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Abstract
A novel long-lived distributed problem, called Team Formation (TF), is introduced together with a
message- and time-efficient randomized algorithm. The problem is defined over the asynchronous
model with a complete communication graph, using bounded size messages, where a certain fraction
of the nodes may experience a generalized, strictly stronger, version of initial failures. The goal of
a TF algorithm is to assemble tokens injected by the environment, in a distributed manner, into
teams of size σ, where σ is a parameter of the problem.

The usefulness of TF is demonstrated by using it to derive efficient algorithms for many distributed
problems. Specifically, we show that various (one-shot as well as long-lived) distributed problems
reduce to TF. This includes well-known (and extensively studied) distributed problems such as
several versions of leader election and threshold detection. For example, we are the first to break
the linear message complexity bound for asynchronous implicit leader election. We also improve
the time complexity of message-optimal algorithms for asynchronous explicit leader election. Other
distributed problems that reduce to TF are new ones, including matching players in online gaming
platforms, a generalization of gathering, constructing a perfect matching in an induced subgraph of
the complete graph, and more. To complement our positive contribution, we establish a tight lower
bound on the message complexity of TF algorithms.
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1 Introduction

Consider the following three problems, defined over an asynchronous message-passing system
with a complete communication graph, where a constant fraction of the nodes may be faulty:
(P1) electing a leader among the non-faulty nodes; (P2) constructing a perfect matching in
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the subgraph induced by a subset of the non-faulty nodes, specified (distributively) by the
input; (P3) assembling Dungeons & Dragons parties from characters that arrive over time at
the non-faulty nodes so that each party includes 3 wizards, 2 paladins, 2 rogues, and 1 monk.
On the face of it, problems (P1)–(P3) have little in common. In particular, (P1) and (P2)
are one-shot problems, whereas (P3) is long-lived; (P1) requires global symmetry breaking,
whereas in (P2) and (P3) the symmetry breaking is local in essence. Therefore, it may come
as a surprise that all three problems reduce to a single new problem.

In this paper, we introduce the aforementioned new problem, called team formation,
and develop an efficient algorithm for it. Following that, we show how our algorithm leads
to algorithmic solutions for various other problems (including (P1)–(P3)), improving their
state-of-the-art. For example, we are the first to break the linear message complexity bound
for asynchronous implicit leader election, see Sec. A.1.1. We also improve the time complexity
of message-optimal algorithms for asynchronous explicit leader election, see Sec. A.1.2. On
the negative side, we establish lower bounds on the communication demands of TF algorithms,
see the full version [22].

1.1 The Basic Setting and Problem Definition

Consider an asynchronous message-passing system that consists of n nodes (a.k.a. processors).
The communication structure is assumed to be a complete undirected graph over the node
set V so that every two nodes may exchange messages with each other. These messages
carry O(logn) bits of information (cf. the CONGEST model [52]) and are delivered with a
finite delay, where the delay of each message is determined (individually) by an adversary.
Unless stated otherwise, it is assumed that the nodes are anonymous and that each node
distinguishes between its n−1 neighbors by means of (locally) unique port numbers [6, 61, 31].
The adversary may cause some nodes to become faulty, preventing them from participating in
the execution in accordance with a generalization of the initial failures model [18, 24, 60], as
long as a sufficiently large fraction of the nodes remain non-faulty throughout the execution.2
A precise definition of the computational model is presented in Sec. 3.1.

Team Formation. We introduce a long-lived distributed problem called team formation
(TF), defined over an integral team size parameter 2 ≤ σ ≤ n.3 In a TF instance, abstract
tokens are injected into the nodes over time, where the adversary determines the timing and
location of these token injections. Tokens held by a node v ∈ V can be transported to a
node v′ ∈ V over a message sent from v to v′. Each token remains in the system until it is
deleted, as explained below.

The correctness criterion of the TF problem is captured by the following two conditions:
Safety: a token can be deleted from the system only as part of a team that consists of

exactly σ tokens, all of which are held by the same node and deleted simultaneously; the
operation of deleting a team of tokens is referred to as forming a team.

Liveness: if the system contains at least σ tokens, then a team must be formed in a finite
time.

2 The failure model considered in this paper is identical to the classic model of initial failures when
restricted to one-shot problems. As explained in the sequel, the generalization comes into play only in
the context of long-lived problems.

3 The TF problem is well defined also for σ > n, however, the restriction to σ ≤ n simplifies the discussion
and is consistent with the applications presented in Sec. 1.4.
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Assume without loss of generality that the system contains at most nO(1) tokens at any given
time.4 The tokens are assumed to be indistinguishable and any number of tokens can be
transported over a single message that simply encodes their number.

1.2 Our Contribution
Our main contribution regarding the TF problem is cast in Thm. 1 (for the formal statement,
refer to the analysis sections provided in the full version [22]).

▶ Theorem 1 (slightly informal). For every constant ϵ > 0, there exists a randomized algorithm
that solves any n-node TF instance whp if at least ϵn nodes remain non-faulty indefinitely.5
The algorithm sends O(

√
n logn) messages per token in expectation and O(

√
n logn · logn)

messages per token whp. Moreover, if the system contains at least σ tokens, then the algorithm
is guaranteed to form a team in O(σ + logn) (asynchronous) time whp.

We emphasize that the whp guarantees promised in Thm. 1 apply for any TF instance,
regardless of the total number of tokens injected into the system that may be arbitrarily large
(and not necessarily bounded as a function of n); in particular, the correctness probability
remains (arbitrarily) close to 1 and does not deteriorate as the number of tokens increases.
Moreover, the bounds on the number of messages per token hold already for “the first tokens”,
that is, even if the adversary decides to inject a few tokens in total, regardless of σ. It is
also interesting to point out that our TF algorithm withstands a (1− ϵ)-fraction of faulty
nodes for an arbitrarily small constant ϵ > 0;6 this is in contrast to many other problems
(in message-passing with initial failures), including leader election and consensus, where a
majority of faulty nodes leads to impossibility results. On the negative side, we establish the
following theorem (refer to the full version [22] for the formal statement).

▶ Theorem 2 (slightly informal). For 2 ≤ σ ≤ n/2, consider the simplified (one-shot) version
of the TF problem, where the schedule is synchronous and it is guaranteed that exactly σ

tokens are injected into the system, all at the beginning of the execution. Any algorithm that
solves this problem whp must send a total of Ω(max{

√
n logn,

√
nσ}) messages in expectation.

This holds even if the messages are of unbounded size.

1.3 Extra Features
Beyond the safety and liveness conditions presented in Sec. 1.1, it may be advantageous
for TF algorithms to satisfy additional features. In this section, we introduce three such
desirable features that turn out to be very useful (see Sec. 1.4), all three of them are readily
satisfied by the TF algorithm promised in Thm. 1. Refer to Sec. C for further discussions of
the qualities of these features.

The Forgetful Feature. In the scope of this feature, we distinguish between two types
of coin tosses of a node v ∈ V : (1) the finitely many “factory coin tosses” generated by v

upon the first activation event of v, before any other action of v and hence, could have been

4 Conditioned on the assumption that σ ≤ n, the nodes themselves should hold (all together) less than n2

tokens since a node that holds at least σ tokens can perform team formation operations. Regarding the
tokens in transit, the algorithm developed in the current paper is designed so that there are less than σ
tokens in transit over any edge at any given time, so the total number of tokens in transit is O(n3).

5 An event A occurs with high probability (whp) if P(A) ≥ 1 − n−c for any (arbitrarily large) constant c.
6 Refer to Sec. 3.1 for a precise definition of the failure model adopted in the current paper, including the

assumptions made on the faulty nodes.

DISC 2025
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generated when v was “manufactured”; (2) all other coin tosses of v, generated along the
execution. In contrast to the latter, the “factory coin tosses” are considered to be hardwired
into v’s memory and, in particular, constitute part of v’s initial state.

We say that a randomized algorithm satisfies the forgetful feature if it is guaranteed that
every node resides in its initial state at any quiescent time (formally defined in Sec. 3.1). Thus,
at quiescent times, the nodes may not record any information about their past events and
actions. We view the notion of forgetful algorithms as a natural extension of the important
notion of memoryless algorithms [57, 59] from deterministic to randomized algorithms and
believe that it should be studied further, regardless of the TF problem.

The Trace-Tree Feature. A token τ injected into node v ∈ V follows a tour in the
communication graph from v to the node r at which τ is deleted (if at all) as part of a team
formation event F . Somewhat informally, this tour forms a simple path π in the temporal
graph that reflects the communication graph along the execution’s time axis (a node v′ ∈ V
may appear in π several times, but at different times). The collection of the paths π of all the
tokens τ that participate in F form a temporal tree T rooted at r. A TF algorithm satisfies
the trace-tree feature if the algorithm maintains a distributed data structure that supports
broadcast and echo processes over T (it is the responsibility of “the user” to delete this data
structure once it is no longer used). Since the basic description of our TF algorithm, as
presented in Sec. 4, does not address this trace-tree feature, we provide the implementation
details in [22].

The Accumulation Feature. Consider a TF instance and assume that the total number ℓ
of tokens injected into the system satisfies ℓ mod σ = k > 0. A TF algorithm satisfies the
accumulation feature if it is guaranteed that the k tokens that remain in the system forever
are eventually held by the same node.

1.4 Applications
We present several interesting problems that are reducible to TF. These include the classic
leader election problem, for which we improve the state-of-the-art, as well as various problems
that received less attention from the community so far (if at all). For each problem, we
provide a sketchy description of the reduction to TF; further technical details as well as
precise statements of the results obtained through these reductions are deferred to Sec. A.

Leader Election (LE). This is the fundamental one-shot problem of designating a single
non-faulty node of a communication network as a leader [49, 7, 52]. We improve upon
the previous results for both (1) the implicit version, where each node is required to know
whether it is the elected leader; and (2) the explicit version, where, in addition to the above
requirement, each non-leader knows which of its (internal) ports leads to the leader. Moreover,
our algorithms are fault-tolerant (see Sec. 3.1), while the improved upon prior art [43, 44]
assumes fault freedom.

Intuitively, the reduction works as follows: A logarithmic number of nodes are chosen
probabilistically to serve as candidates, injecting a token into each one of them. The team
size parameter is adjusted so that the number of injected tokens suffices for the formation of
exactly one team whp. The node at which the team is formed is elected. In the explicit LE
version, on top of the above, the elected leader notifies all other nodes.

We assume that there are at most n(1/2− ϵ) faulty nodes for any constant ϵ > 0. The
run-time of our LE algorithms is O(logn) whp. Our explicit LE algorithm sends O(n)
messages in expectation and whp. This improves upon the time complexity of the best
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previous algorithms with O(n) messages for asynchronous explicit LE [43, 44]; their time
complexity was (log2 n) even though they assume fault-freedom. Our implicit LE algorithm
sends O(

√
n logn) messages in expectation and O(

√
n logn · logn) messages whp. This

is the first algorithm with time complexity o(n) for asynchronous LE (even for fault-free
algorithms).

Vector Team Formation. Consider a (long-lived) generalization of the TF problem, where
each token comes with a color from a certain color palette and a team should include a
pre-specified number of tokens from each color. This problem, called vector team formation
(vTF), is formulated as follows: Instead of a scalar team size parameter σ ∈ Z>0, the vTF
problem is defined over a team size vector σ⃗ ∈ Zm

>0 whose dimension m corresponds to the
size of the color palette; a team now consists of (exactly) σ⃗(i) tokens of color i for each
i ∈ [m]. As in the TF problem, the safety condition states that tokens can be deleted only
as part of a team, whereas the liveness condition states that if the system contains at least
σ⃗(i) tokens of color i for each i ∈ [m], then a team must be formed in a finite time. (The
aforementioned Dungeons & Dragons example is a special case of vTF.)

To solve vTF, we shall invoke a separate copy of a TF algorithm for each color i ∈ [m],
setting σ = σ⃗(i), and generate a “super-token” of color i whenever the i-th copy forms a
team. The super-tokens can then be collected into a vTF team, exploiting the fact that the
symmetry is now broken due to the different colors.

Agreement with Failures. The problem of (explicit) agreement with initial failures was
defined in the seminal paper of [24] as a contrast to the setting of asynchronous crash failures
proved to be impossible. A weaker version of the problem, known as implicit agreement, is
defined in [8]. Informally, the latter problem requires that (1) at least one node must decide;
(2) the decided value must be the same for all deciding nodes; and (3) the decided value
must be the input of some node. This version of the agreement problem was addressed so
far only in synchronous networks, considering both fault-free environments [8] and crash
faults [40]. As implicit leader election is directly reducible to the aforementioned implicit
leader election problem, we obtain an asynchronous implicit leader election algorithm that
withstands n(1/2− ϵ) faults in the initial failures model.

Online Gaming Platforms. This long-lived problem addresses an online gaming platform
(see, e.g., [23]) in a “one-versus-one” game mode (two players compete against each other
directly like in chess), where players arrive over time and should be matched with opponents.
The reduction to TF works as follows: Each player is represented by a single token, which is
injected into a relevant node, e.g., a nearby server, and the TF algorithm is invoked with
σ = 2. When a team is formed, the trace-tree is used to establish a connection between the
servers of the matched players.

Distributed Matching with Failures. In this one-shot problem, the nodes are equipped
with unique IDs and an (even size) subset of the (non-faulty) nodes is marked as part of the
input. The goal is to form a perfect matching in the subgraph induced by the marked nodes
so that each node knows the ID of the node it is matched to. To reduce this problem to TF,
intuitively, each marked node generates a token and the TF algorithm is invoked with σ = 2;
the trace-tree is employed to allow the matched nodes to exchange IDs.

DISC 2025
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Robot Team Gathering. The one-shot gathering problem requires robots, initially positioned
arbitrarily, to meet at a single point within a finite time, where the meeting point is not fixed
initially [5, 48, 51, 25, 58]. We propose and solve a new problem called robot team gathering
which is a generalization of the gathering problem. Robots are required to form teams of a
given (known) size, and each team must meet at a single point within a finite time, where
the meeting points are not fixed initially. In the reduction of robot team gathering (in a
complete graph) to TF, each robot is represented as a token, and the TF algorithm is used
to form teams.7

Distributed Trigger Counting. Consider a network of interconnected devices where the
devices count triggers from an external source. In the one-shot distributed trigger counting
(DTC) problem, the algorithm is required to raise an alarm when the total number of triggers
counted by all the devices reaches a predefined threshold [17, 20, 37]. Intuitively, to solve
DTC, each trigger generates a token, and the TF algorithm is invoked after setting the team
size parameter to the threshold value.

Team Forming with Associated Information. The application is for the case where a token
τ arrives with some associated information AS(τ). It is required that AS(τ) be available
at the node where the team, that includes τ , is formed at the time of the formation. For
example, AS(τ) may be a piece of a secret, and σ pieces are needed and are enough to recover
the secret. We further assume that the information associated with any two tokens that
exist in the network simultaneously is different. This means that the size of AS(τ) may
be large, so only a constant number of such pieces may fit in one message (otherwise, the
implementation may be straightforward even if the message size is O(logn)). The reduction
to (the standard version of) TF is slightly more technical, see [22].

1.5 Paper’s Outline

In Sec. 2, we present the main technical challenges that arise in the study of the TF problem.
Sec. 3 introduces the model, initial failures generalization, complexity measures, and basic
definitions. Sec. 4 provides a high-level description of the algorithm, structured into two
layers and the interface between them. Sec. 5 presents the main analysis of the algorithm,
establishing safety and liveness and analyzing the message load. Sec. A contains additional
technical details (omitted from Sec. 1.4) for LE as an application of our TF algorithm.
Further related work is surveyed in Sec. B. Sec. C offers, a discussion on the usefulness of
the TF problem, the results presented, and future directions.

Due to space considerations, some details are omitted from this extended abstract and
deferred to the full version [22]. This includes technical details of the algorithm’s lower layer,
an analysis of the algorithm’s reaction time, our lower bound (stated in Thm. 2), further
details on the trace-tree mechanism mentioned in Sec. 1.4, additional applications of the TF
problem beyond LE (see Sec. 1.4), and various figures, tables, and pseudocodes.

7 It is not difficult to have the robots (each playing a token) to simulate the algorithms of the nodes,
using whiteboards [19, 26] at the nodes.
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2 Technical Challenges

Before we move on to presenting our solution for the TF problem, the reader may wonder
about the following simple scheme: Elect a leader v (once) and following that, transport
all injected tokens to v so that v handles all team formation operations. We argue that
this scheme suffers from various severe shortcomings: (1) under our failure model (formally
presented in Sec. 3.1), the leader v may become faulty at any quiescent time, causing all
subsequently injected tokens to get lost; (2) since our model does not include “spontaneous
wake-ups”, it is not clear which nodes participate in the leader election stage; (3) leader
election is impossible if we allow a (1 − ϵ)-fraction of the nodes to be faulty; and (4) the
scheme does not satisfy the forgetful feature (as defined in Sec. 1.3).

The aforementioned shortcomings highlight some of the technical challenges we had to
overcome when devising our TF algorithm. To discuss those, assume for now that the team
size parameter σ is a large constant and consider a token τ injected into some node v. The
first task faced by v is to look for other (nodes that hold) tokens – if there are at least σ − 1
of those, then a team should be formed. Doing so in a communication efficient manner is a
challenge, especially under an asynchronous scheduler when a large fraction of the nodes
may be faulty (and thus, never respond to incoming messages). We tackle this challenge
by constructing a “probabilistic quorum system” with quorums of size O(

√
n logn) (using

the “factory coin tosses”), thus ensuring that any two token holding nodes have at least one
non-faulty node in the intersection of their quorums.

Once node v has identified other token holding nodes, the next task is to determine who
transports the tokens to whom, raising a symmetry breaking challenge: a naive approach
may cause v to transport its token to v′ while v′ transports its own token to v′′ and so on. To
prevent long token transportation chains, we adopt a “star-shaped” transportation pattern:
the token holding nodes run consecutive phases and in each phase, assume a center or an arm
role at random; each arm node va then tries to transport its token to a center node vc that is
“ready to accept” va’s token. For this idea to succeed, one has to lower-bound the probability
for an arm node to identify an appropriate center node in each phase. However, as we cannot
synchronize between the phases of different nodes, ensuring such a probability lower bound
turns out to be eminently challenging. We resolve this challenge by incorporating a “selective
waiting mechanism” inspired by a technique introduced in [9] (for the entirely different task
of constructing a maximal independent set in a general graph); refer to Sec. 4 for details.

3 Preliminaries

3.1 The Computational Model
Fix some randomized TF algorithm Alg. Recall our assumption that the adversary assigns
a finite delay to each message of Alg. The only constraint we impose on the adversary in
this regard is that the messages sent from a node v ∈ V to a node v′ ∈ V are delivered in
FIFO order. For the sake of the runtime analysis (more on that later), we scale the time
axis so that the message delays are up-bounded by 1 time unit; we emphasize that the nodes
themselves have no notion of time.

Event Driven Executions. The execution of Alg advances through the continuous time axis
R>0 in an event driven fashion so that a node v ∈ V is activated at time t > 0 if (and only
if) one of the following two activation events occurs at time t: (1) a message is delivered
to v; or (2) one or more tokens are injected into v. When activated, the actions of v under

DISC 2025



30:8 Team Formation and Applications

Alg include (I) reading the new incoming message (if any); (II) local computation that may
involve (private) random coin tosses; (III) any number of team formation operations; and
(IV) sending messages to (a subset of) v’s neighbors.8 It is assumed that actions (I)–(IV)
are performed atomically (i.e., they take zero time). We emphasize that the nodes never act
unless activation events (1) or (2) occur (in particular, in the scope of the TF problem, there
are no “spontaneous wake-ups”).

Assume without loss of generality that the activation events are isolated so that no two
of them occur at the same time; the times at which these activation events occur are referred
to as activation times. Time t > 0 is regarded as quiescent if (1) t is not an activation time;
(2) there are no messages in transit at time t; and (3) the system contains 0 tokens at time t.

For a time t > 0, let t− = t− dt and t+ = t+ dt be the times immediately before and
immediately after t, respectively, where dt is chosen so that the time interval [t−, t+] contains
at most one activation event. Given an object obj, let objt denote the state of obj at time t,
adhering to the convention that objt = objt− for all t > 0;9 in particular, if t is an activation
time and the state of obj changes at time t, then objt is taken to be the state before the
change. Notice that our convention implies that instantaneous changes to obj, that are done
as part of the local computation and do not persist beyond time t, are not reflected in objt.

Fault Tolerance and Adversarial Policies. We adopt a generalization of the initial failures
model [18, 24, 60]. Under the initial failures model, the adversary selects a node subset
F ⊂ V at time 0 (i.e., right before the execution commences) and turns the status of all the
nodes in F to faulty, thus preventing them from participating in the execution. In particular,
faulty nodes do not send messages and in the context of the TF problem, no tokens are
injected into faulty nodes. A message µ delivered to a faulty node is lost (i.e., it is ignored
and does not trigger an activation event). If tokens are transported over a lost message µ,
then these tokens are assumed to remain in “limbo” forever, which may prevent the algorithm
from satisfying the liveness condition; it is the responsibility of the algorithm designer to
avoid such scenarios.

In the (new) generalized version of the initial failures model, considered in the current
paper, the adversary may toggle the status of a node v ∈ F from faulty to non-faulty and vice
versa, so that v may participate in the execution in certain time intervals and not participate
in others. The decisions of the adversary in this regard are subject to the following constraint:
the faulty/non-faulty status of v may be toggled only at quiescent times. For a precise
description of the failure model, if v becomes faulty at time t ≥ 0 and remains faulty until
time t′ > t, at which it becomes non-faulty, then the memory image of v at time t′ is assumed
to be identical to that of time t. To avoid confusion, we subsequently refer to the nodes in F
as fragile (regardless of their faulty/non-faulty status at a specific time of the execution),
emphasizing that the non-fragile nodes remain non-faulty throughout the execution.

Notice that due to the asynchronous nature of the system, it may be impossible for a
non-faulty node to distinguish its faulty neighbors from the “slow responding” ones. Moreover,
the fragile nodes do not know that they are fragile and when a fragile node becomes non-faulty,
it runs the same algorithm as the non-fragile nodes. The generalization of the classic initial
failures model is different from the crash failures model, where a node may fail at any time.
As pointed out in [24], considering initial failures is known to open the gate for asynchronous
algorithms that are impossible under crash failures.

8 We allow v to send multiple messages to the same neighbor (in practice, those can be piggybacked).
9 Objects in this regard include local variables as well as global objects defined for the analysis.
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With this failure model, the adversary has the following roles: (1) At time 0, the adversary
determines the subset F ⊂ V of fragile nodes and (without loss of generality) turns their
status to faulty. (2) For time t = 0 and for every activation time t > 0, at time t+, the
adversary determines the next activation event (if any) including its type (message delivery
or token injection), location, and time t′ > t. (3) For every quiescent time t > 0 and for
every node v ∈ F , the adversary determines (at time t) if the faulty/non-faulty status of v is
toggled at time t (notice that this is not an activation event). We emphasize that tokens can
be injected into node v at time t only if v is non-faulty at time t; tokens are never injected
into faulty nodes.

The adversary is adaptive, namely, its decisions at time t may be based on the nodes’
actions before time t (however, without knowing the nodes’ future coin tosses). Consequently,
the execution of Alg can be represented as an extensive form game with incomplete information
[30], where the adversary is the only strategic player; that is, a rooted tree whose (internal)
vertices are partitioned into a set of adversarial moves, in which the adversary makes its
decisions, and a set of chance moves, each corresponding to the coin tosses of an activated
node in some activation event. Terminology-wise, a mechanism that makes the decision
in each adversarial move of the aforementioned extensive form game is referred to as an
adversarial policy. Notice that by fixing an adversarial policy, Alg’s execution becomes a
random variable, fully determined by the nodes’ coin tosses.

Performance Measures. The quality of Alg is evaluated by means of two performance
measures. First and foremost, we wish to bound the number of messages that Alg sends per
token in expectation and whp. Care is needed in this regard since the adaptive nature of the
adversary implies that the number of tokens injected into the system may depend, by itself,
on the nodes’ coin tosses. Thus, the number of messages per token is, in general, the ratio of
two random variables that may exhibit complex dependencies, making it difficult to reason
about. To resolve this difficulty, we formulate our main performance measure through the
notion of message load, defined as follows.

For ℓ ∈ Z>0, let Aℓ be the family of adversarial policies that inject at most ℓ tokens into
the system (throughout the execution). We say that Alg’s message load is M in expectation
(resp., whp) if M is the smallest real such that for every ℓ ∈ Z>0 and for every adversarial
policy in Aℓ, it is guaranteed that Alg sends at most M · ℓ messages in expectation (resp.,
whp).10

We are also interested in the time it takes for Alg to form a team once sufficiently many
tokens are present. To this end, we say that Alg’s reaction time is R if R is the smallest real
such that for every time t > 0, if the system contains at least σ tokens at time t, then a team
is formed by time t+R whp.

3.2 The Primary-Utility Graph
The algorithms developed in this paper are designed so that each node v ∈ V simulates
a virtual primary node p(v) and a virtual utility node u(v); let P = {p(v) : v ∈ V } and
U = {u(v) : v ∈ V } denote the sets of primary and utility nodes, respectively. Although the
primary node p(v) and utility node u(v) are simulated by the same “physical” node v ∈ V ,

10 We note that the message load provides a bound on the number of messages sent (per token) in “finite
prefixes” of the execution under any adversarial policy, including those that do not belong to

⋃
ℓ>0 Aℓ.
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it is convenient to address them as standalone computational entities that participate in the
execution by receiving and sending messages independently of v. To this end, tokens injected
into v are regarded as injected into the primary node p(v).

In terms of the failure model, the primary node p(v) and utility node u(v) are regarded
as fragile if the corresponding “physical” node v ∈ V is fragile. Let FP = {p(v) ∈ P : v ∈ F}
and FU = {u(v) ∈ U : v ∈ F} denote the sets of fragile primary and utility nodes, respectively.
The faulty/non-faulty status of the fragile primary node p(v) ∈ FP and fragile utility node
u(v) ∈ FU is assumed to be inherited from that of the corresponding fragile “physical” node
v ∈ F .11

A key design feature of our algorithms is that the entire message exchange is confined to
an overlay bipartite graph GP U = (P,U,EP U ), referred to as the primary-utility graph. The
edge set EP U of the primary-utility graph is constructed randomly by selecting each node pair
(p, u) ∈ P ×U to be included in EP U independently with probability c ·

√
log n

n , where c > 0 is
a constant to be derived from the analysis;12 this random selection is made by each primary
node p upon its first activation event and remains fixed throughout the execution. Notation-
wise, for a primary node p ∈ P and a utility node u ∈ U , let U(p) = {u′ ∈ U : (p, u′) ∈ EP U}
and P (u) = {p′ ∈ P : (p′, u) ∈ EP U}. The key probabilistic properties of the primary-utility
graph are cast in the following lemma (proof deferred to the full version [22]); in the remainder
of this paper, we condition on the event that these properties are satisfied.

▶ Lemma 1. The primary-utility graph GP U = (P,U,EP U ) satisfies the following two
properties whp:
(1) (U(p) ∩ U(p′))− FU ̸= ∅ for every p, p′ ∈ P ; and
(2) |U(p)|, |P (u)| ≤ O(

√
n logn) for every p ∈ P and u ∈ U .

4 The Algorithm

In this section, we present our TF algorithm, referred to as AlgTF. The algorithm attempts
to (locally) gather tokens, that may be distributed over multiple primary nodes, into a
single primary node and perform team formation(s) if the number of gathered tokens is large
enough.

Under AlgTF, each primary node p ∈ P maintains the local variable p.tok ∈ Z≥0 that
counts the number of tokens held by p. Recalling that p.tokt is the value of p.tok at time
t > 0, let Bt = {p ∈ P : p.tokt > 0}, referring to the nodes in Bt as busy. The algorithm is
designed so that a utility node u ∈ U may hold tokens only instantaneously, when the tokens
are transported, through u, between two primary nodes in P (u).

Fix some p ∈ P and t > 0 and suppose that p ∈ Bt and that t is an activation time of p.
If p.tokt < σ, then p may decide, at time t, to transport the tokens it holds by sending a
message µ, that carries these tokens, to another primary node p′ ∈ P , through a utility node
u ∈ U(p) ∩ U(p′); the algorithm is designed so that this may happen only if p′ is busy at
time t and remains busy (at least) until message µ is delivered to p′. If p.tokt ≥ σ, then p

may decide, at time t, to eliminate some of the tokens it holds, in which case, p performs
⌊p.tokt/σ⌋ team formations (i.e., as many team formations as possible). We emphasize that p
will never transport tokens as long as p.tok ≥ σ and that if p does transport the (p.tok < σ)
tokens it holds, then all p.tok tokens are transported together and p becomes non-busy.

11 This assumption is made only for the sake of simplicity; as far as our algorithms and analyses go, the
faulty/non-faulty status of p(v) and u(v) can be decoupled.

12 With a slight abuse of notation, we often use p (resp., u) as a placeholder for a general primary (resp.,
utility) node.
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If p performs team formation(s) at time t and p.tokt mod σ = k > 0, then p is left with
k “remainder tokens”. To simplify the presentation, we treat these k “remainder tokens”
as if they are injected into p, as fresh tokens, soon after time t (and strictly before the
next “original” activation event); refer to the injections of such “remainder tokens” as fake
injections. In particular, we assume that if p performs team formation(s) at time t, then
p.tokt+ = 0, hence p /∈ Bt+. Put differently, as long as p ∈ B, the variable p.tok is a
non-decreasing function of t.13

Two-Layer Structure. To simplify the algorithm’s presentation, we divide it, logically, into
two layers: a lower channel layer and an upper principal layer. Rather than sending messages
directly, the principal layer in (busy) primary nodes uses the service of the channel layer
for communication. This service, called channels, bears similarities to virtual circuits such
as TCP connections. As in the case of TCP connections, a channel χ between two primary
nodes p, p′ ∈ P can be released, and sometimes later, a new channel χ′ between p and p′ may
be created. An important feature of the channels is that a message sent from p to p′ as part
of χ does not arrive as part of χ′; this is formalized, together with several other important
assurances of the channel layer, in Grnt. 1–6 below.

A reader who is familiar with the nuts and bolts of virtual circuits knows that the task of
ensuring such properties is messy, sometimes non-trivial, but nonetheless possible. This is
the reason we defer the description of the implementation of the channel layer to the full
version [22], whereas the principal layer’s implementation is presented in the current section.
For now, let us just say that in the channel layer, each primary node p ∈ P updates all the
utility nodes in U(p) whenever its status changes from busy to non-busy or vice versa. A
(non-faulty) utility node u ∈ U chooses two primary nodes in P (u) that reported they are
busy, and creates a channel between them. This channel is released by u when (and only
when) u hears that one of the channel’s primary nodes is no longer busy. We now provide a
more formal description of the channels and the interface between the two layers.

The Channels. The role of the channels is to enable (duplex) communication among
(unordered) pairs of busy primary nodes. For p, p′ ∈ P , each {p, p′}-channel χ is associated
with a utility node u ∈ U(p) ∩ U(p′), referred to as the channel’s mediator that relays the
messages that p and p′ exchange with each other as part of χ, referred to hereafter as relayed
messages. The algorithm is designed so that for every u ∈ U and p, p′ ∈ P , at any given time,
the system includes at most one channel mediated by u and zero or more {p, p′}-channels,
each mediated by its own utility node in U(p) ∩ U(p′).

To keep track of the channels, a primary node p ∈ P maintains the local variable
p.meds ⊆ U(p) that stores the mediators of the {p, ·}-channels; a utility node u ∈ U

maintains the local variable u.chan ⊆ P (u) defined so that u.chan = {p, p′} if u mediates a
{p, p′}-channel, and u.chan = ∅ otherwise. For a {p, p′}-channel χ mediated by u, we refer
to the time t > 0 at which u sets u.chan← {p, p′} as the creation time of χ; we refer to the
earliest time t̄ > t such that u.chant̄+ ̸= {p, p′} as the release time of χ.

We emphasize that channel χ is created (resp., released) once and if the mediator u
creates (resp., releases) a {p, p′}-channel χ′ at time t′ ̸= t (resp., t̄′ ̸= t̄), then χ′ and χ are
considered to be two different channels. Notice that the placeholders χ and χ′ are introduced
for the sake of the discussion and we do not assume that the primary nodes p and p′ agree
on “common names” for the {p, p′}-channels.

13 Throughout, we omit the superscript t from objt when we wish to address the dynamic nature of the
object obj whose state may vary over time.
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Consider some primary node p ∈ P and utility node u ∈ U(p). A key feature of the
algorithm is that if I ⊂ R>0 is a maximal time interval such that u ∈ p.medst for all t ∈ I,
then all relayed messages that p sends to or receives from u during I belong to the same
{p, p′}-channel χ (mediated by u) for some primary node p′ ∈ P (u)− {p}; we refer to χ and
p′ as the u-channel and u-peer, respectively, of p during I. Notation-wise, let channelt(p, u)
and peert(p, u) be the operators that return the u-channel and u-peer, respectively, of p at
time t if u ∈ p.medst, and ⊥ otherwise.

The algorithm is designed so that if χ is a {p, p′}-channel mediated by u, then the set
{t ∈ R>0 : channelt(p, u) = χ} is either empty or forms a single interval of the time axis.
This is in contrast to the set {t ∈ R>0 : peert(p, u) = p′} that may form multiple intervals,
each corresponding to a different {p, p′}-channel mediated by u.

Notice that channelt(p, u) = χ ̸= ⊥ does not imply that channel χ still exists at time t
as χ may have been released by u at time t − 1 ≤ t′ < t (which will be observed by p at
time t′ < t′′ ≤ t′ + 1). Moreover, while one may hope that the formula peert(p, u) = p′ ⇐⇒
peert(p′, u) = p is satisfied “most of the time”, it cannot be satisfied all the time; indeed,
given a {p, p′}-channel χ, since the variables p.meds and p′.meds are updated asynchronously,
we cannot expect the aforementioned formula to be satisfied “shortly after” (resp., “shortly
before”) χ is created (resp., released). Grnt. 4 ensures that these inconsistencies do not
introduce “misunderstandings”.

The Interface between the Layers. The channel layer is responsible for maintaining
the channels by updating the meds and chan variables and for handling the delivery of
relayed messages among peers. The principal layer governs the token gathering process
among the busy primary nodes that communicate with their peers over the channels. For
a primary node p ∈ P , the main component in the interface between the two layers is the
set Ct(p) = {channelt(p, u) : u ∈ p.medst} that captures p’s channels at time t > 0. It is
assumed that node p’s channel layer maintains the set C(p) while hiding its implementation
details; node p’s principal layer then uses the channels in C(p) to exchange relayed messages
with the principal layer of p’s peers.

A primary node p ∈ P is regarded as operational at time t > 0 if Ct(p) ̸= ∅; let OPt be
the set of operational primary nodes at time t. A {p, p′}-channel χ is regarded as operational
at time t > 0 if χ ∈ Ct(p)∩Ct(p′); let OCt be the set of operational channels at time t. These
notions facilitate the formulation of the key assurances that the channel layer provides to
the principal layer, stated in Grnt. 1–6 (established in the full version [22]).

▶ Guarantee 1. OPt ⊆ Bt for every t > 0.

▶ Guarantee 2. For every t0 > 0, if |{p ∈ P : p ∈ Bt for all t0 < t ≤ t0 + 4}| ≥ 2, then
there exists t0 < t ≤ t0 + 4 such that OCt+ ̸= ∅.

▶ Guarantee 3. Consider a {p, p′}-channel χ and time t > 0, and assume that χ ∈ OCt.
Then, χ ∈ OCt+ if and only if p, p′ ∈ Bt+. Moreover, if p /∈ Bt+, then χ /∈ C(t+2)+(p′).

▶ Guarantee 4. The following conditions are satisfied for every primary node p ∈ P , time
t > 0, and {p, p′}-channel χ ∈ Ct(p): (I) If the principal layer of p receives a relayed message
µ over χ at time t, then µ was sent over χ by the principal layer of p′ at time t− 2 ≤ t′ < t

(in other words, µ could not have originated from some past/future channel of p with the
same mediator). (II) If the principal layer of p sends a relayed message µ over χ at time t,
then either (II.a) µ is received over χ by the principal layer of p′ at time t < t′ ≤ t+ 2; or
(II.b) µ becomes irrelevant because p′ turned from busy to non-busy, leading to the removal
of χ from C(p′).
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▶ Guarantee 5. |Ct(p)| ≤ O(
√
n logn) for every p ∈ P and t > 0.

▶ Guarantee 6. The channel layer sends O(
√
n logn) messages per token.

The Principal Layer
We now turn to describe the implementation of the principal layer, building on the interface
assured by Grnt. 1–6 (pseudocode is provided in the full version [22]). Recall that this layer
is implemented over the (busy) primary nodes p ∈ P that exchange relayed messages with
their peers over the channels in C(p) (maintained by the channel layer); the utility nodes do
not participate in this layer and are abstracted away from its description. The policy of the
principal layer for a non-operational node p ∈ P is straightforward: p performs (as many as
possible) team formation operations if p.tok ≥ σ, and does nothing otherwise. The interesting
part of the principal layer algorithm addresses the operational nodes that “compete” with
their peers over the right to serve as the local gathering point for the tokens. To this end, if
p.tok, p′.tok < σ for some p, p′ ∈ OP and C(p) ∩ C(p′) ̸= ∅, then (local) symmetry breaking
is needed to determine whether p transports its tokens to p′ or p′ transports its tokens to p
(or neither).

The principal layer resolves this symmetry breaking challenge by following a “star-shaped”
token transportation pattern. Specifically, an operational node p ∈ OP runs consecutive
phases so that in each phase, p assumes a phase type that can be either center or arm. This
phase type is determined by p via an (unbiased) coin toss when the phase begins and is
stored in the local variable p.phase-type ∈ {center, arm} that p maintains. The crux of the
(dynamic) classification into phase types is that a center node attempts to collect the tokens
from its arm peers so that a phase of a center node p is successful if one or more of p’s arm
peers transport their tokens to p; a phase of an arm node p is successful if p transports its
tokens to exactly one of its center peers.

Each phase ϕ of node p proceeds according to the following request-response mechanism:
When ϕ begins, node p sends a request message over each channel in C(p); phase ϕ ends once
p has received a response message for each request message sent at the beginning of ϕ. (As
discussed soon, ϕ may end abruptly if p decides to transport its tokens to one of its peers, in
which case, p becomes non-busy and hence, also non-operational.) To implement this request-
response mechanism, p maintains the local variable p.awaiting-resp(χ) ∈ {true, false} for
each χ ∈ C(p), setting p.awaiting-resp(χ) ← true when a request message is sent over χ
and resetting p.awaiting-resp(χ)← false when a response message is received over χ.

When phase ϕ ends, node p checks if the inequality p.tok ≥ σ holds and if it does,
performs (as many as possible) team formation operations. To simplify the presentation,
we treat any tokens injected into p during phase ϕ as if they are injected when ϕ ends;
we emphasize that the injected tokens are accounted for when checking if the inequality
p.tok ≥ σ holds.14

The type of the request messages depends on the phase type of their sender: the requests
of the center nodes are TokensPlease messages, whereas the requests of the arm nodes are
Waiting messages. The reaction of the operational nodes to an incoming request, including
the type of the corresponding response message, depends on the phase type of the receiver
as well as on the type of the incoming request. To this end, consider an operational node
p ∈ OP that receives a request µ over channel χ ∈ C(p) during phase ϕ.

14 To adhere to the formal event driven model defined in Sec. 3.1, that forbids concurrent activation events,
one can move the token injection event “shortly after” the end of phase ϕ so that this event triggers the
team formation operations (if any) or the beginning of the subsequent phase (if p is still operational).
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Assume first that µ = TokensPlease. If ϕ is a center phase, then p reacts by sending
a NoTransport response. If ϕ is an arm phase, then p reacts by sending a Transport(p.tok)
response that transports the tokens held by p (excluding those injected during ϕ) to the peer
of p at the other end of χ. Consequently, p becomes non-busy and the channels in C(p) are
released (the channel layer takes care of that), making p non-operational; this is the one
exception to the request-response mechanism, where phase ϕ ends abruptly without waiting
for all the responses (since C(p) is emptied, Grnt. 4 ensures that the “missing responses” are
dropped and do not interfere with future channels of p).

Now, assume that µ = Waiting. If ϕ is an arm phase, then p reacts by sending a GoOn
response. If ϕ is a center phase, then p delays its response until the current phase ϕ ends
and the phase type of the next phase ϕ′ of p is revealed. At this stage, if ϕ′ is a center phase,
then p “forgets about” µ and continues as usual with ϕ′; in particular, p sends TokensPlease
requests over all channels in C(p), including χ – this TokensPlease request over χ plays a key
role because it is guaranteed to prompt the peer p′ of p on the other end of χ to transport its
tokens if p′ did not do so already. If ϕ′ is an arm phase, then p first sends a GoOn message over
χ and then, continues as usual with ϕ′ (sending Waiting requests over all channels in C(p)).
To implement this policy, p maintains the local variable p.delaying-resp(χ) ∈ {true, false}
for each channel χ ∈ C(p), setting p.delaying-resp(χ) ← true when p receives a Waiting
message over χ as part of a center phase ϕ and resetting p.delaying-resp(χ)← false at the
beginning of the next phase ϕ′, after a GoOn response was sent over χ if needed (i.e., if ϕ′ is
an arm phase).

We emphasize that the p.awaiting-resp(χ) and p.delaying-resp(χ) variables of p are
maintained only for channels χ ∈ C(p). In particular, if channel χ is added to (resp.,
removed from) C(p) in the midst of phase ϕ, then the variables p.awaiting-resp(χ) and
p.delaying-resp(χ) are created (resp., deleted) with it, where both of them are initialized
to false.

5 Analysis of the Algorithm – Correctness and Message Load

Throughout this section, we fix some adversarial policy Adv and analyze the execution of
algorithm AlgTF under Adv. We start with some useful definitions, followed by Obs. 2 and 3,
that capture basic features of AlgTF, and Lem. 4, that serves as the cornerstone of the entire
analysis. Sec. 5.1 is then dedicated to establishing the algorithm’s correctness while the
message load analysis is presented in Sec. 5.2. The reaction time analysis is deferred to as it
builds on a certain implementation feature of the channel layer, presented in Throughout the
analysis, we condition on the event that the assertion of Lem. 1 holds. Proofs are omitted
from this extended abstract and appear in the full version [22].

We say that a primary node p ∈ P retires at time t > 0 if p ∈ OPt −Bt+, observing that
this holds if and only if a phase ϕ of p ends at time t and either (1) ϕ is an arm phase that
ends abruptly and p sends a Transport message at time t; or (2) p performs team formation(s)
at time t. We say that a {p1, p2}-channel χ retires at time t > 0 if χ ∈ OCt−OCt+, observing
that by Grnt. 3, this holds if and only if χ ∈ OCt and pi retires at time t for some (exactly
one) i ∈ {1, 2}. Notice that if a channel χ becomes operational (resp., retires) at time t > 0
(resp., at time t′ > t), then χ is created (resp., released) by its mediator strictly before time
t (resp., strictly after time t′).

For p ∈ P and t > 0, let Φp(t) be the operator that returns the earliest time t′ > t such
that a phase of p ends at time t′ if p ∈ OPt+, and t otherwise (Obs. 2 ensures that this
operator is well defined). Notice that if we fix time t > 0, including all coin tosses up to
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(excluding) time t, then Φp(t) is a random variable that depends on the coin tosses from time
t onward. Notice further that while the condition p ∈ OPt ∧Φp(t) = t does not imply that p
retires at time t (it may be the case that p is no longer operational at time t+ although it is
still busy), this condition does imply that every channel χ ∈ Ct(p) retires at or before time t.

The Φp(·) operator is extended inductively as follows: let Φ0
p(t) = t; for i > 0, let

Φi
p(t) = Φp(Φi−1

p (t)). This extension gives us a convenient handle for reasoning about events
that occur “within the next i phases” of p.

▶ Observation 2. A phase that begins at time t > 0 is guaranteed to end at or before time
t+ 8.

▶ Observation 3. If a Transport response is in transit from a primary node p to a primary
node p′ over a {p, p′}-channel χ at time t > 0, then p′ ∈ Bt and χ ∈ Ct(p′).

▶ Lemma 4. Fix time t0 > 0 and consider a {p1, p2}-channel χ ∈ OCt0 . With probability at
least 1/16, channel χ retires during the time interval [t0,mini∈{1,2} Φ3

pi
(t0)].

5.1 Safety and Liveness

In this section, we establish the correctness of AlgTF, proving that it satisfies the safety and
liveness conditions. The former condition holds trivially as tokens are deleted only during
team formation operations, so the remainder of this section is dedicated to the latter.

Consider time t0 > 0 and assume that the system contains at least σ tokens at time t0.
For time t ≥ t0, node p ∈ P , and {p, p′}-channel χ ∈ Ct(p), let Rt(p, χ) be the number of
tokens transported over χ towards p at time t. Notice that Rt(p, χ) = k > 0 if and only if
there is a Transport(k) message in transit from p′ to p over χ at time t. For time t ≥ t0 and
node p ∈ P , let Rt(p) =

∑
χ∈Ct(p) R

t(p, χ) if p ∈ Bt, and Rt(p) = 0 otherwise.
By Obs. 2, a primary node that holds at least σ tokens is guaranteed to form a team in

O(1) time. Grnt. 4 ensures that every Transport message reaches its destination in O(1) time.
Therefore, if p.tokt +Rt(p) ≥ σ, then p is guaranteed to form a team by time t+O(1).

Define the potential function ψ : R>0 → Z≥0 as

ψ(t) =
∑

p∈P (p.tokt +Rt(p)− 1)

and notice that if ψ(t) ≥ (σ − 1)n, then p.tokt +Rt(p) ≥ σ for some p ∈ P , hence a team is
guaranteed to be formed by time t+O(1). Obs. 3 ensures that if no teams are formed during
the time interval I = [t0, ·] ⊂ R>0, then the function ψ(t) is non-decreasing in I. Moreover,
a primary node p ∈ P retires at time t ≥ t0 without forming any team if and only if p sends
a Transport message at time t, implying that ψ(t+) = ψ(t) + 1. So, it suffices to show that
as long as no teams are formed, the number of node retirements must increase.

By Obs. 2 and Lem. 4, we know that if OCt ̸= ∅, then at least one primary node is certain
to retire in finite time with probability 1. The liveness proof is completed by observing that
if the system contains k ≥ σ tokens and there are no tokens in transit, then either (I) all k
tokens are held by a single busy node that forms a team in O(1) time; or (II) the k tokens
are distributed over multiple busy nodes, in which case, an operational channel is certain to
be generated in O(1) time by Grnt. 2.

▶ Theorem 5. AlgTF satisfies the safety and liveness conditions for any TF instance.
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5.2 Message Load
We now turn to analyze the message load of AlgTF in expectation and whp. To this end, fix
some ℓ ∈ Z>0 and assume that the adversarial policy Adv injects at most ℓ tokens throughout
the execution (i.e., Adv ∈ Aℓ in the language of Sec. 3.1). The analysis starts with bounding
the number of relayed messages sent over non-operational channels.

▶ Lemma 6. The total number of relayed messages sent throughout the execution over
channels χ while χ /∈ OC is O(ℓ ·

√
n logn).

Combined with Grnt. 6, we conclude that with the exception of relayed messages sent
over operational channels, the total number of messages sent by AlgTF is O(ℓ ·

√
n logn), so

it remains to bound the number of former messages. To this end, we establish Lem. 7 and
Lem. 8.

▶ Lemma 7.
∣∣⋃

t>0OC
t
∣∣ ≤ O(ℓ ·

√
n logn).

▶ Lemma 8. Consider a {p, p′}-channel χ and let Yχ be a random variable that counts the
number of relayed messages sent over χ while χ ∈ OC. There exist constants α, β > 0 such
that P(Yχ > y) < βe−αy for every y ∈ Z≥0.

For a channel χ, let Yχ be the random variable in Lem. 8. Recalling that the expected
value of an exponentially decaying random variable is bounded by O(1), we can combine
Lem. 7 and 8 to deduce, by the linearity of expectation, that AlgTF sends O(ℓ ·

√
n logn)

messages in expectation.
At this stage, one may be tempted to advance towards a whp bound by assuming that the

random variables Yχ of different channels χ are independent. Unfortunately, this assumption
is wrong: the number of relayed messages sent over different channels in OC may be strongly
correlated. To resolve this difficulty, we use the following lemma, stating that the average of
finitely many exponentially decaying random variables is also exponentially decaying even
if the original random variables exhibit complex dependencies; we will not be surprised to
learn that this lemma is known from the existing literature, however, we could not find it
anywhere and therefore, provide a standalone proof (deferred to the full version [22]).

▶ Lemma 9. Fix some α, β > 0 and let X1, . . . Xm be (not necessarily independent) random
variables over R>0 such that P(Xi > x) < βe−αx for every i ∈ [m] and x > 0. For every
ϵ > 0, there exists β′ = β′(β, ϵ) > 0 such that P(X̄ > x) < β′e− αx

1+ϵ for every x > 0, where
X̄ = 1

m

∑
i∈[m] Xi.

Let m = O(ℓ ·
√
n logn) be the bound promised in Lem. 7. By applying Lem. 9 to the

(at most) m random variables in {Yχ}χ∈
⋃

t>0
OCt , we conclude that 1

m

∑
χ∈

⋃
t>0

OCt Yχ ≤
O(logn) whp, hence AlgTF sends O(ℓ ·

√
n logn · logn) messages whp.

▶ Theorem 10. The message load of AlgTF is O(
√
n logn) in expectation and O(

√
n logn ·

logn) whp.
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A Applications – Additional Information

In this section, we provide further technical details of some of the applications discussed in
Sec. 1.4. The details of the other applications are omitted from this extended abstract and
can be found in the full version [22].
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A.1 Leader Election
A.1.1 Implicit leader election
Implicit LE is defined in Sec. 1.4. We first derive a simpler algorithm LE − I1 that has no
termination detection for some nodes and add the termination detection later.

Informally, it is assumed that there are (1/2 + ϵ)n non-fragile nodes and each of them
wakes up and starts the algorithm. Any fragile node may also be set by the adversary to be
non-faulty at that point and start the algorithm, too.
1. Each node starting the algorithm flips a coin with probability c log n

n (for some constant c
that is “large enough”; the selection of c uses rather standard considerations, so we skip
it here). Let Cand be the set of nodes that flipped 1.

2. Each node not in Cand sets its status to “not-leader.”
3. Each node in Cand generates a token and starts the algorithm for TF with σ = (1 −

ϵ
2 )( 1

2 + ϵ)c logn (rounded up, let us ignore that for simplicity of notation).
4. A node that deleted σ tokens in TF sets its status to “leader.”

The following observation follows directly from Thm. 1 and the algorithm. (For the
second part, note that σ = O(logn).)

▶ Observation 11. Algorithm LE − I1 satisfies the following two properties:
A node that is not the elected leader may not know that it is not the leader. (We shall fix
this later.)
The message complexity of Algorithm LE − I1 is O(

√
n logn) in expectation and

O(
√
n logn · logn) whp. The time complexity is O(logn).

▶ Lemma 12. Algorithm LE − I1 elects a unique leader whp.

Proof. Let us analyze the relation between σ and the number T of tokens generated by nodes
in the third line of the algorithm. The number n′ of nodes that flipped coins may include any
number (between zero and (1/2− ϵ)n) of fragile nodes; hence, (1/2 + ϵ)n ≤ n′ ≤ n. Thus, for
the expected number cn′ log n

n of tokens generated, we know that (1/2 + ϵ)c logn ≤ cn′ log n
n ≤

c logn. Applying Chernoff’s bound, we find for the random variable T (the number of tokens)
that whp,

(1− ϵ

2)(1
2 + ϵ)c logn ≤ T ≤ (1 + ϵ

2)c logn.

By the left inequality, σ ≤ T whp. Hence, at least one set of tokens can be deleted in TF,
which means that at least one node is elected in step 4 of the algorithm.

It remains to show that T < 2σ, so no more than one deletion event occurs (whp) and
thus, no more than one leader is elected. By the above bounds on the number of tokens,
T/σ = T

(1−ϵ/2)(1/2+ϵ)c log n ≤
(1+ϵ/2)c log n

(1−ϵ/2)(1/2+ϵ)c log n ≤
(1+ϵ/2)

(1−ϵ/2)(1/2+ϵ) . This is strictly smaller
than 2. ◀

Termination Detection for Non-Leaders. Let us now show how to enhance algorithm
LE− I1 such that every node that is not elected will set its status to “not-leader” eventually,
as is sometimes required. That is, the promised LE − I algorithm will first run Algorithm
LE−I1 (that runs the TF algorithm). After that, the elected leader will invoke a termination
detection module Term.

We came up with several methods of implementing Term. Let us describe two different
implementations. The first one uses the accumulation property of the algorithm (see
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Sec. 1.3). The second one does not use the accumulation property and is given here to show
that a reduction from LE to TF is possible without using additional features. For both
implementations, mark every token created in the third step of LE − I1 by “LE token”. The
implementations use an additional kind of token, called TERM (described below). The TF
algorithm (run as a subroutine of the LE algorithm) does not distinguish between the two
kinds of tokens. However, the Term part of the LE notices when a TERM token participates
in a formation (second implementation) or is received (first implementation) and makes use
of this knowledge.

First Implementation. The leader r (the node who performed the team formation) creates
one TERM token. The underlying TF algorithm treats the TERM token exactly like any
other token. However, any non-leader node v ≠ r performing LE − I1 that receives a TERM
token, note that it (v) is not a leader.

Recall that by the accumulation feature of the algorithm, all the tokens that remain in
the networks after the team formation eventually are held (forever) by a single node v. If
v ̸= r, then v knows it is not the leader. Let w be any node other than v and r. Either w
did not join Cand, or it did join but at some point sent its token to another node. In both
cases, w knows that it is not the leader. It is easy to show that this implementation does not
increase the order of the complexities of the LE election algorithm beyond that of LE − I1.

Second Implementation. In this implementation of Term, when the leader node deletes
σ tokens, it generates σ − 1 TERM tokens and continues to perform TF. Any other node
that deletes σ tokens that include some x TERM tokens and some σ − x LE ones generates
x TERM ones. Any node that is not the leader but ever sees a TERM token, changes
its status to “not-leader.” The arguments for correctness are similar to those for the first
implementation. Note that introducing those new tokens increases the complexities of the
algorithm by a logarithmic factor.

A.1.2 Explicit LE
So far, a non-leader node may not know which of its edges leads to the leader. To make the
algorithm solve explicit leader election, the elected leader r sends each of its neighbors one
message, notifying the neighbor that r is the leader. This adds n messages and a single time
unit to the complexities of the election.

B Additional Related Work

The problem of reaching consensus in a complete graph with initial faults was introduced
in the seminal paper of [24] since they showed that reaching consensus was impossible in
complete asynchronous networks when faults could occur at any time. The same algorithm
could be used for leader election. Its message complexity in the CONGEST model was
O(n3) if O(n) nodes could fail. This was improved to O(n2) in [11] that also addressed
general graphs and [34] that solved leader election (and thus also consensus) in a complete
graph where the algorithm is given k < n/2 that is the maximum possible number of initial
faults. The message complexity was O(n logn+ nk)) which is O(n2) in complete networks.
For general graphs, a further improvement was obtained in [4] by combining their counting
algorithm with an algorithm for election (with no termination detection) in the presence of
initial faults, such as the algorithm of [42]. Their message complexity was O(|E|+ n log5 n).
The above mentioned counting was improved in [1], implying a message complexity of
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O(|E|+n log3 n) for deterministic leader election and consensus under initial faults in general
graphs. This means O(n2) in complete graphs.

Randomization was used to enable consensus in a complete graph in case nodes could fail
at any time. Various algorithms were introduced, with various promises on resilience (e.g.,
also addressing Byzantine faults, varying the number of faults), time complexity, probabilistic
assumptions, etc. [13, 15, 14, 54]. They send Ω(n2) messages.

Election and consensus in non-faulty complete graphs have been studied extensively;
see, e.g., [38, 2, 33, 3, 43, 46]. The message complexity in most of them is Ω(n logn), with
some being O(n), e.g., in the randomized synchronous case. Surprisingly, o(n) (specifically,
O(logn

√
n) was eventually shown for synchronous fault-free networks for the implicit version

of the problem (that is, not every node needs to know the output, but no two outputs
contradict) [45]. This has been generalized to algorithms that can withstand crash faults [40]
or even byzantine faults (assuming authentication) [41] and sublinear message complexity of
agreement was also studied [8] but all these was still done in synchronous networks. The
birthday paradox [50] is used in the above papers; it is used here too, for building a more
general structure that supports more general results (such as asynchrony and initial failures).

The explicit synchronous case of consensus with crash faults was addressed in [29], using
Θ(n) messages and Θ(logn) time.

For the asynchronous fault-free case, too, Ω(n) was considered to be optimal (see, e.g.
[43]). It may indeed be for the explicit case, but recall that one of the results in the current
paper is an o(n) message result for the asynchronous case, even for networks with (generalized)
initial faults. The time complexity in [44] for the non-faulty synchronous case (and in [43] for
the non-faulty asynchronous case) is O(log2 n), improved here to O(logn) with at least as
good as those of [43, 44] (the message complexity as good as that of the previous synchronous
solution and potentially better than the previous asynchronous one).15

Various papers addressed problems that are variations of the application we call here
distributed trigger counting (DTC). (Some such variations are called threshold detection,
threshold sensing, and controller.) The one-shot case is the one where the number of triggers
(called “events” in some other papers) passes some threshold [1, 39, 28, 16, 32, 21]. The
message complexity obtained was not always analyzed (in the more practical papers), but
when analyzed, it was at least O(logn log σ) even in the case of complete graphs [28]. In the
latter case a message could be sent directly from a site (node) to a leader (a coordinator
node) that is known in advance. (That model allows sending messages between sites, but the
algorithms do not use that.)

The ongoing case is treated, e.g., in [36]. The message complexity per counted event is
about the same as in the one-shot case, and some errors in the counting are allowed.

The notion of forgetful algorithms extends the notion of memoryless algorithms first
defined for deterministic shared-memory mutual exclusion algorithms in [57]. A memoryless
mutual exclusion algorithm is an algorithm in which, when all the processes are in their
remainder sections, the registers’ values are the same as their initial values. This means
that a process that tried to enter its critical section did not use any information about its
previous attempts (such as the fact that it has entered its critical section five times so far).
Almost all known mutual exclusion algorithms are memoryless [59], including Lamport’s
famous Bakery algorithm [47].

15 The previous result for the asynchronous case was for general graphs.
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C Discussion

We introduce and study the TF problem and demonstrate its usefulness. We consider an
asynchronous message-passing system assuming a complete network topology. It would be
interesting to study TF in other models of computation assuming, for example, a more
general network topology, synchronous systems, a situation where the nodes and/or the
tokens are not anonymous, assume that the nodes know the identities of their neighbors (i.e.,
the KT1 model [10]), changing the assumption about the message size, etc.

Even for complete networks, interesting problems remain. Can the lower bound be
improved? The TF solution helped us improve the known results for some applications. Does
it mean that the complexities of these applications are inherently similar to that of TF? or
are there upper bounds for some of the applications better than the lower bound for TF?
We addressed the case of a small team size σ that seems more practical and challenging; how
about the case of a large σ? The complexity per token in the case of a large σ may be much
lower. For example, if σ = n+ 1, no team formation is possible unless some node gets at
least 2 tokens injected. Hence, it makes sense that an algorithm at a node will do nothing as
long as it holds a smaller number of tokens (until approached by another node).

We generalized the TF problem to address a team represented by vectors such as x1
tokens of color red and x2 tokens of color blue (e.g., x1 sorcerers and x2 warriors). How
about using other logical operations when composing teams? For example, x1 sorcerers and
either x2 warriors or x3 thieves?

Our algorithms have several novel properties. These properties may be useful for studying
other problems, not just TF. One of the properties is, in the context of long-lived problems,
resilience to failures stronger than initial failures. This might be useful for other long-lived
problems. It would be interesting to compare the power of the model that allows such failures
to the power of other failure models.

Another important notion we introduced in the context of randomized algorithms is that
of a forgetful algorithm. While, for deterministic algorithms, this notion is the same as that
of a memoryless algorithm, for randomized algorithms, this notion is not as strong as one
may expect, as we assume that a node will never forget its initial coin tosses. We use this
slightly limited version to ensure our algorithms succeed with high probability, even for
infinite executions. Had we sufficed with high probability for each team formation separately,
then we would have been able to remove this limitation and ensure that a node does not
remember anything (not even its initial coin tosses) in the TF algorithm.16

Requiring that nodes forget their past behavior in some cases usually leads to simple
solutions, saves the cost of maintaining data structures during quiescent times, and eases
the recovery in case of catastrophes, since no data structure needs to be recovered. We
emphasize again that in long-lived problems (like mutual exclusion and team formation), a
naive solution where a leader is elected and forever coordinates all activities is not forgetful
(or memoryless), even in fault-free models.

Let us note that various related notions appeared in the literature. For example, notions
of “not keeping information about past behavior” are promoted in practice, e.g., [55], and
theory, e.g., [35], because they are considered more scalable and easier to recover.

An interesting property of our TF algorithm seems to be related to privacy and requires
further discussion (we have not analyzed this property formally). Even in anonymous
networks, nodes in many algorithms (but not the algorithm of this paper) choose identities

16 When allowing a node to fully forget everything, in an infinite number of team formation where each
succeeds whp separately, some formations might not succeed – our slightly limited notion of forgetfulness
prevents this situation from happening.
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that are unique whp. Suppose that node u sends message M1 to node v and messages M2 to
node w. Nodes v and w may now compare M1 and M2 knowing that they both originated
from u. This may harm u’s privacy. For example, u may not want other nodes to know that
its token participated in a team since this team has some private purpose. Let us say that
the algorithm that has this property is inconspicuous. It would be interesting to define it
formally, prove formally that our algorithm satisfies this property, and study the power of
models that allow only such algorithms.

Our generalization of initial failures is not weaker than crash failures. When there are
only crash failures, in an infinite execution, a node either never crashes or it is alive only for a
finite time (the finite prefix before it crashes). This claim is not valid with our “fragile failures”
since there is no limit on how many times the status of a node can be toggled. Another
observation regarding crash failures is that TF is not solvable, even with randomization, in
the presence of a single crash failure. This observation follows from the fact that a node may
crash while holding a token or just before a token is sent to it. (This impossibility holds
even with the restriction that nodes with tokens may not crash.) It is possible to modify the
liveness condition in the definition of TF so that the above argument does not apply.

Finally, we point out an extensively studied biological phenomenon similar to the one
captured by TF. Quorum sensing is a process in which bacteria can sense that the number
of bacteria ready to release toxins (which cause disease in plants, animals, and humans) has
reached a certain threshold. This enables them to release the toxins at approximately the
same time [12, 27]. Several insects, like ants and honey bees, have been shown to also use
quorum sensing in a process that resembles collective decision-making [53, 56]. Unlike the
trigger counting problem (mentioned in the Introduction), here, most participants must know
when the threshold is reached.
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