacity. However,
like stacks and queues, a bag with capacity b shared by more than 2b processes has no lock-free,
strongly-linearizable implementation from interfering objects. If we further restrict a bounded bag
so that only one process can insert into it, we are able to obtain a lock-free, strongly-linearizable
implementation from O(b 4+ n) interfering objects, where n is the number of processes.

Our goal is to understand the circumstances under which strongly-linearizable implementations
of bags exist and, more generally, to understand the power of interfering objects.
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1 Introduction

Concurrent data structures are often built using linearizable implementations of objects as
if they were atomic objects. Although linearizability is the usual correctness condition for
concurrent algorithms, there are scenarios where composing linearizable implementations
does not preserve desired properties. Namely, an algorithm that uses atomic objects may lose
some of its properties when these atomic objects are replaced by linearizable implementations.
Specifically, linearizability does not preserve hyperproperties (properties of sets of executions),
for example, probability distributions of events for randomized programs and security
properties such as noninterference [11, 6]. This can be rectified by using strongly-linearizable
implementations [11]. They guarantee that the linearization of a prefix of a concurrent
execution is a prefix of the linearization of the whole execution. This means that the
linearization of operations in an execution prefix cannot depend on later events in the
execution.
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Attiya, Castaneda, and Enea [3] observed that strongly-linearizable implementations of
objects typically use compare&swap objects, which can be used to solve consensus among
any number of processes. They provided strongly-linearizable implementations of some
objects, such as a wait-free single-writer snapshot object and a wait-free max register from
a fetch&add object, and a lock-free, readable, resettable test&set object and a lock-free,
readable, fetch&increment object from an infinite array of test&set objects and registers.
Both fetch&add and test&set objects are less powerful than a compare&swap object.

In this work, we aim to further explore the power of these well-studied building blocks in
the context of strong linearizability. Specifically, we investigate strongly-linearizable imple-
mentations of a bag from these primitives. Establishing the existence of such implementations
deepens our understanding of the circumstances under which these primitives can be used to
achieve strong linearizability.

A bag is a multiset to which processes can insert elements and from which they can
take unspecified elements. A concurrent bag is an abstraction of the interaction between
producers and consumers and is commonly used to distribute tasks among processes for load
balancing and improved scalability.

Queues and stacks have strongly-linearizable implementations from compare&swap objects
[15, 21, 19]. A bag has a straightforward implementation from a stack or a queue. Therefore,
a bag has a strongly-linearizable implementation from compare&swap objects. Although
there is a wait-free, linearizable implementation of a stack from registers, test&set objects,
and a readable fetch&increment object [1] and there is a lock-free, linearizable implementation
of a queue from the same set of objects [16], neither of these implementations is strongly-
linearizable. In fact, Attiya, Castaneda, and Hendler [5] proved that no lock-free, strongly-
linearizable implementation of a stack or queue from such objects is possible. Attiya,
Castanieda, and Enea [3] claimed that the lock-free linearizable implementation of a queue
which appears in Figure 5, is a strongly-linearizable implementation of a bag. We give a
counterexample to this claim in Appendix A. This was the starting point for our research.

The challenge when implementing a strongly-linearizable bag is to enable an operation
that is trying to take an element from the bag to detect when the bag is empty. If elements
can reside in multiple locations, it does not suffice for the operation to simply examine these
locations one by one, concluding that the bag is empty if no elements are found. The problem
is that new elements may have been added to locations after they were examined. Even if
there was a configuration during the operation in which the bag was empty, it might not be
possible to linearize the operation at this point while maintaining strong linearizability. For
example, after this point, in an alternative execution, a value could be added to a location
that the operation had not yet examined and the operation could return that value, instead
of EMPTY.

We address this challenge in Section 4, modifying the lock-free, linearizable implementation
of a queue by adding an additional readable fetch&increment object. This object is used
by operations which are inserting elements into the bag to inform operations which are
trying to take elements from the bag that the bag is no longer empty. We prove that the
resulting algorithm is a strongly-linearizable implementation of a bag.Interestingly, although
our algorithm is still a linearizable implementation of a queue, it is not a strongly-linearizable
implementation of a queue.

A bag can grow arbitrarily large, so either the number of objects used to implement it or
the size of the objects must be unbounded. An alternative is a b-bounded bag, which can
simultaneously contain up to b elements. Unfortunately, Attiya, Castaneda, and Enea [3]
proved that a b-bounded bag shared by more than 2b processes has no lock-free, strongly-
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linearizable implementation from interfering objects [3]. However, we do provide a lock-free,
strongly-linearizable implementation of a restricted version of a b-bounded bag, into which
only one process, the producer, can insert elements. It uses a bounded number of registers,
each of bounded size, and readable, resettable test&set objects. Before presenting this
implementation, we give two different implementations of a 1-bounded bag with a single
producer, which introduce some of the ideas that appear in our b-bounded bag implementation.

In Section 5, we present a wait-free, linearizable implementation of a 1-bounded bag. Note
that it provides a stronger progress guarantee. To keep the space bounded, when the producer
inserts an element into the bag, it may reuse objects previously used for other elements. It
has to do this carefully, to avoid reusing objects that other processes may be poised to access.
This requires delicate coordination between the producer and the consumers.

In Section 6, we present a lock-free, strongly-linearizable implementation of a 1-bounded
bag. It combines the mechanism for detecting an empty bag from our lock-free, strongly-
linearizable implementation of a bag and the mechanism for reusing objects from our wait-free,
linearizable implementation of a 1-bounded bag.

Our lock-free, strongly-linearizable implementation of a b-bounded bag, for any value
of b, is presented in Section 7. To enable the producer to detect when the bag is full, we
use an approach that is similar to detecting when the bag is empty, but we have to ensure
that these two mechanisms do not interfere with one another. In our implementation of a
1-bounded bag in Section 6, the producer determines whether the bag is empty or full by
inspecting a single object. This makes this implementation both simpler and more efficient
than the special case of our implementation of a b-bounded bag when b = 1.

2 Preliminaries

We consider an asynchronous system where processes communicate through operations
applied to shared objects. Each type of object supports a fixed set of operations that can
be applied to it. For example, a register supports read(), which returns the value of the
register, and write(z), which changes the value of the register to x.

Each process can be modelled as a deterministic state machine. A step by a process
specifies an operation that the process applies to a shared object and the response, if any,
that the operation returns. The process can then perform local computation, perhaps based
on the response of the operation, to update its state. A process can crash, after which it
takes no more steps.

A configuration consists of the state of every process and the value of every shared object.
In an initial configuration, each process is in its initial state and each object has its initial
value. An ezecution is an alternating sequence of configurations and steps, starting with
an initial configuration. If an execution is finite, it ends with a configuration. The order in
which processes take steps is determined by an adversarial scheduler.

The consensus number of an object is the largest positive integer n such that there is
an algorithm solving consensus among n processes using only instances of this object and
registers. A register has consensus number 1. Another example of an object with consensus
number 1 is an ABA-detecting register [2]. It supports dWrite(z) and drRead(). When
dwrite(x) is performed, x is stored in the object. When a process p performs drRead(), the
value stored in the object is returned, together with an output bit, which is true if and only
if process p has previously performed dread() and some dwrite() has been performed since
its last dread(). We use a restricted version of an ABA-detecting register, where dirite()
does not have an input parameter and drRead() simply returns the output bit.
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A testéset object has initial value 0 and supports only one operation, ts&s(). If the value
of the object was 0, this operation changes its value to 1 and returns 0. If the value of the
object was 1, it just returns 1. In the first case, we say that the t&s was successful and,
in the second case, we say that it was unsuccessful. A resettable testédset object is like a
test&set object, except that it also supports reset(), which changes the value of the object
to 0. A fetch&increment object supports f&i(), which increases the value of the object by 1
and returns the previous value of the object. A compareéswap object supports the operation
cas(u,v), which checks whether the object has value u and, if so, changes its value to v.
It always returns the value of the object immediately before the operation was performed.
For any type of object that does not support read, its readable version supports read in
addition to its other operations.

Two operations, op and op’, commute if, whenever op is applied to the object followed
by op’, the resulting value of the object is the same as when op’ is applied followed by op.
Note that the responses to op and op’ may be different when these operations are applied in
the opposite order. The operation op’ overwrites the operation op if, whenever op is applied
to the object followed by op’, the resulting value of the object is the same as when only op’
is applied. Note that the response to op’ may be different depending on whether op was
applied. An object is interfering if every two of its operations either commute or one of them
overwrites the other. All interfering objects have consensus number at most 2 [13]. Registers
are interfering. The test&set, resettable test&set, and fetch&increment objects and their
readable versions are all interfering and have consensus number 2.

Both a stack and a queue are examples of non-interfering objects with consensus number
2 [13]. The value of these objects is an unbounded sequence of elements, which is initially
empty. A stack supports push(z) and pop(), whereas a queue supports enqueue(z) and
dequeue().

A bag is a non-interfering object whose value is an initially empty multiset of elements.
The number of elements that can be in the multiset is unbounded. The elements are taken
from a set of values V' that does not include L. A bag supports two operations, Insert(z)
where z € V and Take. When Insert(z) is performed, the element x is added to the
multiset. It does not return anything. If the multiset is not empty, a Take operation removes
an arbitrary element from the multiset and returns it. In this case, we say that the operation
is successful. If the multiset is empty, then Take returns EMPTY and we say that it is
unsuccessful. Note that this specification is nondeterministic.

A b-bounded bag object is an object whose value is a multiset of at most b elements. If
the multiset contains fewer than b elements when Insert(z) is performed, the element x is
added to the multiset and OK is returned. If the multiset already contains b elements, the
value of the bag does not change and FULL is returned. For simplicity, we assume no value
repetitions in the bounded bags in our proofs.

An implementation of an object O shared by a set of processes P from a collection
of objects C provides a representation of O using objects in C and algorithms for each
process in P to perform each operation supported by O. In an execution, an operation on
an implemented object begins when a process performs the first step of its algorithm for
performing this operation and is completed at the step in which the process returns from the
algorithm, with the response of the operation, if any.

A bag has a straightforward implementation from a stack or a queue. The multiset is
represented by the sequence, Insert(x) is performed by applying push(z) or enqueue(x)
and Take() is performed by applying pop() or dequeue(). Thus a bag has consensus number
at most 2.
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There is a simple algorithm for solving consensus among 2 processes using two single-
writer registers and a bag initialized with one element: To propose the value x, a process
writes x to its single-writer register and then performs a Take() operation on the bag. If
the Take() returns an element, the process returns x. Otherwise, it reads and returns the
value that the other process wrote to its single-writer register. It follows from Borowsky,
Gafni, and Afek’s Initial State Lemma [7, Lemma 3.2], that consensus among 2 processes can
be solved from registers and two initially empty bags. Thus, a bag has consensus number
exactly 2.

For any execution, «, consider an ordering of every completed operation and a (possibly
empty) subset of the operations that have begun, but have not completed, such that, for
every completed operation, op, each of these operations that begins after op has completed is
ordered after op. A way to obtain such an ordering is to first assign a linearization point in
« to each of these operations within its operation interval, i.e., no operation is linearized
before it begins or after it has completed. Then specify an ordering of the operations that are
linearized at the same point. Suppose there is a sequential execution in which the operations
in the ordering are performed in order such that every completed operation in « has the
same response as it does in this sequential execution. Then we say that the ordering is a
linearization of a.

An implementation of an object is linearizable [14] if each of its executions has a lineariza-
tion. An implementation is strongly-linearizable [11] if there is a function f that maps each
execution « to a linearization of « such that, for every prefix o of «, f(a’) is a prefix of
f(a).

An implementation is wait-free if, in every execution, every operation by a process that
does not crash completes within a finite number of steps by that process. An implementation
is lock-free if every infinite execution contains an infinite number of completed operations.

3 Related Work

Even though there are wait-free, linearizable implementations of registers, max-registers, and
single-writer snapshot objects from single-writer registers, Helmi, Higham, and Woelfel [12]
proved that there are no lock-free, strongly-linearizable implementations. They also gave
a wait-free, strongly-linearizable implementation of a bounded max-register from registers.
Denysyuk and Woelfel [9] proved there are no wait-free, strongly-linearizable implementations
of max-registers and single-writer snapshot objects from registers, although they gave lock-free
strongly-linearizable implementations. Later, Ovens and Woelfel [20] gave lock-free, strongly-
linearizable implementations of an ABA-detecting register and a single-writer snapshot object
from a bounded number of bounded size registers.

Li [16] gave a lock-free, linearizable implementation of a queue from a fetch&increment
object, an infinite array of test&set objects, and an infinite array of registers. He also
gave a wait-free, linearizable implementation of a queue in which at most 2 processes may
dequeue. It uses a fetch&increment object and infinite arrays of registers and test&set
objects. David [8] gave a wait-free, linearizable implementation of a queue in which at most
1 process may enqueue. It uses registers, an infinite array of fetch&increment objects, and a
two-dimensional infinite array of swap objects. It is unknown whether there is a wait-free,
linearizable implementation of a queue from interfering objects in which any number of
processes can enqueue and dequeue.

Afek, Gafni, and Morrison [1] gave a wait-free, linearizable implementation of a stack from
interfering objects (specifically, a fetch&add object, registers, and test&set objects). Attiya
and Enea [6] showed that this implementation is not strongly-linearizable. Attiya, Castaiieda,
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and Enea [3] later proved that there is no lock-free, strongly-linearizable implementation of a
stack or a queue shared by more than 2 processes from interfering objects.

Many universal constructions (for example, from compare&swap objects and registers or
from consensus objects and registers) provide strongly-linearizable, wait-free implementations
of any shared object [11]. Treiber [21, 19] gave a simple lock-free, strongly-linearizable
implementation of a stack from compare&swap objects and registers. Michael and Scott
[18] gave a lock-free, linearizable implementation of a queue from compare&swap objects
and registers. Assuming nodes are never reused, it is possible to make a small modification
to their implementation to make it strongly-linearizable [15].

4 A Lock-Free, Strongly-Linearizable Implementation of a Bag

The first algorithm we present is a strongly-linearizable implementation of an unbounded
bag. The challenge in designing such an algorithm from interfering objects lies in identifying
when the bag is empty. To address this, we use a readable fetch&increment object, Done,
which an Insert operation increments as its last step, to inform Take operations that the
bag is not empty. A detailed description of the algorithm follows.

The implementation uses an infinite array of registers, Items, in which elements that
have been inserted into the bag are stored, together with an infinite array of test&set objects,
TS. The process that performs a successful tas() on T'S[i] returns the element stored in
Items][i] and removes it from the bag.

Each Insert(z) operation begins by performing f&i() on a readable fetch&increment
object, Allocated. This allocates the operation a new location within Ttems in which it
writes . Thus, the value of Allocated is the index of the last allocated location within
Items. Finally, the operation performs f&i() on a second readable fetch&increment object,
Done, to inform Take() operations about the insertion.

A Take() operation begins by reading Done and Allocated. Then it reads the allocated
locations in Ttems. For each location, i, if Ttems[i] contains x # 1, the operation performs
tes() on the corresponding test&set object, TS[1]. If this is successful, x is returned. After
reading all the allocated locations in Items without performing a successful tss(), the
operation rereads Done. If its value has not changed since the operation last read Done,
EMPTY is returned. Otherwise, the operation repeats the entire sequence of steps. Note that
it begins again starting from the first location, in case an Insert operation that was allocated
an early location has recently written to that location. Pseudocode for our implementation
of a bag appears in Figure 1.

Strong-linearizability. Consider any execution consisting of operations on this data structure.
We linearize the operations as follows:
A Take() operation that performs a successful tss() on Line 17 is linearized at this step.
It returns the element it last read on Line 15.
A Take() operation that reads Done on Line 18 and obtains the same value it obtained in
its previous read of Done (on Line 12) is linearized at this last read. It returns EMPTY.

Consider an Insert(x) operation, ins, that was allocated location m and wrote x to
Items [m] on Line 8. If some Take() operation performs a successful tes() on TS[m]
after ins performed Line 8, but before ins performs Done.fs&i() on Line 9, then ins is
linearized immediately before this Take(). In this case, we say that these two operations
are coupled. Otherwise, ins is linearized when it performs Done. f&i().
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1 Shared variables:

2 Items[l..]: an infinite array of registers, each initialized to L
3 TS[1l..]: an infinite array of testé&set objects, each initialized to O
4 Allocated: a readable fetché&increment object, initialized to O

5 Done: a readable fetch&increment object, initialized to O

6 Insert (x):

7 m < Allocated.f&i() + 1

8 Items[m] .write (x)

9 Done.f&i ()

10 Take () :

11 repeat

12 d < Done.read()

13 m < Allocated.read()

14 for i < 1 to m do

15 X < Items[i].read()

16 if x # 1 then

17 if TS[i].t&s() = 0 then return x

18 if d = Done.read() then return EMPTY

Figure 1 A lock-free, strongly-linearizable bag.

The linearization point of each operation occurs within its operation interval. At any
configuration, C, the bag contains the difference between the multiset of elements inserted by
Insert operations linearized before C' and the multiset of elements returned by successful
Take operations linearized before C'.

Each Take() operation is linearized immediately before it returns. Thus, if it is linearized
at some point in an execution, it is linearized at the same point in every extension of that
execution. Each Insert(x) operation that is coupled with a Take() operation is linearized
immediately before that Take() operation. This means that the inserted element is taken
from the bag immediately after it is inserted. Thus, if a coupled Insert(z) operation is
linearized at some point in an execution, it is linearized at the same point in every extension
of that execution. Each uncoupled Insert(z) operation is linearized when it increments
Done. This ensures that, if a Take() operation sees that the value of Done has not changed
between Line 12 and Line 18, then no uncoupled Insert has been linearized during this
part of the execution. An uncoupled Insert(z) operation is linearized immediately before it
returns, so it is linearized at the same point in every extension of the execution. Hence, if
the implementation is linearizable, it is strongly-linearizable.

To show that the ordering is a linearization, it remains to prove that the values returned
by the Take() operations are consistent with the sequential specifications of a bag. Let tk be
a Take() operation that performs a successful tes() of TS[i] on Line 17 and let « # L be the
element it read from Items[i] when it last performed Line 15. Since tk read z from Items[i],
there was an Insert(z) operation that wrote z into Items[i] on Line 8. Note that there

was exactly one Insert operation that was allocated 7 on Line 7, by the semantics of £&i().

This Insert(z) operation was linearized before tk, either because it executed Line 9 before
tk performed its successful tas() on Ts[i] or it was coupled with tk and, hence, linearized
immediately before tk. The element x remains in the bag until the linearization point of tk
because the element in Items[i] is only returned by the Take() operation that performs the
successful tss() on TS[i].

Now let tk be a Take operation that reads Done on Line 18 and obtains the same value
it obtained in its previous read of Done on Line 12. Let C be the configuration immediately
after tk reads Done on Line 12 in its last iteration of the repeat loop and let C’ be the
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configuration immediately before tk reads Done for the last time on Line 18. The value of
Done does not change between these two configurations. Let m be the value tk read from
Allocated on Line 13, which is the largest location in Ttems that had been previously
allocated to an Insert operation.

Any element, x, that was in the bag in configuration C' was inserted into the bag by an
uncoupled Insert(z) operation. This operation was linearized when it performed Line 9.
Suppose that it wrote z into Items[i]. This happened prior to C. Note that i < m, since
m was obtained when tk read Allocated on Line 13 after C and the value of Allocated
only increases. When tk performed Line 15 between configurations C' and C’, it read z from
Items[i]. Since tk later reaches Line 18, its t&s() on Ts[i] was unsuccessful. Some other
Take operation previously performed a successful t&s() on Ts[i] and, when it did, element
x was taken from the bag. Therefore, all elements that were in the bag in configuration C
were taken by Take operations other than tk before C’.

Now consider any element that was inserted into the bag between configurations C and
C’ by some Insert operation. Since the value of Done did not change between C' and C’,
this Insert operation did not perform Done.f&i () on Line 9. Hence, it was coupled with a
Take operation and it was immediately taken from the bag after it was inserted into the bag.
Therefore, all elements that were inserted into the bag between configurations C' and C’ were
taken from the bag prior to configuration C’. Hence, the bag is empty in configuration C”,
immediately before the step at which tk is linearized.

Lock-freedom. The Insert operation performs 3 steps, so it is wait-free. When a Take
operation finishes an iteration of the loop and is about to begin another iteration, the value
of Done it last read on Line 18 was different than what it last read on Line 12. This means
that some Insert operation performed Done.fsi () on Line 9 between these two points of
the execution. This step completes the Insert operation.

It is worth noting that the algorithm in Figure 1 also implements a linearizable queue.
The proof of this fact is very similar to the proof used by Li [16]. However, it is not a
strongly-linearizable queue, as we prove in Appendix B.

5 A Wait-Free, Linearizable Implementation of a 1-Bounded Bag with
a Single Producer

Our first bounded bag algorithm from interfering objects is a wait-free, linearizable
implementation of a bag that can contain at most one element. It is shared by n processes,
Py, ..., P,, called consumers, that can perform Take() and a single process, called the
producer, that can perform Insert(z). To keep the space bounded, the producer reuses
locations in Items to store new elements. The producer announces the most recent location
it has allocated by writing it to the shared register Allocated. There is a resettable test&set
object, instead of a test&set object, associated with each location in Ttems. An array,
Hazards, of hazard pointers [17] is used to prevent multiple consumers from returning the
same element, and to ensure that each element is consumed before being overwritten by a new
element. Each consumer announces a location it is about to access and the producer avoids
reusing the announced locations. Specifically, the producer avoids resetting the corresponding
test&set objects and writing new elements to the corresponding locations in Items.

The producer maintains two persistent local variables, m, which is the last location in
Items it allocated, and used, which is a set of locations it has used and will need to reset
before they are reallocated. To eliminate the need for a special case to handle the first
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19 Shared variables:

20 Ttems[l..n+l]: an array of single-writer registers, all initialized to 1,
which can only be written to by the producer

21 TS[l..n+l]: an array of readable, resettable test&set objects, all
initialized to 0, except for TS[1l], which is initialized to 1

22 Allocated: a single-writer register, initialized to 1, which can only be
written to by the producer

23 Hazards[l..n]: an array of single-writer registers, all initialized to 1,

where Hazards[i] can only be written to by P;
24 Persistent local variables of the producer:

25 used: a register, initialized to #, which contains a subset of
{1,...,n+1}

26 m: a register, initialized to 1, which is a local copy of Allocated

27 Insert (x) by the producer:

28 if TS[m].read() = 0 then return FULL

29 Items[m] .write (L)

30 used < used U {m}

31 hazardous < COLLECT (Hazards)

32 m < some index in {l,...,n+1} - hazardous

33 Allocated.write (m)

34 for all i € used - hazardous do

35 TS[1i].reset ()

36 used < used M hazardous

37 Items [m] .write (x)

38 return OK

39 Take () by consumer P; for i€ {l,...,n}:

40 a < Allocated.read()

41 Hazards[i] .write (a)

42 x < Items[a].read()

43 if x # 1 then

44 if TS[a].t&s() = 0 then

45 Hazards[i] .write (L)

46 return x

47 Hazards[i] .write(l)

48 return EMPTY

Figure 2 A wait-free, linearizable 1-bounded bag with one producer and n consumers.

Insert call (which is the only one not preceded by a previous insertion), the initial state
of the data structure is as if location 1 had been allocated to the producer, it had inserted
an element into the bag in this location, and then this element had been taken by some
consumer. This is simulated by setting the initial values of m, Allocated, and Ts[1] to 1.

The producer begins an Insert(z) operation by checking whether the test&set object,
TS [m], in the last allocated location, m, is 0. If so, it returns FULL. Otherwise, it overwrites
the element in Items[m] with L and adds the index m to used. Afterwards, it collects the
set of hazardous locations stored in Hazards. It then allocates an arbitrary location from

{1,...,n+ 1} that is not hazardous and announces this location by writing it to Allocated.

Next, it resets the test&set for each location in used that is not hazardous. Then it removes
these locations from used. Finally, it writes « to the newly allocated location in Items and
returns OK.

To perform a Take() operation, a consumer reads Allocated. It announces the location
it read in Hazards and then reads the value in this location. If it is an element x # 1, the
consumer performs ts&s() on the resettable test&set object for this location. It then clears
its announcement. If the t&s() was successful, it returns z. If either z = L or the tss() was
unsuccessful, it returns EMPTY.
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If 1tems[a] contains an element & # 1, but this element has already been taken from
the bag, it is essential that no consumer can perform a successful tss() on the associated
test&set object, Ts[a], and take the element again. To ensure this, a consumer, P; writes
a to Hazards[i] before reading Items[a]. This prevents the producer from resetting Ts[a]
while P; is poised to access Tslal.

After it has set Ttems[m] to L, but before resetting any test&set objects, the producer
will collect the locations that appear in Hazards and refrain from resetting the test&set
objects associated with the hazardous locations it collected. Hence, it will not reset a test&set
object which any consumer is poised to access.

Assuming that the universe of elements that can be inserted into the bag is bounded, the
registers used in the implementations store bounded values and thus, the amount of space
used by the implementation is bounded. Pseudocode for our implementation appears in
Figure 2.

Consider any execution consisting of operations on this data structure. We linearize the
operations as follows:

A Take() operation that performs a successful tss() on Line 44 is linearized at this step.

It returns the element it last read on Line 42.

Consider a Take() operation, tk, that returns EMPTY. If Ttems[a] = L or Ts[a] =1

when tk read a from Allocated on Line 40, then tk is linearized at this step. Otherwise,

we can show that some other Take() operation performed a successful t&s() on TS[a] after
tk performed Line 40, but before tk returned. In this case, tk is linearized immediately
after the first such Take() operation.

An Insert(z) operation that reads 0 from Ts[m] (on Line 28) is linearized at this read.

It returns FULL.

An Insert(z) operation that writes « on Line 37 is linearized at this write. It returns

OK.

Because the code contains no unbounded loops, the implementation is wait-free. Keeping
track of hazardous locations enables objects to be safely reused so that bounded space is
used. However, this makes the algorithm and its proof of correctness more intricate. In the
full version of the paper [10], we prove that Figure 2 is a linearizable implementation of a
1-bounded bag. Appendix C shows that it is not strongly-linearizable.

6 A Lock-Free, Strongly-Linearizable Implementation of a 1-Bounded
Bag with a Single Producer

In this section, we present a lock-free, strongly-linearizable implementation of a bag that
can contain at most one element. It is shared by n processes, P, ..., P,, called consumers,
that can perform Take() and a single process, called the producer, that can perform Insert(z).
It combines ideas from our lock-free, strongly-linearizable implementation of an unbounded
bag in Section 4 and our wait-free, linearizable implementation of a 1-bounded bag in Section 5.
To keep the space bounded, we use an ABA-detecting register for Done, instead of a readable
fetch&increment object. An ABA-detecting register has a lock-free, strongly-linearizable
implementation from registers using bounded space [20].

An Insert(z) operation by the producer is the same as in the wait-free linearizable
implementation presented in the previous section, except the producer writes to the ABA-
detecting register Done before it returns OK.

To perform a Take() operation, a consumer, P;, reads Done and Allocated. In
Hazards[i], it announces the location, a, that it read from Allocated. Then P; reads
Items[a] and, if it contains an element x # L, then P; performs t&s() on Ts[a]. Next P;
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49
50

51

52

53

54
55
56

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82

Shared variables:

Items[l..n+1]: an array of single-writer registers, all initialized to 1,
which can only be written to by the producer

TS[l..n+l]: an array of readable, resettable test&set objects, all
initialized to 0, except for TS[1l], which is initialized to 1

Allocated: a single-writer register, initialized to 1, which can only be
written to by the producer

Hazards[l..n]: an array of single-writer registers, all initialized to 1,
where Hazards[i] can only be written to by P;

Done: an ABA-detecting register

Persistent local variables of the producer:

used: a register, initialized to (#, which contains a subset of
{1,...,n+1}
m: a register, initialized to 1, which is a local copy of Allocated

Insert (x) by the producer:

if TS[m].read() = 0 then return FULL
Items [m] .write (L)
used < used U {m}
hazardous < COLLECT (Hazards)
m « some index in {l,...,n+1} - hazardous
Allocated.write (m)
for all i € used - hazardous do
TS[i].reset ()
used < used N hazardous
Items[m] .write (x)
Done.dWrite ()
return OK
Take() by P;, for i€{l,...,n}:
Done.dRead ()
repeat
a ¢ Allocated.read()
Hazards[i] .write (a)
x 4 Items[a].read()
if x # 1 then

if TS[a].t&s () = 0 then
Hazards[1i] .write (L)
return x
Hazards[1i] .write (L)
if Done.dRead() = false then return EMPTY

Figure 3 A lock-free, strongly-linearizable 1-bounded bag with one producer and n consumers.

clears its announcement. If the tss() was successful, P; returns z. If either = L or the
t&s() was unsuccessful, P; rereads Done and, if its value has not changed since P;’s previous
read, P; returns EMPTY. Otherwise, P; repeats the entire sequence of steps. Pseudocode
for our implementation appears in Figure 3.

Linearizability. Consider any execution consisting of operations on this data structure. We
linearize the operations as follows:

A Take() operation that performs a successful t&s() on Line 78 is linearized when it
performs this tss(). It returns the value it read in its last execution of Line 76.

A Take() operation that gets false from Done.dRead () on Line 82 is linearized at this
step. It returns EMPTY.

An Insert(z) operation that reads 0 from TS [m] (on Line 59) is linearized at this read.

It returns FULL.
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Consider an Insert(z) operation, ins, that allocated location a to m on Line 63 and
wrote  to Ttems [a] on Line 68. If some Take() operation performs a successful tss() on
TS[a] after ins performed Line 68, but before ins performs Done.dRead () on Line 69,
then ins is linearized immediately before the Take() operation that performed the first
such te&s(). In this case, ins returns OK and we say that these Insert(z) and Take()
operations are coupled.

An Insert(z) operation that performs Done.dWrite () on Line 69, but has not already
been linearized as a coupled operation, is linearized at this step. In this case, it returns
OK and we say that it is uncoupled.

The proof that Figure 3 is a lock-free, strongly-linearizable implementation of a b-bounded
bag appears in the full version of the paper [10].

7 A Lock-Free Strongly-Linearizable Implementation of a b-Bounded
Bag with a Single Producer

Our final algorithm is a lock-free, strongly-linearizable implementation of a bag that can
contain at most b elements. It is shared by n processes, Pi, ..., P,, called consumers, that
can perform Take() and a single process, called the producer, that can perform Insert(x). It
extends our lock-free, strongly-linearizable implementation of a 1-bounded bag in Section 6.
In this algorithm, Allocated is a shared register that stores a subset of at most b locations,
and alloc is a local variable the producer uses to update the contents of Allocated. The
challenge in designing a strongly-linearizable bag algorithm from interfering objects was
for an operation that is trying to take an element from the bag to detect when the bag
is empty (and then return EMPTY). This is addressed using an ABA-detecting register,
InsertDone, to which each Insert(z) operation writes after writing « to Items. When
designing a strongly-linearizable bounded bag algorithm from interfering objects, an operation
that is trying to insert an element into the bag faces a symmetrical challenge, as it needs
to detect when the bag is full (and then return FULL). To address this, we use another
ABA-detecting register, TakeDone, to which each Take() operation writes after performing a
successful tss(). Unsuccessful Take operations also write to TakeDone before returning, to
help them be linearized before the unsuccessful Take.

The producer begins an Insert(x) operation by reading TakeDone. Then it looks at each
of the locations in TS that have been allocated. For each location m that contains 1, it clears
the element in that location (setting Items[m] to L), removes m from alloc, and adds m to
used. If alloc contains less than b locations, it adds = to the bag as follows. It first collects
the non-_L values from the Hazards array into the set hazardous. Afterwards, it allocates
an arbitrary location, m, from {1,...,n + b}, excluding those in alloc and in hazardous,
adds this location to alloc, and announces it by copying alloc into Allocated. Next, for
each location in used that is not in hazardous, it resets the associated test&set object and
removes the location from used. Then it writes x to the allocated object, Ttems[m]. Finally,
it writes to the ABA-detecting register InsertDone and returns OK. If alloc contained b
locations, it rereads TakeDone and, if its value has not changed since its previous read, it
returns FULL; otherwise, it repeats the entire sequence of steps.

To perform a Take() operation, a process reads InsertDone and Allocated. For each
location a in the set of locations obtained from Allocated, it announces a in Hazards and
then reads the element, x from Items([a]. If z # L, it performs t&s() on the associated
test&set object, Ts[a], and, if successful, it clears its announcement, writes to TakeDone,
and returns z. If the process completes the for loop, it clears its announcement, and
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rereads InsertDone. If the value of InsertDone has not changed since its previous read, it
writes to TakeDone and returns EMPTY. Otherwise, it repeats the entire sequence of steps.

Pseudocode for our implementation appears in Figure 4.
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Shared variables:

Items[l..n+b]: an array of single-writer registers, each initialized
to 1, which can only be written to by the producer

TS[1l..ntb]: an array of readable, resettable test&set objects, each
initialized to O

Allocated: a single-writer register, initialized to ), which contains

a subset of {l,...,n+b} of size between 0 and b and can only be
written to by the producer
Hazards[l..n]: an array of single-writer registers, each initialized

to 1, where Hazards[i] can only be written to by P;

InsertDone, TakeDone: ABA-detecting registers

Persistent local variables of the producer:

used: a register, initialized to @, which contains a subset of
{1,...,n+ b}

alloc: a register, initialized to ®, which is used to update Allocated

Insert (x) by the producer:

TakeDone.dRead ()

repeat

for all m € alloc do

if TS[m].read() = 1 then
Items[m] .write (L)

alloc < alloc - {m}

used < used U {m}

if |alloc| < b then

hazardous < COLLECT (Hazards)

m ¢+ some index in {1,...,n+b} - alloc - hazardous
alloc < alloc U {m}
Allocated.write (alloc)

for all i € used - hazardous do
TS[i].reset ()

used < used N hazardous
Items[m] .write (x)
InsertDone.dWrite ()

return OK

else if TakeDone.dRead() = false then
return FULL

Take() by P;, for i€{l,...,n}:
InsertDone.dRead ()

repeat

allocated < Allocated.read()
for all a € allocated do
Hazards[i] .write (a)

X 4 Items[a].read()

if x # 1 then

if TS[a].t&s() = 0 then
Hazards[i] .write(l)
TakeDone.dWrite ()

return x
Hazards[1i] .write (L)
if InsertDone.dRead() = false then

TakeDone.dWrite ()
return EMPTY

Figure 4 A lock-free, strongly-linearizable b-bounded bag with one producer and n consumers.
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Linearizability. Consider any execution consisting of operations on this data structure. We

linearize the operations as follows:
An Insert operation that obtains false when it reads TakeDone on Line 111 is linearized
at this read. It returns FULL.
Consider an Insert (x) operation, ins, that allocated location a to m on Line 102 and
wrote x to Ttems [a] on Line 108. Suppose that, while it is poised to write to InsertDone
on Line 109, some Take operation, tk, performs a successful t&s() on TS[a] and then
some (possibly different) Take operation writes to TakeDone. In this case, ins is linearized
immediately before tk, ins returns OK, and we say that ins and tk are coupled.
In the full version of the paper [10], we prove that at most one successful t&s() can be
performed on Ts[a] after ins writes to Ttems[a] and before it writes to InsertDone.
Hence, an Insert operation is coupled with at most one Take operation.
Suppose that an Insert operation, ins, writes to InsertDone on Line 109, but has not
already been linearized as a coupled operation. Then, ins is linearized when it performs
this write and returns OK, and we say that ins is uncoupled.
Consider a Take operation, tk, that performs a successful tes() on TS[a] on Line 121. It
is linearized at the first among the following events to occur after the successful tes() by
tk: a write to TakeDone by any Take operation on Line 123 or Line 127, a read of 1 from
TS[a] on Line 96, and a write to InsertDone on Line 109 by an uncoupled Insert that
wrote to Ttems [a’] for some a’ # a. Multiple successful Take operations linearized at
the same step are ordered arbitrarily and before any other operations linearized at this
step, with one exception: a coupled Insert is linearized right before its coupled Take
operation. In all cases, tk returns the value it last read on Line 119.
Consider a Take operation, tk, that obtains false when it reads InsertDone on Line 126.
If no uncoupled Insert operation writes to InsertDone while tk is poised to write to
TakeDone, then tk is linearized at its write to TakeDone (after any other operations
linearized at this step). Otherwise, tk is linearized at the first such write to InsertDone,
before the Insert and after any successful Take operations linearized at this step. The
ordering among unsuccessful Take operations linearized at this write is arbitrary. In both
cases, tk returns EMPTY.

To make the linearization points clearer, we also list the types of steps at which operations
are linearized. For each, we specify the operations that can be linearized there. If multiple
operations can be linearized at the same step, we specify the ordering of these operations.

An TInsert reads 1 from TS[m] on Line 96:
A successful Take that previously performed a successful tss on TS[m].
A successful uncoupled Insert, ins, which wrote to ITtems [m], writes to InsertDone
on Line 109:
Successful Takes that previously performed a successful t&s on TS[m’ ] for m’ # m,
arbitrarily ordered.
Unsuccessful Takes, arbitrarily ordered.
ins.
An unsuccessful Insert, ins, obtains false from TakeDone.dRead() on Line 111:
ins.
A successful Take writes to TakeDone on Line 123:
Successful Takes, arbitrarily ordered.
Successful coupled Inserts, each immediately before its coupled Take.
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An unsuccessful Take tk writes to TakeDone on Line 127:
Successful Takes, arbitrarily ordered.

Successful coupled Inserts, each immediately before its coupled Take.

tk.

Next, we provide some intuition explaining our choice of linearization points, as well as
why unsuccessful Take operations write to TakeDone on Line 127 before returning EMPTY.

We pick the linearization point for an Insert operation as we do in Section 6: a
successful uncoupled Insert is linearized at its write to InsertDone, a successful coupled
Insert operation is linearized right before its coupled Take operation, and an unsuccessful
Insert operation is linearized when it obtains false from TakeDone.dRead() on Line 111.

We want to linearize a successful Take operation at its write to TakeDone, which is
intended to notify the producer that the bag is not full, similarly to how a successful
uncoupled Insert operation notifies the consumers that the bag is not empty. However, in
the following four situations, we linearize a successful Take operation earlier than its write
to TakeDone.

Suppose a successful Take operation, tk, has performed a successful tss operation on
Line 121, but has not yet been linearized when another successful Take operation writes to
TakeDone. Then tk is linearized at this write. Linearizing tk at the earliest possible write to
TakeDone in this case is done to simplify the linearization.

An unsuccessful Take operation, tk, cannot be linearized when it obtains false from
InsertDone.dRead(), because there might be successful Take operations that remove ele-
ments from the bag, but are not yet linearized. These operations must be linearized before
tk. To ensure this, tk writes to TakeDone before returning EMPTY. This linearizes every
successful Take operation that has performed a successful t&s operation on Line 121, but
has not been linearized before the write to TakeDone by tk. In this case, tk is linearized at
this write, after all such successful Take operations.

A coupled Take operation witnesses that an Insert operation has happened and causes
it to be linearized. Similarly, an Insert operation, ins, that witnesses a successful Take
operation causes it to be linearized: If ins reads 1 from TS[a] on Line 96, but the Take that
last performed a successful Ts[a].t&s() is not yet linearized, then the Take is linearized at
this read, which is before ins removes a from alloc on Line 98. Then, when ins sees that
lalloc| < bon Line 100, the bag is not full and it may insert a new element.

Suppose an unsuccessful Take operation, tk, got false from InsertDone.dRead(), but
has not yet written to TakeDone when an uncoupled Insert operation, ins, writes to
InsertDone on Line 109. Then tk must be linearized while the bag is still empty. Hence tk
is linearized before ins, at this dwrite. Each successful Take operation that performed a
successful t&s on Line 121, but has not yet been linearized, is also linearized at this step,
before tk, to ensure the bag is empty when tk is linearized. There is one exception: If ins
wrote to Items[a] on Line 108, a Take operation that performed a successful TS[a] .tss()
at the same location after this write should be linearized after ins. A Take operation that
performed a successful TS[a].tas() at the same location before this write is guaranteed to
be linearized before ins. This is because it is linearized at or before the producer last read 1
from TS[a] on Line 96, which occurs before the producer removes location a from alloc on
Line 98, which, in turn, must occur before ins is allocated location a on Line 102.

The proof that Figure 4 is a lock-free, strongly-linearizable implementation of a b-bounded
bag appears in the full version of the paper [10].
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8 Discussion

This paper explores strongly-linearizable implementations of bags from interfering objects.
We presented the first lock-free, strongly-linearizable implementation of a bag from interfering
objects, which is, interestingly, also a linearizable implementation of a queue, but not a
strongly-linearizable implementation. We also presented several implementations of bounded
bags with a single producer from interfering objects: a wait-free, linearizable implementation
of a 1-bounded bag, a lock-free, strongly-linearizable implementation of a 1-bounded bag,
and a lock-free, strongly-linearizable implementation of a b-bounded bag for any value of b.
A direct extension of this work is investigating whether it is possible to extend our
bounded bag implementations to support two producers or multiple producers but only one
or two consumers. Other open questions are whether there are wait-free, strongly-linearizable
implementations of ABA-detecting registers and bags from interfering objects. It would also
be interesting to construct a lock-free, strongly-linearizable implementation of a bag from
interfering objects, such that, at every point in the execution, the number of interfering
objects used is bounded above by a function of the number of processes and the number of
elements the bag contains. More broadly, exploring strongly-linearizable implementations of
objects beyond bags using interfering objects is a compelling direction for future work.
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A An Implementation of a Bag that is not Strongly-Linearizable

Consider the following lock-free, linearizable implementation of a queue [16]. We show that
it is not a strongly-linearizable implementation of a bag.

129 Shared variables:

130 Ttems[1l..]: an infinite array of registers, each initialized to L

131 TS[1l..]: an infinite array of testé&set objects, each initialized to O
132 Max: a readable fetch&increment object, initialized to 1

133 Insert (x) :

134 max <— Max.fé&i ()

135 Items [max] .write (x)

136 Take () :

137 taken_old < 0
138 max_old < 0

139 repeat

140 taken_new < 0

141 max_new <$— Max.read() - 1

142 for i + 1 to max_new do

143 x 4 Items[i].read()

144 if x # 1 then

145 if TS[i].t&s() = 0 then return x
146 taken_new < taken_new + 1

147 if (taken_new = taken_old) and (max_new = max_old) then return EMPTY
148 taken_old < taken_new

149 max_old <4 max_new

Figure 5 An implementation of a queue that is not a strongly-linearizable bag.

Let ins; be a call of Insert (1), let inss be a call of Insert (2), and let tk be a call of
Take (). Consider the following execution « of their algorithm:

insy performs its f&i of Max on Line 134.

inso performs its £&i of Max on Line 134.
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tk performs Line 137, Line 138, and does an entire iteration of the repeat loop starting

on Line 139, in which it sets maz_new to 2 on Line 141 and sets maz_old to 2 on line

Line 149.

tk starts a second iteration of the repeat loop, in which it sets maz_new to 2 on Line 141

and reads | from Items[1] on Line 143. However, it does not read Items[2] on

Line 143.

insy; writes 1 to Items[1] on Line 135 and returns.

Since ins; completes in «, it must be linearized in «.

Let a1 be the continuation of « in which ¢k runs by itself to completion. It returns
EMPTY as it encounters L in every entry of Items it reads. Since tk returns EMPTY in
«a - a1, it must be linearized before ins;. Hence, tk must be linearized in a.

Let as be another continuation of «, in which insy writes 2 to Items [2] on Line 135 and
returns, and then tk runs by itself to completion. From the code, tk reads 2 from Items([2]
and returns 2. This implies that inss must be linearized before tk in « - as and, hence, in a.
Therefore tk returns 2 in « - a7, which is a contradiction.

This shows that the algorithm in Figure 5 is not a strongly-linearizable implementation
of a bag for any choice of linearization points. In particular, there is a problem with the
linearization points mentioned in [4]:

Each Insert operation is linearized when it performs Line 135.

Each successful Take operation is linearized when it performs a successful testsset on

Line 145.

Each unsuccessful Take operation is linearized when it last reads Max on Line 141.

The issue is that, when an unsuccessful Take operation is linearized, the bag might not be
empty. Let ins be a call of Insert (1) and let tk; and tke be calls of Take (). Consider the
following execution:

ins performs its f&i of Max on Line 134.

tky performs Line 137, Line 138, and does an entire iteration of the repeat loop starting

on Line 139 in which it sets maxz_new to 1 on Line 141 and sets maxz_old to 1 on line

Line 149.

ins writes 1 to Ttems[1] on Line 135 and returns.

tk, starts a second iteration of the repeat loop, in which it sets max_new to 1 on Line 141.

tko performs a Take operation, returning the value 1 when it first performs Line 145.

tky completes its Take operation, returning EMPTY when it returns on Line 147.

Note that, when tk; last performs Line 141, where it is linearized, the bag contains the
element 1.

B A Proof that Figure 1 is not a Strongly-Linearizable
Implementation of a Queue

We show that our strongly-linearizable implementation of a bag is not a strongly-linearizable
implementation of a queue.

Let insy be a call of Insert (1), let inss be a call of Insert (2), and let tk, tky, and tko
be calls of Take (). Consider the following execution « of the algorithm in Figure 1:

insy performs its f&i of Allocated on Line 7 and is allocated location 1.

inso performs its f&i of Allocated on Line 7 and is allocated location 2.

tk reads 2 from Allocated on Line 13 and then reads L from Items[1] on Line 15.

insy and inss run to completion.
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Since ins; and inss complete in «, they must be linearized in «.

Let a; be the continuation of « in which tk runs by itself to completion. It reads 2 from
Items[2] on Line 15 during its second iteration of the for loop and returns 2. To satisfy the
semantics of a queue, ins, must be linearized before ins; in « - a; and, hence, in a.

Let as be another continuation of «, in which tk; runs by itself to completion and then
tko runs by itself to completion. From the code, tk; reads 1 from ITtems[1] and returns 1,
and tko reads 2 from Ttems[2] and returns 2. To satisfy the semantics of a queue, tk; must
be linearized before tks in « - a9 and, hence, in . This is a contradiction.

C A Proof that Figure 2 is not a Strongly-Linearizable Implementation
of a 1-Bounded Bag

We show that our wait-free implementation of a 1-bounded bag with a single producer is not
strongly-linearizable.

Let ins; be a call of Insert (i) and tk; a call of Take (), for 1 < i < 3. Consider the
following execution « of the algorithm in Figure 2:

insy starts running, and it is allocated location 1 on Line 32. It then runs to completion.

tk; runs and returns 1.

tks reads 1 from Allocated on Line 40.

insg starts running. It writes | to Items[1] on Line 29. It is allocated location 2 on
Line 32. It then runs to completion.

Let oy be the continuation of a in which tks runs by itself to completion. It returns
EMPTY as it encounters L in every entry of Items it reads including Ttems[1]. Since tks
returns EMPTY in « - o, it must be linearized before inss. Hence, tko must be linearized
in a, with return value EMPTY.

Let as be another continuation of «, in which the following occur:

tks runs and returns 2.

insg starts running. It is allocated location 1 on Line 32. It continues to run, writes 3 to

Ttems[1] and returns.

tko runs to completion.

From the code, tks reads 3 from ITtems[1] and returns 3. Hence, tks must be linearized
after insg in « - ao. This contradicts strong-linearizability.
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