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Abstract
We investigate the step complexity of the Leader Election problem (and implementing the corre-
sponding test-and-set object) in asynchronous shared memory, where processes communicate through
registers supporting atomic read and write and must coordinate so that a single process becomes
the leader. Determining tight step complexity bounds for solving this problem is one of the key
open problems in the theory of shared memory distributed computing. The best known algorithm
is a randomized tournament-tree, which has worst-case expected step complexity O(log N) for N

processes. There are provably no deterministic wait-free algorithms, and only restricted lower bounds
are known for obstruction-free and randomized wait-free algorithms. We introduce a new lower
bound that establishes an Ω

(
log N

log log N+log Q

)
step complexity for any obstruction-free Leader Election

algorithm, where N is the number of processes, and 2 ≤ Q ≤ N is a bound on the value contention,
which we define as the maximum number of different values that processes can be simultaneously
poised to write to the same register in any execution of the algorithm. Our result is strictly stronger
than previous bounds based on write contention. In particular, it implies new lower bounds on step
complexity that depend on register size.
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1 Introduction

Leader Election is a fundamental coordination problem in distributed computing, in which, as
the name suggests, a set of n processes compete to become the leader. Each process should
output either win or lose, indicating whether the process became the leader. At most one
process should become the leader and, if all processes that compete take enough steps, then
exactly one of these processes becomes the leader. Note that it is not required for other
processes to know the identity of the leader, as this would make the problem equivalent to
Consensus, which is known to be a harder coordination problem.
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3:2 An Almost-Logarithmic Lower Bound for Leader Election

A closely-related problem is implementing a test-and-set object. It differs from Leader
Election in that no process may return lose before the eventual winner has started the
computation. However, any Leader Election algorithm can be deterministically transformed
into an implementation of a test-and-set object with just one additional register and at most
two additional steps by each process [4].

Leader Election and test-and-set objects have been studied with different formulations and
in various models for almost four decades, e.g. [25, 28, 2, 12, 5]. In this paper, we will focus
on Leader Election in the asynchronous shared memory model [22, 9], where processes can
communicate only through registers, shared objects that support read and write operations.
Read returns the value stored in the register, while a write atomically update the stored
value. In this way, one process can learn about another process if it reads a register that was
last written to by that process. A process executes reads and writes on arbitrary registers
one by one, but the way in which the operations of a process are interleaved with those of
other processes is controlled by an adversary. Specifically, it is assumed that the adversary
decides the order of the steps, with the goal of making processes execute as many steps as
possible. It is known that a test-and-set object has consensus number two. Thus, it has no
deterministic wait-free implementation from registers [17].

1.1 Prior Work
The first randomized algorithm for Leader Election among two processes was given by Tromp
and Vitányi [26]. The approach was later generalized to N processes by Afek, Gafni, Tromp
and Vitányi [1] using a tournament tree [24], in which each process starts at a leaf of the tree.
At each node, the process competes in an instance of Leader Election among two processes.
If it loses, it immediately returns lose. If it wins, it continues to the parent node. The winner
at the root can return win. This algorithm has O(log N) worst-case expected step complexity,
since each instance of Leader Election among two processes takes an expected constant
number of steps and the tournament tree has O(log N) depth. This can be straightforwardly
modified to an obstruction-free variant with logarithmic solo step complexity [5].

The approach described above leads to the best known upper bound for the case of a
strong adversary. Whether this upper bound is optimal remains an open problem [15]. Later
work extended these results to the adaptive setting, where the step complexity depends on
the number of participating processes, k. Specifically, Alistarh, Attiya, Gilbert, Giurgiu,
and Guerraoui proposed the RatRace algorithm which achieves O(log k) step complexity in
expectation [4, 14]. Golab, Hendler and Woelfel designed an algorithm that solves Leader
Election in O(1) remote memory accesses [16]. However, their algorithm is not obstruction-
free: if a process crashes, this may cause another process to wait forever for the value in a
register to change.

Remarkably, despite decades of interest in the relationship between upper and lower
bounds for Leader Election in shared memory, we still do not know whether the logarithmic
upper bound is tight, neither for the expected step complexity of randomized algorithms
against a strong adversary, nor for the solo step complexity of deterministic obstruction-free
algorithms. Intuitively, proving lower bounds for test-and-set is hard because of the apparent
simplicity of the object.

The list of relevant lower bounds for Leader Election against a strong adversary is shown
in Table 1. In 1989, Styer and Peterson proved that any Leader Election algorithm has to
use Ω(log N) registers [25]. This space complexity lower bound was later matched by an
obstruction-free Leader Election algorithm that uses O(log N) registers [13]. The remaining
lower bounds, including ours, build on ideas from the lower bounds for mutual exclusion
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established by James H. Anderson and Yong-Jik Kim [7]. They proved an Ω( log N
log log N ) step

complexity lower bound for Mutual Exclusion by inductively constructing an execution. Their
analysis distinguishes between two scenarios: the high-contention and the low-contention
cases. In the low-contention case, they apply a graph theory result to find a large set of
processes that do not conflict with one another and use them to extend their execution. In
the high-contention case, they run some processes until they enter and leave the critical
section, thereby overwriting the contents of the highly contended registers.

The first work to apply Anderson and Kim’s ideas to Leader Election was by Alistarh,
Gelashvili, and Nadiradze [5]. They proved that any algorithm has worst-case expected step
complexity Ω

(
log N
log κ

)
, where κ is the maximum write contention. However, this lower bound

becomes trivial when polynomially many processes can write to the same register, that is,
when κ = Nε, for some constant ε > 0. In other related work, Eghbali and Woefel proved an
Ω( log N

log log N ) lower bound for implementing an Abortable Test-And-Set object [10]. They use a
different model, which counts the maximum number of remote memory references (RMRs)
performed by a process, rather than the maximum number of steps. However, their proof
still follows Anderson and Kim’s framework. To handle the high-contention case, their proof
heavily relies on the fact that processes can be aborted after they overwrite some register.
Thus, their results apply only to Abortable Leader Election, and not to our model.

Table 1 Lower bounds for Leader Election against strong adversary.

Lower Bound Reference Comment

Ω(log N) space complexity [25]
Ω

( log N
log κ

)
step complexity [5] κ is the write contention

Ω
( log N

log log N

)
RMR complexity [10] Only for Abortable Leader Election

Ω
( log N

log log N+log Q

)
step complexity This paper Q is the value contention

1.2 Contribution
In this paper, we present a new technique that leads to a lower bound for Leader Election
under a more general notion of contention, which we call value contention. Specifically, we
show a lower bound of Ω

(
log N

log log N+log Q

)
on the solo step complexity of any obstruction-free

Leader Election algorithm for N processes, where 2 ≤ Q ≤ N is an upper bound on the
value contention, that is, the number of different values that processes can be simultaneously
poised to write to the same register in any execution.

This result leads to a new trade-off between the maximum register capacity and the solo
step complexity of test-and-set: for instance, if registers can only hold a poly-logarithmic
number of different values, then test-and-set requires Ω(log N/ log log N) steps in a solo
execution, in the worst-case. Similarly, if at most polylog N processes may be simultaneously
poised to write to the same register, we obtain the Ω(log N/ log log N) lower bound of
Alistarh, Gelashvili and Nadiradze [5], but via new argument. Put differently, our proof
shows that constant-time algorithms for test-and-set are only possible if, for some constant
0 < c ≤ 1, N c processes can concurrently be poised to write different values to the same
register. Furthermore, our lower bound shows that no adaptive Leader Election algorithm
is possible, unless registers can hold polynomial in N many values, and polynomial in N

processes can be poised to write different values to the same register at the same time. We
say that an algorithm is adaptive if its step complexity depends only on the actual number
of participating processes and not on the total number of processes in the system.

DISC 2025



3:4 An Almost-Logarithmic Lower Bound for Leader Election

Our lower bound is based on a technique that generalizes the knowledge-based approach
of Anderson and Kim [7]. At a high level, we inductively construct a sequence of executions in
which no active process sees any other active process. Specifically, this leads to an execution
by one process in which it takes Ω

(
log N

log log N+log Q

)
steps. In each round of the execution,

active processes perform one additional read or write. Thus, by round t, each has taken t

steps. We split these active processes into groups, called factions, depending on the step they
are about to perform. We then proceed to schedule the processes adversarially, to minimize
the information flow between them. Since information flow may arise from values written to
registers in previous rounds, we also erase some processes, or even entire factions, from the
execution. To determine which active processes should continue to the next round, we build
a conflict graph, where an edge exists between two processes if executing them both would
create information flow, or if the two processes are poised to write different values to the
same register simultaneously.

So far, this construction is similar to step complexity lower bound proofs for low con-
tention [7, 10, 5]. The key new observation is that we can adjust the execution so that the
conflict graph can be represented by a new, special kind of structure that we call a faction
graph. Roughly, a faction graph can be partitioned into sets of vertices with super-edges
from vertices to parts of the partition. Intuitively, this allows us to generate a compact repre-
sentation for any conflict graph. Our main technical lemma is a lower bound of Ω

(
|V |2

|E∗|+|V |

)
on the maximum size of an independent set in any conflict graph represented by a faction
graph with |V | vertices and |E⋆| multi-edges. This lemma may be of separate interest for
other problems that can be described using faction graphs.

Our lower bound argument combines the fact that the conflict graph at each round can
be represented by a faction graph, with our technical lemma about such graphs to obtain a
new lower bound of Ω

(
N

Q+t2

)
on the number of processes that survive until the tth round.

These processes do not see one another. We can continue, while keeping at least one process
active, for Ω

(
log N

log log N+log Q

)
rounds.

The paper by Alistarh, Gelashvili and Nadiradze [5] presents a complex, potential-based
covering argument leading to a lower bound of Ω(log N/ log κ) that depends on step contention
κ. In a follow-up online revision [6], the authors provided a simpler argument, which carefully
re-works the original Anderson and Kim lower bound to obtain a simpler proof of the same
lower bound. Our lower bound proves a slightly weaker result in the bounded step contention
case. Our focus is on the bounded value contention case, which is a generalization of the
case when registers have bounded size.

On the upper bound side, we observe that the tournament tree algorithm by Afek,
Gafni, Tromp and Vitányi [1] has constant bounded value contention Q. In fact, with slight
modifications, it uses only single-bit registers, and thus has value contention Q = 2. Therefore,
our Ω

(
log N

log log N

)
lower bound almost matches the O(log N) upper bound. Moreover, even

though there are adaptive Leader Election algorithms with O(log k) step complexity [4, 14]
(where k is the number of participating processes), our main lower bound implies that
adaptive Leader Election is impossible unless Q ∈ Ω(N c) for some constant c > 0. In
other words, we prove that any algorithm for adaptive Leader Election must use registers of
logarithmic size and has executions where the number of processes simultaneously poised to
write different values to the same register is polynomial in N .
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2 Preliminaries

We consider an asynchronous distributed system where a set of N processes, P , communicate
through a set of R registers that can be read from and written to by any process. A step is a
read of a specific register or a write of a specific value to a specific register performed by one
process, followed by an update of the state of the process, including any local coin flips it
wishes to perform.

An execution E is a sequence of steps of processes in the system, starting from the initial
configuration. An execution is P ′-only if it only contains steps performed by processes in
P ′ ⊆ P . If E is a prefix of execution E′, we say that E′ extends E. A process p is poised to
write to a register r at the end of an execution E if, in every execution E′ that extends E

and in which p performs more steps, p’s next step after E is writing to r. An execution is
terminating if all operations (that have begun) have finished. A round-by-round execution is
an execution in which, for every positive integer i, all processes that take at least i steps do
so before any process takes its i + 1’st step. The i’th round of the execution is a consecutive
sequence of steps by different processes, each of which has previously taken i − 1 steps. Thus,
a round-by-round execution is a concatenation of rounds.

The step complexity of an execution is the maximum number of steps performed by
one process. The step complexity of an algorithm is the maximum step complexity of any
execution of the algorithm. The solo step complexity of an algorithm is the maximum number
of steps in any solo execution of the algorithm, i.e., in which only one process takes steps.
The total step complexity of an algorithm is the maximum number of steps in any execution
of the algorithm.

Adversary. This paper assumes the strong (adaptive) adversary model. In this model,
the order in which processes take steps is decided adaptively by an adversary. It knows
everything about the current state of all processes when it chooses which process takes the
next step. By comparison, weaker adversaries have only partial information about process
states such as the outcomes of random coin flips [3, 14]. To be specific, our lower bound
proofs assume that the adversary knows the next step of every process, but does not need
other information about internal process states.

Worst-case expected step complexity. Consider a (possibly randomized) algorithm A and
an adaptive adversary D, which we assume, for simplicity, to be deterministic. Let Tp,D be
the random variable denoting the number of steps process p performs in the execution of A
when the scheduling is done by the adversary D. The expected step complexity of an execution
under D is E[T ] = maxp∈P [Tp,D], where the expectation is taken over the processors’ coin
flips. The worst-case expected step complexity of algorithm A is supD [E(Tp,D)], i.e. the
supremum over the expected step complexity of A, under any adversary.

Leader Election. A Leader Election algorithm supports a single operation, elect, which
each process may perform at most once. This operation returns either win or lose indicating
whether the process won the election. It satisfies the following properties:

With probability 1, every process that does not crash finishes its operation in a finite
number of steps.
At most one operation returns win.
If all operations that started have finished, then exactly one operation returned win.

DISC 2025



3:6 An Almost-Logarithmic Lower Bound for Leader Election

Splitter. A Splitter [21, 23] is an object that supports a single operation, decide, which
each process may perform at most once. It satisfies the following properties:

The output of decide is either Stop, Left, or Right.
Every process that calls decide finishes it within a finite number of steps.
At most one process can get Stop.
If only one process calls decide, then it is guaranteed to get Stop.
If more than one process calls decide, then not all processes get the same output.

Instead of the last property, a Randomized Splitter [8] requires that the probability a call
of decide returns Left is the same as the probability it returns Right, independent of all
other calls. Splitter and Randomized Splitter objects are similar to Leader Election, where
getting Stop as output is analogous to winning, but they do not guarantee that some process
gets output Stop, even if all calls have terminated.

We now describe formalize some well-known results used for to proving lower bounds,
which were previously applied for this and other distributed problems [19, 14, 5, 25, 10].

Process Visibility. We say that process p sees another process if p reads a value from some
register that differs from the last value p wrote there or is not the initial value of the register,
if p never wrote there. We say that p sees process q if q was the last process that wrote to
that register before p read it. For any execution E, define p ↔E q if p sees q or q sees p in
execution E. Let p ∼E q be the reflexive transitive closure of ↔E. This is an equivalence
relation. A set of processes P ′ ⊆ P is closed (with respect to ∼E) if there does not exist
q ∈ P ′ and p ̸∈ P ′ such that q ∼E p.

Note that, if P ′ is a set of processes that is closed with respect to ∼E, then erasing the
steps of all processes in P ′ from E results in an execution. Since exactly one operation wins
in every terminating execution of Leader Election, we get the following result.

▶ Lemma 1. Let E be an execution of a Leader Election algorithm and let P ′ be a nonempty
set of processes that is closed with respect to ∼E. Let E′ be an execution obtained by erasing
the steps of all processes in P \ P ′ from E and then running all processes in P ′ until they
each finish performing elect. Then exactly one process in P ′ wins in E′.

Based on this lemma, we formulate the first commonly used idea guaranteeing that
processes have to take more steps in an execution E of Leader Election that contains at least
two processes that are not related by ∼E.

▶ Lemma 2. Let E be an execution of a Leader Election algorithm. Consider a partition of
P into sets that are closed with respect to ∼E. Then every set, except possibly one, contains
at least one process that has not finished performing elect.

Proof. For every part, P ′, of the partition, there is an execution obtained by erasing the
steps of all processes in P \ P ′ from E and then running all processes in P ′ until they each
finish performing elect(). By Lemma 1, exactly one process in P ′ wins in this execution.
Consider the winning process for each set P ′ in the partition. Since at most one process wins
in E, each of these processes, except possibly one, has not won in E and, thus, it has not
finished performing elect. ◀

Intuitively, Lemma 2 shows that, if we execute processes in a way that prevents them
from learning about one another, we can ensure that they have to take more steps.
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3 Independent Set Lower Bound for Faction Graphs

In this section, we describe our main combinatorial result, which we later use to prove our
main lower bound. It is a stronger, specialized version of Turán’s Theorem [27]:

▶ Theorem 3. Every graph G = (V, E) contains an independent set of size at least⌊
|V |2

2|E|+|V |

⌋
.

We prove that any graph that can be represented in a special form, which we call a
faction graph, has a sufficiently large independent set.

Faction Graphs. A faction graph G⋆ = (V, F, E⋆) is defined by a partition, F , of its vertex
set, V , and a set of super-edges, E⋆, which connects vertices to parts of the partition, called
factions. It contains no edges from any vertex to the faction that contains it. The graph
G = (V, E) represented by G⋆ is an undirected graph with the property that, if a vertex v

has a super-edge in E⋆ to a faction, A ∈ F , then all vertices in A are neighbors of v in G.
An example of a faction graph is shown in Figure 1a. The formal definition is given below.

▶ Definition 4. G⋆ = (V, F, E⋆) is a faction graph if V is a set of vertices, F is a partition
of V , and E⋆ ⊆ V × F such that v /∈ A for all (v, A) ∈ E⋆. The graph represented by this
faction graph is G = (V, E), where E = {{v, w} | (v, A) ∈ E⋆ and w ∈ A for some A ∈ F}.

Generally, a faction graph is a much more compact representation of the graph it
represents.

Figure 1a is a faction graph with 7 vertices, 3 factions, A, B, and C, and 3 super-edges.
Figure 1b is the graph it represents. The super-edge (w, C) is expanded into the two edges
{w, x} and {w, u}.

(a) A faction graph. (b) The graph it represents.

Figure 1 Illustration of faction graphs.

Independent Sets in Faction Graphs. We will show, using the probabilistic method, that
the graph G = (V, E) represented by a faction graph G⋆ = (V, F, E⋆) has an independent set
of size Ω

(
|V |2

|E∗|+|V |

)
. This is similar to Turán’s theorem (Theorem 3). Our key observation

is that we can obtain a much bigger lower bound on the size of an independent set, since
|E∗| can be asymptotically much smaller than |E|.

▶ Theorem 5. The graph G = (V, E) represented by a faction graph G⋆ = (V, F, E⋆) contains
an independent set of size at least

1
e

· |V |2

|V | + |E⋆|
∈ Ω

(
|V |2

|V | + |E⋆|

)
.

DISC 2025



3:8 An Almost-Logarithmic Lower Bound for Leader Election

Proof. Let N = |V | and M⋆ = |E⋆|. If E⋆ = ∅, then E = ∅, so V is an independent set of
G of size |V |. Therefore, assume M⋆ > 0.

Since there are no edges in E between two nodes in the same faction, every faction is an
independent set. For each vertex v ∈ V , let F (v) ∈ F be the faction that contains v and let

OutNhd⋆(v) = { C ∈ F | (v, C) ∈ E⋆ }.

By definition, F (v) ̸∈ OutNhd⋆(v). Observe that∑
v∈V

|OutNhd⋆(v)| = |E⋆| = M⋆,

since every super-edge (v, C) ∈ E⋆ contributes exactly once to the sum.
We use the probabilistic method. Select each faction A ∈ F , independently, with some

fixed probability p ∈ (0, 1), obtaining a random subset F ′ ⊆ F . From F ′ build a random
vertex set

S =
{

v ∈ V | F (v) ∈ F ′ and F ′ ∩ OutNhd⋆(v) = ∅
}

consisting of every vertex whose faction was selected, but has no super-edge to any selected
faction.

First, we show that S is an independent set of G = (V, E). Consider any two vertices,
u, v ∈ S. If F (u) = F (v), then {u, v} /∈ E, since every faction is an independent set.
So suppose F (u) ̸= F (v). By definition of S, F (u), F (v) ∈ F ′, so F (v) ̸∈ OutNhd⋆(u)
and F (u) ̸∈ OutNhd⋆(v). Hence (u, F (v)), (v, F (u)) ̸∈ E⋆. By Definition 4, it follows the
{u, v} ̸∈ E.

Next, we get a lower bound on the expected size of S. For any fixed v ∈ V , the event
that F (v) ∈ F ′ is independent of the event that F ′ ∩ OutNhd⋆(v) = ∅. Therefore

Pr[v ∈ S] = p (1−p)|OutNhd⋆(v)| and E
[
|S|

]
=

∑
v∈V

Pr[v ∈ S] =
∑
v∈V

p (1−p)|OutNhd⋆(v)|.

The function f(x) = (1 − p)x is convex for p ∈ (0, 1). By Jensen’s inequality [18],

1
N

∑
v∈V

(1 − p)|OutNhd⋆(v)| ≥ (1 − p)
1
N

∑
v∈V

|OutNhd⋆(v)|
.

Hence E
[
|S|

]
≥ N p (1 − p)α, where α = M⋆/N .

We now choose a good value for p. Consider the function g(p) = p(1 − p)α on the interval
[0, 1]. Since its derivative is g′(p) = (1 − p)α−1(

1 − (α + 1)p
)
, it follows that g is maximized

when p = 1/(1 + α). Using this value of p gives

E
[
|S|

]
≥ N · 1

1 + α
·
(

1 − 1
1 + α

)α

= N

1 + α
·
( α

1 + α

)α

.

Since ln(1 + x) ≤ x for x > −1, we have( α

1 + α

)α

= exp
(

α ln α

1 + α

)
= exp

(
−α ln

(
1 + 1

α

))
≥ exp(−1) = 1

e
.

Hence

E
[
|S|

]
≥ 1

e
· N

1 + α
= 1

e
· N2

N + M⋆
= 1

e
· |V |2

|V | + |E⋆|
.

Because S is an independent set for every choice of F ′, it follows that G contains an
independent set S of at least this size. ◀
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4 The Leader Election Lower Bound

With these preliminaries in place, we now present a new step complexity lower bound for
the Leader Election problem (and implementing a test-and-set object) in asynchronous
shared memory. To date, no non-trivial lower bound on step complexity for implementing a
test-and-set object that depends only on N is known. Our lower bound is no exception: It
assumes bounded value contention Q, defined as follows.

▶ Definition 6 (Bounded Value Contention). An algorithm has bounded value contention
Q if, at all points during an execution, processes can be poised to write at most Q different
values to the same register.

Discussion. We note that bounded value contention is strictly more general than both
write contention and register size. In particular, bounded write contention κ implies value
contention at most κ. However, the reverse does not hold because we can allow arbitrary
many processes be simultaneously poised to write the same value to a register, without
exceeding the value contention bound. Likewise, an upper bound, C, on the number of
different values that can be written to a register (which is equivalent to a bound on register
size) implies value contention at most C. Again, the reverse does not hold, since arbitrarily
many different values can be poised to be written to a register in different executions, or at
different configurations during the same execution without exceeding the value contention
bound.

To see the intuition why we need this additional restriction on the algorithm to obtain a
non-trivial lower bound, consider the following pseudocode:

1 door := {id}
2 if door != id: // Fast path check
3 return Lose // Observed another process , so can lose
4 // Otherwise perform slow path Leader Election

Here, each process first writes its id to a shared register, door, and then reads this register.
If it reads the id of another process, it immediately loses. Observe that we can add this code
at the beginning of any Leader Election algorithm, since the last process to write to door will
continue to the next part of the algorithm, if it does not crash. The previous step complexity
lower bound proofs construct a worst-case execution by repeatedly selecting a set of processes
that each perform one more step, one after the other [5, 10, 7]. However, in an execution
that begins with a round in which every process takes one step, there is only one process
that does not lose when it performs its second step. Consequently, this process will execute
the next part of the algorithm by itself. For some algorithms, for example, one that uses a
Splitter, this process will also terminate within a constant number of steps. However, in an
execution in which no process writes to door between the write to door and subsequent read
of door by the same process, all non-faulty processes reach the next part of the algorithm.
Our bounded value contention does not allow all processes to be simultaneously poised to
write their ids to the same register, so such an algorithm does not contradict our lower bound.

The main result of this section is the following:

▶ Theorem 7. For any obstruction-free Leader Election algorithm for N processes with value
contention Q, there exists a solo execution of length Ω

(
log N

log log N+log Q

)
.

DISC 2025
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Proof. We begin by giving an overview of the proof approach. We will construct a round-by-
round execution, one round at a time. In each round, we have a set of active processes that
each takes one additional step. We maintain the invariant that the processes do not see one
another. In other words, for each active process, the execution is indistinguishable from a
solo execution. Initially, all processes are active and the execution is empty.

To add an additional round, we consider the next step of all active processes and partition
them into groups depending on what register they access, whether they read or write, and
what value they read or what value they write. After that, we construct a conflict graph,
where the nodes are the active processes and there is an edge between two processes if one of
them sees the other in any extension of the current execution in which each active process
takes one more step or if they write different values to the same register. We observe that
this graph can be represented by a faction graph. Using Theorem 5, we select a sufficiently
large independent set of active processes in the conflict graph. All other processes are erased
from the execution and then each process in the independent set takes its next step. Similarly
to Anderson and Kim [7], this ensures that each process only reads the initial value of a
register or the last value that it wrote there. The construction continues until only one
process remains.

Let Pt ⊆ P be the set of active processes that participate in the current execution, Et. In
this execution, no process in Pt sees any other process, so, for all processes p, q ∈ Pt, p ∼Et

q

if and only if p = q. By Lemma 2, there is at most one process that has terminated at the
end of Et. Each process in Pt that has not terminated has taken exactly t steps in Et. We
also ensure that no two processes write different values to the same register in their i’th step
in Et, for 1 ≤ i ≤ t. Initially, E0 is empty and P0 = P .

To create Et+1, we begin by partitioning the processes in Pt into groups, where two
processes are in the same group if, at the end of Et,

they are poised to write the same value into the same register,
they are poised to read the same register and they have never written to that register, or
they are poised to read the same register and they last wrote the same value to that
register.

If there is a process in Pt that is terminated at the end of Et, it is put in a group by itself.
For each register, there are at most Q groups of processes writing different values to the
register, there is at most one group of processes that is reading the register, but have never
written to it, and there are at most t groups of processes that are reading the register and
last wrote to it in one of the previous t rounds.

We need to show that we can choose sufficiently many active processes Pt+1 ⊆ Pt, which
each performs one more step, without letting it see any other process. Other active processes
will be erased from the execution when creating Et+1. (Note that one of the processes in Pt+1
may have terminated.) To determine such a set of active processes, we construct a conflict
graph. This is a graph with vertex set Pt, where there is an edge between two processes if
one of them is poised to read a register from which it could see the other process or both are
poised to write different values to the same register. The conflict graph can be represented
by a faction graph, where the factions are the groups of processes. We will describe only the
set of super-edges, E∗, of this faction graph from which the set of edges of the conflict graph
can be deduced. Intuitively, we want to find an independent set in the conflict graph, remove
all steps by other processes in Et, and add a round to the resulting execution to create Et+1.

There are two rules used to construct the super-edges of the faction graph:
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Rule 1. Poised to read after a past write. Consider some process, p, that wrote a value
to register r during Et. Let v be the value that p last wrote to r. Let A be a group of
processes that are poised to read register r and last wrote the value v′ ̸= v to register r or a
group of processes that are poised to read register r, but have never written to register r,
and v′ ̸= v is the initial value of register r. In a solo execution, each process in A would read
the value v′ when it performs this read. Then (p, A) ∈ E∗.

Rule 2. Poised to write different values. Consider a group of processes, A, poised to
write value v to a register r and a group of processes, B, poised to write value v′ ̸= v to
the register r. Then, (p, B) ∈ E∗, for all processes p ∈ A, and (q, A) ∈ E∗, for all processes
q ∈ B.

Since all active processes take t steps during Et, each process p writes to at most t different
registers. For each register, r, to which it wrote, (p, A) ∈ E∗ by Rule 1, only if the processes
in group A are poised to read r. At most one value is written to r in each round of Et, so
there are at most t − 1 groups of processes poised to read r that last wrote a different value
to r than p did. There is at most one group of processes poised to read r that have never
written to r. Hence, there are at most t · t = t2 groups A for which (p, A) ∈ E∗ by Rule 1.

Suppose (p, A) ∈ E∗ by Rule 2. Then p is poised to write a value v to a register r at the
end of Et and the processes in A are poised to write a different value to register r at the end
of Et. Since the value contention of the algorithm is at most Q, there are at most Q − 1
different groups that are poised to write values other than v to register r at the end of Et.
Hence, there are at most Q − 1 groups A for which (p, A) ∈ E∗ by Rule 2.

In total, |E∗| ≤ |Pt| · (t2 + Q − 1). Let Pt+1 be a maximum independent set in the conflict
graph. By Theorem 5,

|Pt+1| ≥ 1
e

· |Pt|2

|Pt| + |E∗|
≥ 1

e
· |Pt|2

|Pt| + |Pt| · (t2 + Q − 1) = 1
e

· |Pt|
Q + t2 .

Since Pt \ Pt+1 is closed with respect to ∼Et , removing the steps of all processes in Pt \ Pt+1
from Et results in an execution. Let Et+1 be obtained from this execution by appending a
round in which all processes in Pt+1 that are poised to read each take one step and then all
processes in Pt+1 that are poised to write each take one step. Note that, by Rule 2, at most
one value is written to each register during the last round of Et+1. Since at most one value
is written to each register during each round of Et, the same is true for Et+1. Furthermore,
since each process in Pt that has not terminated takes exactly t steps during Et, each process
in Pt+1 that has not terminated takes exactly t + 1 steps during Et+1.

Suppose there is a process, q ∈ Pt+1, in some group, A, that sees another process during
Et+1. Since q sees no other processes during Et, it must be that, during round t + 1, q read a
value v from register r and, during Et, either q did not write to r, or q last wrote some value
v′ ̸= v to r. By definition of the groups, the same is true for all processes in group A. Note
that all writes to r during round t + 1 occur after q read r. Let p ∈ Pt+1 be any process that
last wrote v to r during Et. Note that p ̸∈ A. By Rule 1, (p, A) ∈ E∗ is an edge in the faction
graph. This implies that {p, q} is an edge in the conflict graph, which contradicts the fact
that Pt+1 is an independent set. Hence, no process in Pt+1 sees another process during Et+1.

Thus, the execution Et+1 has all the required properties. We repeatedly construct
additional rounds until the remaining set of active processes has size 1. Note that, if |Pt| > 1,
it is always possible to choose Pt+1 so that it contains a process that takes t + 1 steps during
Et+1. Let T be the first number such that |PT | = 1. Then ET is a solo execution of length T .
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It remains to show that T ∈ Ω
(

log N
log Q+log log N

)
. Recall that |Pt+1| ≥ 1

e · |Pt|
Q+t2 , so

|PT | ≥ |P0|
eT

∏T −1
t=0 (Q + t2)

.

Rearranging and using the facts that |P0| = N and |PT | = 1, we obtain

N ≤ eT
T −1∏
t=0

(Q + t2) ≤ eT
T −1∏
t=0

(Q + T 2) = (e(Q + T 2))T .

Hence,

T ≥ log N

log(e(Q + T 2)) = log N

log e + log(Q + T 2) .

Let N ≥ 4. Then log Q+log log N ≥ 1, since Q ≥ 1. If T ≥ log N , then T ≥ log N
log Q+log log N .

So, assume that T < log N . In this case,

T >
log N

log e + log(Q + (log N)2) .

Since Q, log N ≥ 1, we have Q + (log N)2) ≤ 2Q(log N)2, so log e + log(Q + (log N)2) ≤
log e + log(2Q(log N)2) = 1 + log e + log Q + 2 log log N ∈ O(log Q + log log N). Therefore,
T ∈ Ω

(
log N

log Q+log log N

)
. ◀

This theorem leads to some additional results. First, we observe that our lower bound ar-
gument can be applied directly to the more general class of non-deterministic solo-terminating
algorithms [11], which includes randomized wait-free algorithms for the Leader Election
problem.

▶ Corollary 8. Against an adaptive adversary, every randomized wait-free Leader Election
algorithm for N processes with value contention Q has Ω

(
log N

log log N+log Q

)
worst-case expected

step complexity and solo step complexity.

By specializing the parametrization to focus on particular ranges of interest, we obtain
the following two results.

▶ Corollary 9. A Leader Election algorithm with constant solo step complexity is only possible
if the number of different values a register can hold is polynomial in N and, hence, only if
the number of different processes that can be poised simultaneously poised to access the same
register can be polynomial in N .

▶ Corollary 10. Any (randomized) Leader Election algorithm that has o
(

log N
log log N

)
solo step

complexity (with high probability) has value contention that is super-polylogarithmic in N .

We can also apply our theorem to adaptive Leader Election algorithms, where the step
complexity depends on the number of processes that take at least one step, rather than on
the total number of processes in the system.

▶ Corollary 11. For value contention Q = No(1), where c > 0 is constant, it is impossible
to solve Leader Election with expected solo step complexity (and, hence, with worst-case
expected step complexity) O(f(k)), where k is the number of participating processes and f is
an arbitrary function.
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5 Upper Bounds

We discuss how existing upper bounds relate to our lower bounds. The related algorithms
are listed in Table 2.

Table 2 Upper bounds for Leader Election against a strong adversary.

Step Compl. Total Step Compl. Q Reference Comments

O(log N) O(k log N) constant [1] with high probability

O (logκ N) O (k logκ N) κ [5] Solves Weak Leader Election,
κ is the write contention

Leader Election with One-Bit Registers
Afek, Gafni, Tromp and Vitányi presented a Leader Election algorithm for N processes
with O(log N) step complexity with high probability based on a tournament tree [1] using
Leader Election for 2 processes at each internal node. Leader Election for 2 processes can
be solved by the randomized algorithm of Tromp and Vitányi in expected constant step
complexity using 4-valued shared registers [26]. We can then replace each 4-valued register
with 4 one-bit registers using the construction of [20]. Thus, the value contention, Q, of the
resulting algorithm is 2. The step complexity of this algorithm matches our lower bound to
within an O(log log N) factor.

Weak Leader Election Based on Splitters
Weak Leader Election differs from Leader Election in that it does not guarantee existence of
a winner if there is more than one participating process. Alistarh, Gelashvili and Nadiradze
proposed an algorithm for the Weak Leader Election problem with bounded write contention
κ [5], which is based on Splitter objects. Their algorithm arranges processes into a complete
κ-ary tournament tree, where each node is associated with a Splitter.

Since their tree is κ-ary, the write contention is bounded by κ and, consequently, the
value contention is also bounded by κ. The construction in our proof of Theorem 7, ensures
that processes do not see other processes, so our lower bound also applies to the Weak
Leader Election problem. Therefore, there is an Ω

(
log N

log log N+log κ

)
lower bound and an

almost matching O
(

log N
log κ

)
upper bound on the step complexity of this problem.

Adaptive RatRace Leader Election
Alistarh, Attiya, Gilbert, Giurgiu, and Guerraoui proposed an algorithm for solving Leader
Election, which they call RatRace [4], that has O(log k) step complexity with high probability
and O(N3) space complexity, where k is the number of participating processes.

The algorithm consists of a primary tree and a backup grid. The primary tree is a complete
binary tree of Randomized Splitters of depth 3 log N . Every process starts at the root of the
primary tree and then either stops or moves to the left or right child depending on the result
(Stop, Left or Right) of the corresponding Randomized Splitter. Once a process obtains
Stop, it tries to move back to the root by participating in an instance of Leader election
among 3 processes: the process that received Stop from the the Randomized Splitter and
one process from each child. The winner of the instance of Leader Election at a node moves
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back to its parent, if it has a parent. In the unlikely case when a process reaches a leaf of the
tree without obtaining Stop, the process accesses the backup grid, which is a O(N2) grid of
deterministic Splitters [4] and instances of Leader Election among 3 processes. The winner of
the backup grid and the winner of the instance of Leader Election at the root of the primary
tree then participate in a final instance of Leader Election (among 2 processes) to decide
the winner of the Leader Election among all N processes. Giakkoupis and Woelfel improved
the space complexity of the RatRace algorithm from O(N3) to O(N) [14] by replacing the
backup grid with N

log N elimination paths of size 4 log N and an elimination path of size N

and reducing tree height from 3 log N to log N .
The value contention of a Splitter shared by N processes is N , so the value contention of

both these algorithms is N . Corollary 11 proves that adaptive Leader Election is impossible
unless Q is polynomial in N . In particular, this means that any adaptive Leader Election
algorithm has to use registers of size Ω(log N) and it must have configurations in which
NΩ(1) process are poised to write different values to the same register.

6 Discussion

We made a step towards improving Leader Election bounds. Although we did not achieve a
matching logarithmic lower bound that depends only on the number of processes, we proved
tighter and more general lower bounds than previous work [5] by analyzing a new notion of
value contention. Our primary contribution is the establishment of a new lower bound of

Ω
(

log N

log log N + log Q

)
on the step complexity for any obstruction-free leader election algorithm.

Moreover, we have demonstrated that achieving o
(

log N
log log N

)
step complexity requires

value contention to be ω(polylog(N)). On the other hand, we showed that adaptive leader
election is impossible unless the value contention is also polynomial in N , i.e. polynomially
many processes can be simultaneously poised to write polynomially many different values
to the same register. These impossibility results place fundamental limits on the design of
efficient leader election algorithms.

Finally, we speculate that our approach stretches the existing approaches to their limit, and
that further progress towards a general lower bound will require a more general technique that
bounds the information flow achievable in the high-contention scenario where all processors
can simultaneously be poised to write different values to the same register.
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