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Abstract
We develop a new lower bound for k-set agreement in synchronous message-passing systems connected
by an arbitrary directed communication network, where up to t processes may crash. Our result thus
generalizes the ⌊t/k⌋ + 1 lower bound for complete networks in the t-resilient model by Chaudhuri,
Herlihy, Lynch, and Tuttle [JACM 2000]. Moreover, it generalizes two lower bounds for oblivious
algorithms in synchronous systems connected by an arbitrary undirected communication network
known to the processes, namely, the domination number-based lower bound by Castañeda, Fraigniaud,
Paz, Rajsbaum, Roy, and Travers [TCS 2021] for failure-free processes, and the radius-based lower
bound in the t-resilient model by Fraigniaud, Nguyen, and Paz [STACS 2024].

Our topological proof non-trivially generalizes and extends the connectivity-based approach for
the complete network, as presented in the book by Herlihy, Kozlov, and Rajsbaum (2013). It is based
on a sequence of shellable carrier maps that, starting from a shellable input complex, determine the
evolution of the protocol complex: During the first ⌊t/k⌋ rounds, carrier maps that crash exactly k

processes per round are used, which ensure high connectivity of their images. A Sperner’s lemma
style argument can thus be used to prove that k-set agreement is still impossible by that round. From
round ⌊t/k⌋ + 1 up to our actual lower bound, a novel carrier map is employed, which maintains
high connectivity. As a by-product, our proof also provides a strikingly simple lower-bound for k-set
agreement in synchronous systems with an arbitrary communication network, where exactly t ≥ 0
processes crash initially, i.e., before taking any step. We demonstrate that the resulting additional
agreement overhead can be expressed via an appropriately defined radius of the communication
graphs, and show that the usual input pseudosphere complex for k-set agreement can be replaced by
an exponentially smaller input complex based on Kuhn triangulations, which we prove to be also
shellable.
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1 Introduction

In the k-set agreement task, introduced by Chaudhuri [7], each process starts with some input
value belonging to an finite set of possible input values, and must irrevocably output a value
usually referred to as its decision value. The output value decided by a process has to be the
input of some process (strong validity condition), and, system-wide, no more that k different
decision values may be decided (k-agreement condition). Whereas the case k = 1 (consensus)
is well-understood, properly understanding k-set agreement for general k > 1 is notoriously
difficult, even for simple computing models. Besides the inherent difficulty of handling a
task that is less constrained than consensus, its analysis is considerably complicated by the
fact that “classic” proof techniques are inadequate [1–3]. As a consequence, methods from
combinatorial topology must usually be resorted to [12]. Such methods are very powerful,
but often difficult to apply to concrete scenarios.

Unsurprisingly, these complications affect not only impossibility proofs for k-set agreement,
but also termination-time lower bounds. In particular, in message-passing synchronous
systems (where the processes communicate with each other in a sequence of synchronous,
communication-closed rounds over some communication network), we are aware of only
two substantially new results since the seminal tight ⌊t/k⌋ + 1 lower-bound established by
Chaudhuri, Herlihy, Lynch, and Tuttle [8] for complete networks in the t-resilient model
(where at most t processes may fail by crashing during any run).

The first one is the lower-bound by Castañeda, Fraigniaud, Paz, Rajsbaum, Roy, and
Travers [5] (see also [10]) for failure-free processes connected by an arbitrary (connected)
bidirectional communication network G that is commonly known to all nodes – this model
is referred to as the KNOW-ALL model. It holds for oblivious algorithms only, that is,
algorithms which exchange the sets of different input values seen so far using flooding-based
communication, and only take decisions by these sets (and not, e.g., the time of a message
arrival or the neighbor it arrived from). The lower bound essentially states that r rounds
are necessary, where r is the smallest integer such that the graph Gr = (V, Er) obtained
from G = (V, E) by connecting by an edge every two nodes at distance at most r in G has
domination number at most k.

The second one is the lower bound, established by Fraigniaud, Nguyen, and Paz [9], for
oblivious algorithms in the t-resilient model with an arbitrary undirected communication
network G. For k = 1, it essentially states that consensus requires r rounds, where r =
radius(G, t) is the radius of the network when up to t nodes may fail by crashing. Informally,
the radius is defined as the minimum, taken over all nodes of the network, of the worst-case
finite number of rounds required for broadcasting from a node over all possible failure
patterns, hence can be defined via the eccentricity of certain nodes in G. The lower bound
in [9] is tight for oblivious algorithms thanks to the algorithm in [6]. The consensus lower
bound can be extended to k-set agreement using the same techniques as [10], but only if
assuming a priori knowledge on the failure pattern.

In the current paper, we generalize the above results by developing a lower bound for the
number of rounds for solving k-set agreement in the t-resilient model for arbitrary directed
communication networks. It is fomulated via the “agreement overhead” caused by the
presence of an arbitrary communication network over the mere case of the complete network.



P. Fraigniaud, M. H. Nguyen, A. Paz, U. Schmid, and H. Rincon-Galeana 31:3

▶ Definition 1.1. Let G be a directed graph, and let k ≥ 1 and t ≥ 0 be integers. The
agreement overhead ovh(G, k, t) is the smallest integer such that k-set agreement in G can be
solved in ⌊t/k⌋ + 1 + ovh(G, k, t) rounds in the t-resilient model.

The agreement overhead can hence be viewed as the penalty for not using the complete
network but solely G. For the n-process complete network Kn, for every k ≥ 1 and t ≥ 0,
ovh(Kn, k, t) = 0, thanks to the lower bound established in [8].

1.1 Contributions
Our main lower bound result (Theorem 4.10) relies on two cornerstones:
(1) a proof that the ⌊t/k⌋ + 1 lower-bound for t-resilient systems over the complete commu-

nication network [8] also holds for every arbitrary network (which motivates the notion
of agreement overhead), and

(2) a lower bound on the agreement overhead for an arbitrary communication graph G =
(V, E). For specifying the latter, recall that, for every U ⊆ V , G[U ] denotes the subgraph
of G induced by the vertices in U . Given a set D of vertices, we denote by ecc(D, G) the
eccentricity of D in G, i.e., the number of rounds D need to collectively broadcast to all
the graph’s nodes. We then define the (t, k)-radius of G as

rad(G, t, k) = min
D⊆V,|D|=t+k

max
D′⊆D,|D′|=t

ecc(D \ D′, G[V \ D′]) (1)

and show that the agreement overhead satisfies ovh(G, k, t) ≥ rad(G, k, t) − 1.

Consequently, any algorithm solving k-set agreement in G under the t-resilient model
must perform at least ⌊ t

k ⌋ + rad(G, t, k) rounds (Theorem 4.10). For the special case of t = 0,
our lower bound is equivalent to the one established in [5] for the KNOW-ALL model. For
t > 0, our lower bound on the agreement overhead also gives a lower bound of rad(G, k, t) for
solving k-set agreement in arbitrary networks with t initially dead processes (Theorem 4.11).

Our paper also advances the state of the art of topological modeling as follows:
(3) We introduce a novel carrier map that governs the evolution of a shellable protocol

complex in systems connected by an arbitrary directed communication graph G (that
may even vary from round to round) with t initially dead processes, and show that it
maintains high connectivity during ovh(G, k, t) rounds. For t = 0, our carrier map allows
a much simpler analysis of the setting studied in [5]. For t > 0, we also demonstrate how
to generalize the scissors cut-based analysis in [5] for handling the case t > 0 as well, and
show that the resulting lower bound is equivalent to the one ovh(G, k, t) + 1 established
by our approach.

(4) We non-trivially generalize, extend and also correct the topological proof technique for
the ⌊t/k⌋ + 1 lower bound in complete networks sketched in [12, Ch. 13] to arbitrary
directed communication graphs (that may also vary from round to round). Our approach
starts out from a shellable input complex, and utilizes a sequence of shellable carrier
maps that crash exactly k processes per round for modeling the evolution of the protocol
complex. Since these carrier maps maintain high connectivity during the first ⌊t/k⌋
rounds, a Sperner-lemma style argument can be used to prove that k-set agreement is
still impossible. Our contribution not only adds details missing in [12, Ch. 13] (e.g., the
strictness proof of the carrier maps, and the Sperner-style argument), but also fixes a
non-trivial error by replacing the rigidity requirement for the carrier maps (which does
not hold) by a novel, weaker condition.

DISC 2025
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(5) We prove that the Kuhn triangulation [8], which is exponentially smaller than the standard
pseudosphere complex used as the input complex for k-set agreement in [12, Ch. 13],
is shellable. We can hence seamlessly replace the pseudosphere input complex in our
analysis by Kuhn triangulations.

Whereas the focus of our results are lower bounds, the question of tightness obviously
arises. So far, we do not know whether and for which choices of G, k and t our lower bound in
Theorem 4.10 is tight. We must hence leave this question to future research. We nevertheless
include the following upper-bound result:

(6) We present an upper bound on the agreement overhead by generalizing the algorithm
for the clique Kn in [8] to an arbitrary communication network G = (V, E). For
S ⊆ V , let G[V \ S] denote the subgraph of G induced by the nodes in V \ S, and let
D(G, t) = maxS⊆V,|S|≤t diam(G[V \ S]), where diam denotes the diameter. By following
the arguments in [8], we show that there exists an algorithm solving k-set agreement in
G in ⌊ t

k ⌋ + D(G, t) rounds. As a consequence, ovh(G, k, t) ≤ D(G, t) − 1.

Paper organization.1 In Section 2, we introduce our system model, and the basics of the
topological modeling. In Section 3, we revisit the topological round-by-round connectivity
analysis of [12, Ch. 13]. Section 4 provides our lower bounds on the agreement overhead,
and Section 5 provides our upper-bound result. Some conclusions in Section 6 complete our
paper. All our proofs are provided in the appendix.

2 System Model

2.1 Computational Model
Our computational model is similar to the one used by Fraigniaud, Nguyen and Paz [9], albeit
we consider full-history protocols, and general (i.e., non-necessarily oblivious) algorithms. We
consider a finite set of n processes with names Π = {p1, . . . , pn}, that are ordered according
to their index set [n] = 1, . . . , n. Processes communicate in lock-step synchronous rounds
via point-to-point directed links, that is, any message that is sent during a round r will be
received in the same round r, and we do not consider the possibility that messages arrive at
later rounds. We consider that all processes start simultaneously at round 1.

We assume that processes are represented by deterministic state machines, and have a
well-defined local state that also includes the complete history of received messages. Thus,
we consider a protocol to be defined by state transitions as well as a communication function
and a decision function. In this paper, we will not focus on the protocol specifications, since
it is fairly simple to derive them from the particular protocols that we consider. Instead,
for the sake of readability and succinctness, we will sketch the protocols by specifying the
messages that a process is able to send at each round, the information captured by the local
states, and whether or not a process is ready to decide on an output value.

In a given round, processes can communicate using a fixed network topology, represented
by a directed communication graph G = (V, E), where V = Π. That is, a process p can send
a message directly to another process q if and only if (p, q) ∈ E. We assume that E contains
all self-loops {(p, p) | p ∈ V }. The processes are aware of the communication graph G. A

1 Lack of space does not allow us to include all our results, which can be found in the full version [11] of
our paper.
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process p is able to send a message to any other process in its set of out-neighbors in G,
denoted by Outp(G) := {q ∈ V | (p, q) ∈ E}. Symmetrically, p can only receive a message
from a process in its set of in-neighbors in G, denoted by Inp(G) := {q ∈ V | (q, p) ∈ E(G)}.

We consider the t-resilient model, where up to t processes may permanently crash in
every execution, in any round. Crashes may be unclean, thus a process p may still send
a message to a non-empty subset of Outp(G) before crashing. The set of faulty processes
crashing in a given execution is denoted as F with |F | ≤ t, and is arbitrary and unknown to
the processes.

For the sake of completeness, we also provide a formal description of the k-set agreement
problem, which constitutes the main focus of this paper. Every process pi has a local input
value xi taken arbitrarily from a finite set V with |V| ≥ k + 1, which is often assumed to
be just V = [k + 1] = {1, . . . , k + 1}. Every correct process pi must irrevocably assign
some decision value to a local output variable yi eventually, which is initialized to yi = ⊥
with ⊥ ̸∈ V. In essence, k-set agreement is a relaxed instance of consensus, in which the
agreement condition is relaxed to accept at most k different decision values. More precisely,
k-set agreement is defined by the following conditions:

Strong Validity: If a process pi decides output value yi, then yi is the input value xj of
a process pj

k-Agreement: In every execution, if O denotes the set of all decision values of the
processes that decide in that execution, then |O| ≤ k.
Termination: Every non-faulty process pi /∈ F must eventually and irrevocably decide
on some value yi ̸= ⊥.

2.2 Basics of combinatorial topology

Our analysis of k-set agreement relies on combinatorial topology [12]. Most notably, we
develop novel topological techniques that allow us to ensure high-order connectivity, which
seamlessly translates to a lower bound for k-set agreement. We now provide some basic
definitions on simplicial complexes, which will be used heavily in the paper.

Intuitively, simplicial complexes may be thought of as a “higher dimensional” instance of
an undirected graph. Indeed, in addition to vertices and edges, a simplicial complex may
have faces of higher dimension.

▶ Definition 2.1 (Simplicial Complex). A pair K = (V (K), F (K)), where V (K) is a set,
and F (K) ⊆ 2V (K) \ ∅ is a collection of subsets of V (K) is a simplicial complex if, for any
σ ∈ F (K), and any σ′ ⊆ σ, σ′ ∈ F (K). V (K) is called the vertex set, and F (K) the set of
faces called simplices (singular: simplex). For notational simplicity, we will occasionally
refer to simplicial complexes as complexes.

Note that, following the convention in [12], we will very rarely (cf. Definition 3.4) also
consider the empty “simplex” ∅.

The maximal faces (by inclusion) of a simplicial complex are called facets. Since faces are
downward closed, then the facets are sufficient for fully determining a simplicial complex.
The dimension of a face σ is defined as dim(σ) = |σ| − 1. The dimension of a simplicial
complex K = (V (K), F (K)) is defined as maxσ∈F (K) dim(σ). A complex is pure if all of its
facets have the same dimension, and a complex is impure if it is not pure. For a face σ of a
pure complex with facet dimension d, we denote by codim(σ) = d − dim(σ) the co-dimension
of σ, and by Facek σ = {ρ | ρ ⊆ σ with dim(ρ) = k} the set of all k-faces of σ.

DISC 2025



31:6 Lower Bounds for k-Set Agreement

For any two simplicial complexes K and L, L is a subcomplex of K, denoted by L ⊆ K, if
V (L) ⊆ V (K) and F (L) ⊆ F (K). For any d ≥ 0, the d-skeleton skeld(K) is the subcomplex
of K consisting of all simplices of dimension at most d.

The morphisms (i.e., structure-preserving maps) for simplicial complexes are called
simplicial maps:

▶ Definition 2.2 (Simplicial map). Let K and L be simplicial complexes. A mapping
µ : V (K) → V (L) is a simplicial map if, for every σ ∈ F (K), µ(σ) ∈ F (L).

For our analysis, we also need to consider other maps beyond simplicial maps. Since we
are interested in the evolution of configurations of processes, which are represented via faces
of a simplicial complex, we need to consider functions that map individual simplices to sets
of simplices.

▶ Definition 2.3 (Carrier maps). Let K and L be simplicial complexes, and Ψ : F (K) → 2F (L)

be a function that maps faces of K into sets of faces of L such that, for every simplex σ ∈ K,
Ψ(σ) is a subcomplex of L. Ψ is a carrier map if, for every two simplices σ and κ in F (K),
Ψ(σ ∩ κ) ⊆ Ψ(σ) ∩ Ψ(κ). Moreover,

Ψ is strict if Ψ(σ ∩ κ) = Ψ(σ) ∩ Ψ(κ), and
Ψ is rigid if, for every σ ∈ F (K), Ψ(σ) is pure and of dimension dim(σ).

Note that the definition above also allows Ψ(σ) = ∅, the empty complex.
In addition to the vertices and faces, a simplicial complex K may be endowed with a

vertex coloring χ : V (K) → C, where C is the color set. We say that a vertex coloring χ is
proper on K if for any simplex σ ∈ F (K), the restriction χ|σ of χ on σ is injective. We say
that a pair Kχ := (K, χ) is a chromatic simplicial complex if K is a simplicial complex, and
χ : V (K) → C is a proper vertex coloring. (As we shall see in the next section, in the context
of using complexes to model distributed computing, the color of a vertex is merely a process
ID.) Let Kχ := (K, χ) and Lχ′ := (L, χ′) be chromatic simplicial complexes. A simplicial
map µ : V (K) → V (L) is a chromatic map if, for every v ∈ V (K), χ(v) = χ′(µ(v)), i.e., µ is
color-preserving. For notational simplicity, when it is clear from the context, we will omit
mentioning the vertex coloring explicitly.

2.3 Topological modeling of distributed systems
Simplicial complexes are particularly useful for representing system configurations, both for
inputs and outputs, and for describing mid-run states. Vertices are used for representing
local states, while faces represent (partial) configurations.

The input complex I is used for representing all possible initial configurations. Its vertices
(pi, xi) consist of a process name pi = χ((pi, xi)) ∈ Π that is used as its color, and some
input value xi ∈ V. A facet σ of the input complex consists of n vertices v1, . . . , vn, with
vi = (pi, xi) for 1 ≤ i ≤ n that represent some initial configuration.

The output complex O is used for representing all possible decision configurations. Its
vertices (pi, yi) consist of a process name pi = χ((pi, yi)) ∈ Π that is used as its color, and
some output value yi ∈ V.

The protocol complex Pr at the end of round r ≥ 1 is used for representing all possible
system configurations after r rounds of execution. Its vertices (pi, λi) consist of a process
name pi = χ((pi, λi)) ∈ Π that is used as its color, and the local state λi of pi at the end of
round r. Since processes can crash in the t-resilient model, the protocol complex may not be
pure. A facet σ of the protocol complex consists of n′ ≥ n − t vertices vπ(1), . . . , vπ(n′), with
vπ(i) = (pπ(i), λπ(i)) for 1 ≤ i ≤ n′ that represent some possible system configuration after r

rounds. We set P0 = I.
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For any of the simplicial complexes above, names(σ) denotes the set of process names
corresponding to the vertices of a face σ, i.e., names(σ) = χ(σ).

In topological modeling, problems like k-set agreement are specified as a task T =
(I, O, ∆), where ∆ : I → O is a carrier map that specifies the allowed decision configurations
∆(σ) for a given face σ ∈ I.

▶ Definition 2.4 (Task solvability). A task T is solvable with respect to a protocol complex P
if there exists a simplicial chromatic map δ : P → O that agrees with ∆, that is, for every
σ ∈ I, and for every κ ∈ Pσ, δ(κ) ∈ ∆(σ), where Pσ is the collection of faces of P reachable
when only processes in σ run, with inputs taken from σ.

Note that, for each face σ ∈ I, Pσ may or may not be empty depending on the executions
allowed by the underlying model. For instance, for wait-free computing in the IIS model,
Pσ ̸= ∅ for every σ because |σ| ≥ 1 and up to all but one processes can crash. Instead, for
synchronous failure-free shared-memory computing, Pσ ̸= ∅ if and only if |σ| = n, whereas
for t-resilient synchronous message-passing, Pσ ̸= ∅ if and only if |σ| ≥ n − t.

3 Connectivity-Based Topological Analysis of Synchronous Systems

In this section, we re-visit the round-by-round topological analysis of the lower-bound
for deterministic k-set agreement algorithms in the synchronous t-resilient model for the
complete graph in [12, Ch. 13]. In a nutshell, this analysis shows that too few rounds of
communication lead to a protocol complex that is too highly connected for allowing the
existence of a simplicial chromatic map to the output complex of k-set agreement. Since
some parts of the original proof are not entirely correct or have been omitted, we revisit these
parts in Section 3.2 after presenting some basic ingredients for the proof. In [11, Sec. 3.3],
we generalize the analysis for the complete graph to arbitrary communication graphs, and
prove formally that the lower bound ⌊t/k⌋ + 1 for complete graphs also applies to arbitrary
communication graphs.

Note that [12, Ch. 13] assumes a system consisting of n + 1 processes named {P0, . . . , Pn},
with index set {0, . . . , n}, whereas our system model considers n processes named {p1, . . . , pn},
with index set {1, . . . , n}. For uniformity, we decided to stick to the latter notation, which
makes it necessary to “translate” the original and revised definitions and lemmas of [12, Ch. 13].
In a nutshell, this primarily requires replacing n occurring in the dimension of a face by n − 1.

3.1 Basic ingredients

In this subsection, we introduce the key ingredients needed for the topological analysis in [12],
which tracks the connectivity properties of the sequence of protocol complexes over successive
rounds. We start out with the definition of a pseudosphere, a particular type of simplicial
complexes. As we shall see, the input complex I of k-set agreement is a pseudosphere.

▶ Definition 3.1 (Pseudosphere [12, Def. 13.3.1]). Let ∅ ≠ I ⊆ [n] be a finite index set. For
each i ∈ I, let pi be a process name, indexed such that if i ̸= j, then pi ̸= pj, and let Vi be a
non-empty set. The pseudosphere complex Ψ({(pi, Vi) | i ∈ I}) is defined as follows:

Every pair (pi, v) with i ∈ I and v ∈ Vi is a vertex., and
for every index set J ⊆ I, any set {(pj , vj) | j ∈ J} such that vj ∈ Vj for all j ∈ J is a
simplex.

DISC 2025



31:8 Lower Bounds for k-Set Agreement

Note that, for a given simplex σ, and a given set of values V, we sometimes use the
shorthand Ψ

(
σ, V) to denote Ψ({(p, V) | p ∈ names(σ)}

)
, where the processes in names(σ)

define the corresponding index set I. An essential feature of the protocol complexes arising
in the round-by-round connectivity analysis is that they are shellable. Intuitively, a pure
d-dimensional complex is shellable if it can be built by gluing together its facets in some
specific order, called shelling order, such that a newly added facet intersects the already built
subcomplex in (d − 1)-dimensional faces only.

▶ Definition 3.2 (Shellable complex). A simplicial complex K is shellable if it is pure, of
dimension d for some d ≥ 0, and its facets can be arranged in a linear order ϕ0, . . . , ϕN , called
a shelling order, in such a way that, for every k ∈ {1, . . . , N}, the subcomplex

(⋃k−1
i=0 ϕi

)
∩ ϕk

is the union of (d − 1)-dimensional faces of ϕk.

The following alternative definition of shellability is easier to use in proofs.

▶ Definition 3.3 (Shellability properties [12, Fact 13.1.3]). An order ϕ0, . . . , ϕN of the facets
of a pure complex K is a shelling order if and only if, for any two facets ϕa and ϕb with a < b

in that order, there exists ϕc with c < b such that (i) ϕa ∩ ϕb ⊆ ϕc ∩ ϕb, and (ii) |ϕb \ ϕc| = 1.

Note that the face ϕc guaranteed by Definition 3.3 can depend on ϕa. Moreover, ϕc is usually
not unique, i.e., there might be several choices all satisfying the above properties.

It was shown in [12, Lem. 13.2.2] (resp., [12, Thm. 13.3.6]) that the d-skeleton, for any
dimension d ≥ 0, of any simplex (resp., of any pseudosphere) is shellable. The proofs of these
facts are based on the following orderings.

▶ Definition 3.4 (Face order, adapted from [12, Def. 13.2.1]). Let σ = {v1, . . . , vn} be an
(n − 1)-simplex, together with a total ordering on its vertices v1, . . . , vn given by index order.
Each face τ of σ has an associated signature, denoted by sig(τ), defined as the Boolean string
(sig(τ)[1], . . . , sig(τ)[n]) of length n whose i-th entry is

sig(τ)[i] =
{

⊥ if vi ∈ τ ,

⊤ if vi ̸∈ τ .
(2)

The face order <f of two faces τ1, τ2 of σ is defined as τ1 <f τ2 if sig(τ1) <lex sig(τ2), i.e.,
sig(τ1) is lexicographically smaller than sig(τ2), where ⊥ < ⊤.

Note that the empty “simplex” ∅ is the smallest in the face order of Definition 3.4, and
sig({v1, . . . , vn}) is the largest. Definition 3.4 has been slightly adapted from [12, Sec. 13.2.1],
by using the more precise notation sig(τ) instead of just τ . Informally, sig(τ) just encodes
the set of processes involved in (the vertices of) a simplex τ . The face order in Definition 3.4
can be used to show that, for any dimension d ≥ 0, the d-skeleton, of any simplex is shellable.

▶ Definition 3.5 (Pseudosphere order [12, Def. 13.3.5]). Let ϕa =
{

(pi, λi) | i ∈ [n]
}

and
ϕb =

{
(pi, µi) | i ∈ [n]} be two facets of a pseudosphere Ψ({(pi, Vi) | i ∈ [n]}) where each Vi

is an ordered set. The order relation <p orders these facets lexicographically by value, i.e.,
ϕa <p ϕb if there exists ℓ ∈ [n] such that λi = µi for every 1 ≤ i < ℓ, and λℓ < µℓ.

It is known that every skeleton of a shellable complex is shellable [4] (see [11, Thm. 3.6]
for the detailed proof):

▶ Theorem 3.6 (Shellability of skeletons of pseudospheres). Let Ψ = Ψ({(pi, Vi) | i ∈ [n]})
be an (n − 1)-dimensional pseudosphere. For every d ∈ {0, . . . , n − 1}, the d-skeleton of
Ψ is shellable via the shelling order < defined as ϕa < ϕb ⇐⇒ (ϕa <f ϕb) ∨

(
(sig(ϕa) =

sig(ϕb)) ∧ (ϕa <p ϕb)
)
.
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As our last basic ingredient, we provide a proof of the well-known but often quite
informally argued fact that k-set agreement is impossible if the protocol complex is too
highly connected (see, e.g., [12, Thm. 10.3.1]). Informally, a complex K is k-connected, if it
does not contain a “hole” of dimension k or lower. For k = 0, which captures the consensus
impossibility, for example, K must not be (path-)connected, i.e., 0-connected. More generally,
1-connectivity refers to the ability to contract 1-dimensional loops, 2-connectivity refers to
the ability to contract 2-dimensional spheres, etc.

Let T = (I, O, ∆) be the k-set agreement task as specified in Section 2.3. In particular,
I = Ψ({(pi, [k + 1]) | i ∈ [n]}) is a pseudosphere.

▶ Definition 3.7. For every J ⊆ [k + 1], we define P[J ] as the minimal complex including
Pσ for all σ ∈ Ψ({(pi, J) | i ∈ [n]}).

▶ Theorem 3.8. If P [J ] is (dim(J) − 1)-connected for all J ⊆ [k + 1], then k-set agreement
is not solvable with respect to P.

3.2 The round-by-round connectivity analysis of [12] revisited
During our attempts to generalize the round-by-round topological modeling and analysis
of [12, Ch. 13] for the complete graph to arbitrary networks, we figured out that the original
analysis in [12] is not entirely correct. More specifically, the analysis there assumes that the
involved carrier maps are rigid, which cannot be guaranteed in the executions considered for
synchronous k-set agreement where exactly k processes crash per round. We hence provide
here a revised analysis for the case of the complete graph (i.e., the clique of our n processes),
where rigidity is replaced by a weaker condition (Definition 3.9 below). Unfortunately, this
change forces us to re-phrase and re-prove most of the lemmas of the original analysis.
Moreover, we have to add a non-trivial strictness proof in Lemma 3.14 below, which was
lacking in [12, Ch. 13]. The next definition relaxes Definition 13.4.1 in [12] by removing the
rigidity condition.

▶ Definition 3.9 (q-connected carrier map). Let q ≥ 0 be an integer, and let L and K be
simplicial complexes, where K is pure. A carrier map f : K → 2L is q-connected if it is strict,
and, for every σ ∈ K, the simplicial complex f(σ) is (q − codim(σ))-connected.

The following Lemma 3.10 is exactly the same as [12, Lem. 13.4.2]. Indeed, thanks to our
new Definition 3.9 of a q-connected carrier map, the original proof holds literally as well, as
faces with codim(σ) > q are not considered anyway.

▶ Lemma 3.10 ( [12, Lem. 13.4.2]). For every integer q ≥ 0, if K is a pure shellable simplicial
complex, and f : K → 2L is a q-connected carrier map, then the simplicial complex f(K) is
q-connected.

In Definition 13.4.3 in [12], a shellable carrier map f : K → 2L was defined as a rigid and
strict carrier map such that, for each σ ∈ K, the complex f(σ) is shellable. Since the carrier
maps we study later on are not rigid, we need to weaken this definition as follows.

▶ Definition 3.11 (q-shellable carrier map). Let q ≥ 0 be an integer. A carrier map f : K → 2L

is q-shellable if it is strict, and, for each σ ∈ K satisfying codim(σ) ≤ q + 1, the complex
f(σ) is shellable (and hence pure).

Note carefully that a q-shellable carrier map only guarantees that the image f(σ) of
a given single face σ ∈ K is shellable. To set the stage for extending the analysis of this
section for arbitrary communication graphs later on, we introduce some notation already
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here: For a given simplex κ ∈ Ki−1 (that will become clear from context), we abbreviate
Ki := fi−1(κ) ⊆ Ki and restrict our attention only to (facets of) this subcomplex when
proving shellability. Indeed, this will become necessary, since one cannot infer that the entire
complex Ki is also shellable, as we prove in [11, Sec. 3.4].

The following is an appropriately refined version of Lemma 13.4.4 in [12].

▶ Lemma 3.12. Let q ≥ 0 be an integer, and let us consider a sequence of pure complexes,
and carrier maps K0

f0−→ K1
f1−→ K2, where f0 is a q-shellable carrier map, f1 is a q-connected

carrier map, and, for every σ ∈ K0 with codim(σ) ≤ q + 1, codim(σ) ≥ codim(f0(σ)). Then,
f1 ◦ f0 is a q-connected carrier map.

Similarly, we need a refined version of Lemma 13.4.5 in [12].

▶ Lemma 3.13. Let q ≥ 0 and ℓ ≥ 0 be integers, and let us consider a sequence of
pure complexes, and carrier maps K0

f0−→ K1
f1−→ . . .

fℓ−→ Kℓ+1, such that the carrier maps
f0, . . . , fℓ−1 are q-shellable, the carrier map fℓ is q-connected, and, for every i ∈ {0, . . . , ℓ−1},
and every σ ∈ Ki with codim(σ) ≤ q + 1, codim(σ) ≥ codim(fi(σ)). Then, fℓ ◦ · · · ◦ f0 is a
q-connected carrier map.

We want to prove a variant of [12, Thm. 13.5.7] adapted to our refined modeling. For
some N to be determined later, consider a sequence

K0
f0−→ K1

f1−→ . . .
fN−1−−−→ KN

id−→ KN (3)

where K0 is the (shellable) input complex for k-set agreement, each Ki is the image of Ki−1
under fi−1 (i.e., fi−1 is surjective), and

fi(σ) =
⋃

τ∈Facen−1−k(i+1) σ

Ψ(τ, [τ, σ]), (4)

where Ψ(τ, [τ, σ]) denotes the pseudosphere obtained by independently labeling the processes
in names(τ) with one of the simplices in {ρ | τ ⊆ ρ ⊆ σ}. Intuitively, a vertex (pj , ρ)
represents the situation where pj receives exactly the information in ρ in round i + 1. As
in [12, Sec. 13.5.2], the carrier map fi applied to σ is the execution map representing round
i+1 starting from some face σ ∈ I, where the communication graph is a clique, and exactly k

additional processes crash in round i + 1 (i.e., a total of i · k processes have already failed
during the i previous rounds).

▶ Lemma 3.14. For every i ∈ {0, . . . , N − 1}, fi is (k − 1)-shellable, and, for every σ ∈ Ki

with codim(σ) ≤ k, codim(fi(σ)) ≤ codim(σ).

Since the identity map id in Equation (3) is trivially a q-connected carrier map satisfying
Definition 3.9, we can apply Lemma 3.13 for N = ⌊t/k⌋ equal to the maximum number of
rounds where k processes can crash to immediately get:

▶ Lemma 3.15. For N = ⌊t/k⌋, fN−1 ◦ · · · ◦ f0 : K0 → KN is a (k − 1)-connected carrier
map.

▶ Theorem 3.16. For integers t ≥ 0 and k ≥ 1, let P be the protocol complex of k-set
agreement after N = ⌊ t

k ⌋ rounds in the synchronous t-resilient model with the complete
communication graph, where exactly k processes crash per round. For every J ⊆ [k + 1], P [J ]
is a (dim(J) − 1)-connected subcomplex.

By combining Theorems 3.8 and 3.16, we finally get the well-known lower bound:

▶ Corollary 3.17. The k-set agreement task cannot be solved in less than ⌊ t
k ⌋ + 1 rounds in

the synchronous t-resilient model.
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4 A Lower Bound for the Agreement Overhead for Arbitrary Graphs

In this section, we will derive a lower bound for the agreement overhead (Definition 1.1), i.e.,
the number of additional rounds necessary for solving k-set agreement in t-resilient systems
after the first N = ⌊t/k⌋ crashing rounds. Interestingly, this can be done via two substantially
different approaches, which will be presented below and in [11, Sec. 4.2]. Moreover, as a
byproduct of our analyses, we will also establish a lower bound for k-set agreement in systems
with t initially dead processes connected by arbitrary communication graphs. For simplicity,
we henceforth assume that k evenly divides t, and no further crashes occur after round
N = t/k. If this is not the case, the missing t − k⌊t/k⌋ crashes could only increase our lower
bound, which would further complicate our analysis, and so we discard this option here.

In Definition 4.1 below, we will introduce a novel carrier map g that captures the agreement
overhead caused by arbitrary communication graphs, beyond the mere case of the clique. This
carrier map has been inspired by the scissors cuts introduced in [5], which were used to prove
a lower bound for solving k-set agreement with oblivious algorithms in the KNOW-ALL
model (which is failure-free). Our approach however differs from the original scissors cuts
in several important ways. First, we admit directed graphs and general full-information
algorithms, and replace the original pseudosphere input complex by the source complex PN ,
which is one of the following two cases:

PN is the (locally shellable) complex KN = P(N) for arbitrary graphs (formally introduced
in [11, Sec. 3.3]). This will allow us to paste together the agreement overhead lower bound
determined in this section with the ⌊t/k⌋ lower bound caused by process crashes.
PN is the (shellable) (n − t − 1)-skeleton skeln−t−1

(
Ψ({(pi, [k + 1]) | i ∈ [n]})

)
of the

pseudosphere given in Theorem 3.6, which we subsequently abbreviate as Ψ(n, k + 1) for
conciseness, which contains all the faces of the full pseudosphere Ψ({(pi, [k + 1]) | i ∈ [n]})
with at most n − t vertices. Note that actually N = 0 in this case, albeit we will not make
this explicit later on, but just stick to PN to denote the source complex for uniformity.
This will result in a lower bound (Theorem 4.11) for k-set agreement with t initially
dead processes. Note that the total number of processes that appear in all the facets of
Ψ(n, k + 1) together is n here.

The second main difference w.r.t. [5] is that g will be a proper carrier map, which also
specifies the images of arbitrary faces of the source complex, and not only images of facets.
It is particularly simple, however, since it resembles a (non-rigid) simplicial map in that g(σ)
returns the subcomplex corresponding to a single simplex ρ, or else g(σ) = ∅. In order not
to unnecessarily clutter our notation, we will hence subsequently pretend as if g(σ) only
consisted of a single simplex ρ or ∅ only. One of the particularly appealing consequences of
g’s simple image is that it allows us to replace the very complex topological analysis in [5] by
a strikingly simple connectivity argument.

Generally, we assume that g : PN → PM given in Definition 4.1 models the failure-free
execution in rounds N +1, N +2, . . . , M for some M > N , where M −N will finally determine
our desired agreement overhead lower bound. Consider the execution starting in some facet
ϕ ∈ PN , which involves exactly n− t processes with index set Iϕ ⊆ [n] and consists of vertices
of the form (pi, λi), i ∈ Iϕ, each with a process name pi = names((pi, λi)) ∈ Π used as its
color, and a label λi (which denotes pi’s local view at the end of round N), consisting of

the vertices of the processes that managed to successfully send to pi up to round N , if
N > 0, or
pi’s initial value xi if N = 0, i.e., when the source complex is skeln−t−1

(
Ψ(n, k + 1)

)
.

In either case, λi encodes the complete heard-of history of pi up to round N , due to the fact
that we are assuming full-information protocols.
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We assume that GN+1, . . . , GM is the sequence of communication graphs governing
rounds N + 1, . . . , M . These graphs may be different and known to the processes; clearly,
assuming a static graph G = GN+1 = . . . GM as in Section 1 can make our lower bound only
stronger. We will abbreviate this sequence by G for brevity, and define Gϕ to be the product
GN+1,ϕ ◦ GN+2,ϕ ◦ · · · ◦ GM,ϕ, where GN+1,ϕ, . . . , GM,ϕ are the graphs induced by the nodes
names(ϕ) on the graphs in the sequence G.

It is worth mentioning that our carrier map g actually focuses on a subset of all the
possible executions, as it is sufficient for a lower bound. Namely, g considers the case where
processes that crashed in round N did crash cleanly only (they failed to send messages to
all their neighbors). Note that this somehow resembles the situation of the carrier maps fi

used in Section 3, which also only covered a submodel of all possible executions, namely, the
one where exactly k processes crash per round. The map g accomplishes this by “discarding”
executions starting from facets in PN that involve unclean crashes in round N , in the sense
that it (non-rigidly) maps such an “unclean” facet ϕ′ to some face in the image g(ϕ) of some
“clean” facet ϕ ∈ PN , where the processes that crashed uncleanly in ϕ′ crashed cleanly in ϕ

or not at all.
In more detail, g maps a facet ϕ′ to the maximal face ρ contained in the “full”, i.e.,

unconstrained, image of ϕ′ (that would be used without the discarding of “dirty” source
vertices), where no vertex hears from a “dirty” witness of an unclean crash in ϕ′. Note that
any such ρ ̸= ∅ is also present as part of g(ϕ) for some facet ϕ where the crashing processes
are not participating at all or are correct, so no “new” face needs to be included for mapping
g(ϕ′) here. On the other hand, there is no a priori guarantee that such a face ρ exists, as
g(ϕ′) = ∅ is also possible; we will show in our non-emptyness proofs below (see Lemma 4.6
and Lemma 4.9) that this cannot happen under the conditions of our impossibility proof,
however. In fact, this very intuitive property of g is what enables g to completely replace the
complicated analysis of [5] by a simple connectivity argument based on its non-emptyness.

To formally define g, we need the following notation.
For a facet ϕ = {(pi, λN

i ) | i ∈ Iϕ} of PN , where Iϕ ⊆ [n] and |Iϕ| = n − t, let

ϕ̆ = {(pi, λN
i ) | i ∈ Iϕ ∧ names(λN

i ) \ names(ϕ) ̸= ∅}

be the set of “dirty vertices” in ϕ. That is, ϕ̆ ⊆ ϕ is the set of vertices in ϕ where the
corresponding processes received a message from a process that has crashed uncleanly in
round N .
For a vertex (pi, λM

i ) ∈ PM , let hist(λM
i ) be the set of all vertices (pj , λN

j ) contained in
the heard-of history λM

i , i.e., the ones have been received by pi directly or indirectly in
any of the rounds N + 1, . . . , M .

▶ Definition 4.1 (Agreement overhead carrier map). We define the carrier map g as follows:
For a facet ϕ ∈ PN ,

g(ϕ) =
{

{(pi, λM
i ) | i ∈ Iϕ ∧ hist(λM

i ) ∩ ϕ̆ = ∅}
}

. (5)

That is, g(ϕ) is the (possibly empty) face of PM consisting of the vertices that do not
have any vertex in ϕ̆ in their heard of history.
For a face σ ∈ PN ,

g(σ) = {ρ} with ρ = maximal simplex in
⋂

ϕ∈Tσ
g(ϕ) s.th. names(ρ) ⊆ names(σ), (6)

where Tσ denotes the set of all facets ϕ ∈ PN satisfying σ ⊆ ϕ.
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Note that Equation (5) and Equation (6) are consistent, in the sense that the image g(σ) of
a facet σ ∈ PN is the same for both definitions, since Tσ = {σ} here.

The facets of our source complex PN need to satisfy the following additional conditions:

▶ Definition 4.2. We define conditions C1 and C2 as follows:
C1: There is a facet ϕ ∈ PN with names(ϕ) = Π \ S, for every subset S of t processes.
C2: For every σ ∈ PN , σ =

⋂
ϕ∈Tσ

ϕ.

Condition C1 is satisfied for our source complexes, since both PN = skeln−t−1
(
Ψ(n, k+1)

)
and PN = KN contain every possible (n − t − 1)-face by definition/construction.

The special context in which strictness of g is actually utilized, namely, [12, Lem. 13.4.2]
(see Section 3.2 for details) is restricted to faces which are solely facet intersections, which
actually makes C2 in Definition 4.2 superfluous. However, since it is guaranteed for our
source complexes, we can safely require it. Indeed, the regularity of the source complex
PN = skeln−t−1

(
Ψ(n, k +1)

)
trivially guarantees (C2), and for the source complex PN = KN ,

condition (C2) is easy to prove since every k-subset of the alive processes in KN−1 is crashed
in round N in order to produce some facet ϕ ∈ PN . So if v = (p, λq) ∈

⋂
ϕ∈Tσ

ϕ \ σ would
exist, consider any facet ϕ ∈ Tσ where some process q ̸∈ names(ϕ) has crashed uncleanly
after successfully sending his λq to everybody in round N in ϕ. There must also be a facet
ϕ′ ∈ PN , which is the same as ϕ, except that (q, λq) ∈ ϕ′ but v ̸∈ ϕ′ since p has crashed
uncleanly after successfully sending λp to everybody in round N in ϕ′. Since σ ⊆ ϕ and
hence ϕ′ ∈ Tσ as well, we get the desired contradiction.

▷ Claim 4.3. g is a carrier map.

Proof. Let σ1 and σ2 be two faces of PN with σ1 ⊆ σ2. We have Tσ2 ⊆ Tσ1 , and names(σ1) ⊆
names(σ2), from which it follows that g(σ1) ⊆ g(σ2). ◁

In Claim 4.4 below, we will prove that g is also strict. Our proof will rely on an essential
property of g, namely, that if two facets ϕ1 and ϕ2 share a vertex y = (p, λp) ∈ ϕ1 ∩ ϕ2, then
the information p propagates to other common vertices in ϕ1∩ϕ2 in rounds N +1, . . . , M is the
same in Gϕ1 and Gϕ2 . Recall that the graph Gϕ is the product GN+1,ϕ ◦ GN+2,ϕ ◦ · · · ◦ GM,ϕ,
where GN+1,ϕ, . . . , GM,ϕ are the graphs induced by names(ϕ) in the sequence of graphs
GN+1, GN+2, . . . , GM that govern rounds N + 1, . . . , M . Whereas this is trivially satisfied
when the source complex is skeln−t−1

(
Ψ(n, k + 1)

)
, as there are no unclean crashes since

all absent processes are initially dead, it needs to be secured by “discarding” vertices in ϕ̆1
(resp., ϕ̆2) in Equation (5) when unclean crashes may have happened. Indeed, p could have a
predecessor q that sent its value λq to p in round N because q ∈ names(ϕ1) in ϕ1, whereas it
did not so in ϕ2 because it crashed uncleanly, so that q ̸∈ names(ϕ2).

▷ Claim 4.4. g is a strict carrier map.

Proof. Let ϕ1, ϕ2 be facets of PN , and let σ = ϕ1 ∩ ϕ2. We show that g(ϕ1) ∩ g(ϕ2) = g(σ)
by proving that g(ϕ1) ∩ g(ϕ2) ⊆ g(σ). Assume by contradiction that there exists a vertex
x ∈ g(ϕ1) ∩ g(ϕ2), but x /∈ g(σ). Since σ = ϕ1 ∩ ϕ2, and thanks to the definition of Tσ,
σ = ∩ϕ∈Tσ

ϕ must obviously hold. By the definition of g, we then get g(σ) = ∩ϕ∈Tσ
g(ϕ).

Hence, there must be some ϕ3 ∈ Tσ such that x /∈ g(ϕ3), as well as a unique x′ ∈ σ with
names(x′) = names(x).

Since x ∈ g(ϕ1) ∩ g(ϕ2), node names(x) can only hear from nodes in names(σ) in the
subgraphs Gϕ1 and Gϕ2 of G induced by names(ϕ1) and names(ϕ2), respectively. On the
other hand, names(x) must hear from a process outside names(σ) in Gϕ3 . Indeed, assume for
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z′
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Figure 1 Illustration of the strictness proof in Claim 4.4.

a contradiction that this is not the case. Then, in any of the graphs Gϕ1 , Gϕ2 , Gϕ3 , node
names(x) hears only from nodes in names(σ), and all nodes in names(σ) are of course included
in Gϕ1 , Gϕ2 , Gϕ3 . Node names(x) hence has the same heard-of history in Gϕ1 , Gϕ2 , Gϕ3 ,
contradicting the assumption x /∈ g(ϕ3). Therefore, there must exist some z ∈ ϕ3 with
z /∈ ϕ1 and z /∈ ϕ2 such that names(x) hears from names(z) in Gϕ3 via some path P in round
N + 1, . . . , M (see Figure 1 for an illustration). Let y ∈ σ be such that

names(y) is a node in P that is the closest to names(x′) = names(x) in Gϕ3 , and
names(y) has a neighbor names(z′) ∈ P and z′ /∈ σ.

We must have z′ /∈ ϕ1. Indeed, if z′ ∈ ϕ1, then the path suffix P ′ ⊆ P leading from
names(z′) → names(y) → names(x) would be in Gϕ1 , so names(x) would hear from
names(z′) ̸∈ names(σ) in Gϕ1 in rounds N + 1, . . . , M , which contradicts that it can only
hear from nodes in names(σ) as established above. Analogously, z′ /∈ ϕ2 must hold. Note
carefully, however, that the path suffix P ′′ ⊆ P ′ ⊆ P leading from names(y) → names(x) is
contained in any of Gϕ1 , Gϕ2 , Gϕ3 .

Since z′ ̸∈ ϕ1 ∪ ϕ2 but y ∈ ϕ1 ∩ ϕ2 ∩ ϕ3, process names(z′) must have crashed uncleanly
in round N after sending to names(y) in both ϕ1 and ϕ2 (note that it is here where we need
condition C1 in Definition 4.2). However, in that case, Equation (5) would guarantee that
names(x) ̸∈ g(ϕ1) ∪ g(ϕ2), which contradicts our initial assumption x ∈ g(ϕ1) ∩ g(ϕ2).

By monotonicity of g, it follows that g(ϕ1) ∩ g(ϕ2) = g(ϕ1 ∩ ϕ2) for every two facets
ϕ1, ϕ2 of PN .

We also need to prove strictness for faces, so let σ1, σ2 be two faces of PN with σ = σ1 ∩σ2,
and assume for a contradiction that there is some x ∈ g(σ1) ∩ g(σ2) but x ̸∈ g(σ). According
to Equation (6), this implies that x ∈ ϕ1 ∩ ϕ2 for any two facets ϕ1 ∈ Tσ1 and ϕ2 ∈ Tσ2 ,
but that there is some facet ϕ3 ∈ Tσ with x ̸∈ g(ϕ3). If we pick any such ϕ1 and ϕ2, we
might observe ϕ′ = ϕ1 ∩ ϕ2 ⊃ ϕ, but still x ∈ g(ϕ1) ∩ g(ϕ2) but x ̸∈ g(ϕ3). It is easy to see,
in particular, from Figure 1, that the above contradiction proof applies also here, since its
arguments are not affected by assuming ϕ′ ⊃ ϕ. ◁

We will now utilize our carrier map g for establishing our desired agreement overhead
lower bound. As an appetizer, we will first provide a simple-to-prove eccentricity-based
definition of a graph radius, which requires a static communication graph, i.e., G = GN+1 =
GG+2 = · · · = GM in rounds N + 1, . . . , M . Note that here, Gϕ is equal to the (M − N)-th
power of the subgraph of G induced by the processes present in ϕ.

▶ Definition 4.5. For a node set D ⊆ V , the eccentricity of D in the graph G = (V, E),
denoted ecc(D, G), is the smallest integer d such that for every node v ∈ V there is a path
from some node u ∈ D to v in G consisting of at most d hops.
If G is a dynamic graph, ecc(D, G) is similarly defined, but with a temporal path from u to v;
that is, if all nodes in D broadcast the same message in G by flooding, then all nodes in V

receive the message in at most d rounds.



P. Fraigniaud, M. H. Nguyen, A. Paz, U. Schmid, and H. Rincon-Galeana 31:15

By this definition, if all nodes in D broadcast for ecc(D, G) rounds in the distributed
message-passing model, every node in V (G) hears from at least one node in D. By considering
the set D that minimizes the eccentricity, we define a corresponding Radius Rad(G, t + k) =
minD⊆V,|D|=t+k ecc(D, G). This allows us to state the following essential property of the
corresponding carrier map g:

▶ Lemma 4.6. Let R = M − N . For a static communication graph G, if R < Rad(G, t + k),
then g : PN → PM is a (k − 1)-connected carrier map.

▶ Theorem 4.7. For every graph G, t ≥ 0 and k ≥ 1, there are no algorithms solving k-set
agreement in the t-resilient model in G in less than R = ⌊ t

k ⌋ + Rad(G, t + k) rounds.

Now we will finally turn to our ultimately desired lower bound, which essentially follows
from the lower bound given in Theorem 4.7, by replacing Rad(G, t + k) with the (t, k)-radius
rad(G, t, k) defined as follows:

▶ Definition 4.8 ((t, k)-radius of a graph sequence G). For an n-node graph sequence G =
GN+1, . . . , GM and any two integers t, k with t ≥ 0 and k ≥ 1, we define the (t, k)-radius
rad(G, t, k) as follows:

rad(G, t, k) = min
D,|D|=t+k

max
D′⊆D,|D′|=t

ecc(D \ D′, G \ D′). (7)

Recall that ecc(D \ D′, G \ D′) is the number of rounds needed for D \ D′ to collectively
broadcast in the subgraph sequence of G induced by Π \ D′.

Note carefully that this definition generalizes the definition of the (t, k)-radius of a static
graph already given in Equation (1) to our graph sequences.

▶ Lemma 4.9. Let R = M −N . If R < rad(G, t, k), then g : PN → PM is a (k−1)-connected
carrier map.

Exactly the same proof as for Theorem 4.7 thus yields the refined lower bound stated in
the following theorem:

▶ Theorem 4.10. For every graph G, t ≥ 0 and k ≥ 1, there are no algorithms solving k-set
agreement in G in the t-resilient model in strictly less than R = ⌊ t

k ⌋ + rad(G, t, k) rounds.

Our analysis also provides a lower bound for systems with t initially dead processes,
by starting from the source complex PN = skeln−t−1

(
Ψ({(pi, [k + 1]) | i ∈ [n]})

)
, which

is shellable according to Theorem 3.6. Analogous to Theorem 4.10, this concludes in the
following theorem.

▶ Theorem 4.11. For every graph G, t ≥ 0 and k ≥ 1, there are no algorithms solving k-set
agreement in G with t initially dead processes in less than rad(G, t, k) rounds.

Note that we establish in [11] that Theorem 4.11 for t = 0 (almost) coincides with
the dominance number based lower bound for k-set agreement in the KNOW-ALL model
established in [5].

5 Upper Bound for Fixed Graphs

Let G = (V, E) be an n-node graph with vertex connectivity κ(G). Let t < κ(G) be a non-
negative integer, and let k ≥ 1 be an integer. We are interested in solving k-set agreement in
G with at most t crash failures. For S ⊆ V , let G \ S denote the subgraph of G induced by
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the nodes in V \ S, i.e., G \ S is an abbreviation for G[V \ S]. For every graph H, let D(H)
denote its diameter. We define D(G, t) = maxS⊆V,|S|≤t D(G \ S). Note that since t < κ(G),
and the maximization is over all sets S of size at most t, D(G, t) is finite.

▶ Theorem 5.1. There exists an algorithm solving k-set agreement in G in ⌊ t
k ⌋ + D(G, t)

rounds.

Note that the bound in Theorem 5.1 matches the bound ⌊ t
k ⌋+1 rounds for k-set agreement

in the n-node clique Kn under the synchronous t-resilient model (see [8]), as D(Kn, t) = 1.

Examples

Let us consider the n-node cycle, i.e., G = Cn, with t = 1, and k = 1 (i.e., consensus).
We have D(Cn, 1) = n − 2, as, for every node v, Cn \ {v} is a path with n − 1 nodes. The
algorithm of Theorem 5.1 must thus perform min-flooding for 1 + (n − 2) = n − 1 rounds
to solve consensus in Cn. Intuitively, this appears to be the best that can be achieved
as the node with the smallest input value may crash at the first round, by sending its
value to just one of its neighbors, and then n − 2 additional rounds will be needed for
this value to reach all nodes.
Let us consider the d-dimensional hypercube Qd, d ≥ 1, with n = 2d nodes. We have
κ(Qd) = d, and there are d internally-disjoint paths of length at most d + 1 between
any two nodes, which implies that D(Qd, d − 1) = d + 1. The algorithm of Theorem 5.1
must thus perform min-flooding for ⌊ t

k ⌋ + (d + 1) rounds to solve k-set agreement in the
t-resilient hypercube Qd.

6 Conclusions

We provided novel lower bounds for k-set agreement in synchronous t-resilient systems
connected by an arbitrary directed communication network. Our lower bound combines
the ⌊t/k⌋ lower bound (which we generalized to arbitrary communication graphs) obtained
for rounds where exactly t processes crash with an additional novel lower bound on the
agreement overhead caused by an arbitrary network, i.e., different from the complete graph.
Our results use the machinery of combinatorial topology for studying the (high) connectivity
properties of the round-by-round protocol complexes obtained by some novel and strikingly
simple carrier maps, which we firmly believe to have applications also in other contexts.
Whereas we also provided some upper bound result, the challenging question of possible
tightness is deferred to future research.
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A Proofs for Section 3 (Connectivity-Based Topological Analysis of
Synchronous Systems)

▶ Theorem 3.8. If P [J ] is (dim(J) − 1)-connected for all J ⊆ [k + 1], then k-set agreement
is not solvable with respect to P.

Proof. Let us assume, for the purpose of contradiction, that the k-set agreement task T is
solvable with respect to P . This implies there exists a simplicial map δ : P → O that agrees
with ∆. Let K = [k + 1] viewed as a complex, and let Θ : K → 2P be defined as Θ(J) = P [J ]
for every J ⊆ [k + 1] viewed as a simplex.

We claim that Θ is a carrier map. Indeed, if J ′ ⊆ J , then Ψ({(pi, J ′) | i ∈ [n]}) ⊆
Ψ({(pi, J) | i ∈ [n]}). That is, every σ ∈ Ψ({(pi, J ′) | i ∈ [n]}) belongs to Ψ({(pi, J) | i ∈
[n]}), which implies P[J ′] ⊆ P[J ].

Thanks to Theorem 3.7.7(2) in [12], since Θ is a carrier map, and since, for each J , P[J ]
is (dim(J) − 1)-connected, we get that Θ has a simplicial approximation (Div(K), g). That
is:

Div(K) is a chromatic subdivision of K,
g : Div(K) → P is simplicial and chromatic, and
for every J ⊆ [k + 1], and every ρ ∈ Div(J), g(ρ) ∈ Θ(J), where Div(J) is the subdivision
of the face J of K induced by the global subdivision Div(K).

Let f : P → ∂K be defined as f = val ◦ δ, where val is the trivial mapping that discards
process IDs, and where ∂K is the boundary of K. As the combination of two simplicial maps,
we get that f is simplicial. Let h : Div(K) → ∂K be defined as h = f ◦ g.

We claim that h is a Sperner coloring of Div(K). For J ⊆ [k + 1] and ρ ∈ Div(J),
h(ρ) = f ◦ g(ρ). Since g(ρ) ∈ Θ(J) = P[J ], there exists σ ∈ Ψ({pi, J) | i ∈ [n]}) such that
g(ρ) ∈ Pσ. The validity condition implies when processes in σ run alone, each output must
be in val(σ) ⊆ J , that is, for every τ ∈ Pσ, val(δ(τ)) ⊆ J . Therefore val ◦ δ(g(ρ)) ⊆ J .
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Since there are no Sperner colorings of Div(K) that can avoid facets that are colored with
k + 1 colors, we get a contradiction to the assumption that T is solvable w.r.t. P. ◀

▶ Lemma 3.12. Let q ≥ 0 be an integer, and let us consider a sequence of pure complexes,
and carrier maps K0

f0−→ K1
f1−→ K2, where f0 is a q-shellable carrier map, f1 is a q-connected

carrier map, and, for every σ ∈ K0 with codim(σ) ≤ q + 1, codim(σ) ≥ codim(f0(σ)). Then,
f1 ◦ f0 is a q-connected carrier map.

Proof. First, g = f1 ◦ f0 is a strict carrier map because it is a composition of two strict
carrier maps. It remains to check that g(σ) is (q − codim σ)-connected. Considering an
arbitrary σ ∈ K0 satisfying codim(σ) ≤ q + 1, we have:

(i) f0(σ) is shellable and pure,
(ii) codim(f0(σ)) ≤ codim(σ),
(iii) for every simplex τ ∈ f0(σ), the co-dimension of τ in f0(σ), denoted by codim(τ, f0(σ)),

satisfies codim(τ, f0(σ)) = dim(f0(σ)) − dim(τ), and
(iv) codim(τ, K1) = codim(τ, f0(σ)) + codim(f0(σ), K1).
Let q′ = q − codim(f0(σ)). Since f1 is a q-connected carrier map, f1(τ) is (q − codim(τ, K1))-
connected. Equivalently, f1(τ) is (q′ − codim(τ, f0(σ)))-connected. By applying Lemma 3.10,
f1(f0(σ)) is q′ connected. Thus, g(σ) is (q − codim σ)-connected since q′ ≤ q − codim(σ)
by (ii). ◀

▶ Lemma 3.13. Let q ≥ 0 and ℓ ≥ 0 be integers, and let us consider a sequence of
pure complexes, and carrier maps K0

f0−→ K1
f1−→ . . .

fℓ−→ Kℓ+1, such that the carrier maps
f0, . . . , fℓ−1 are q-shellable, the carrier map fℓ is q-connected, and, for every i ∈ {0, . . . , ℓ−1},
and every σ ∈ Ki with codim(σ) ≤ q + 1, codim(σ) ≥ codim(fi(σ)). Then, fℓ ◦ · · · ◦ f0 is a
q-connected carrier map.

Proof. We use induction on k ≥ 0 to prove that gk = fℓ◦· · ·◦fℓ−k is a q-connected carrier map.
Note that gℓ = fℓ◦· · ·◦f0. For the base case k = 0, the claim is immediate from our assumption
on fℓ. For the induction step from k to k+1, we note that gk+1 = fℓ◦· · ·◦fℓ−k−1 = gk◦fℓ−k−1.
Since fℓ−k−1 is q-shellable and guarantees codim(σ) ≥ codim(fℓ−k−1(σ)) for all σ ∈ Kℓ−k

with codim(σ) ≤ q + 1 by our assumptions, and since gk is q-connected by the induction
hypothesis, we can apply Lemma 3.12, which ensures that gk+1 = gk ◦ fℓ−k−1 is q-connected
as needed. ◀

▶ Lemma 3.14. For every i ∈ {0, . . . , N − 1}, fi is (k − 1)-shellable, and, for every σ ∈ Ki

with codim(σ) ≤ k, codim(fi(σ)) ≤ codim(σ).

Proof. Lemma 13.5.5 in [12] shows that one can define a shelling order on the facets of fi(σ),
which is a pure complex by Equation (4), for every σ ∈ Ki that yields fi(σ) ̸= ∅. All that
remains to be proved is hence strictness, and the additional condition codim fi(σ) ≤ codim σ

for every σ ∈ Ki with codim σ ≤ k.
For the latter, note that, for every σ ∈ Ki, if dim(σ) < n−k(i+1), then fi(σ) = ∅. Since

Equation (4) implies that dim(Ki+1) = dim(Ki)−k, we can indeed guarantee codim(fi(σ)) ≤
codim(σ) for every simplex σ in Ki satisfying codim(σ) ≤ k.

For strictness, let ϕ1, ϕ2 be simplices of Ki, and let ϕ = ϕ1 ∩ ϕ2. We prove that
fi(ϕ) = fi(ϕ1) ∩ fi(ϕ2). We have

fi(ϕ1) =
⋃

τ∈Facen−1−k(i+1) ϕ1

Ψ(τ, [τ, ϕ1]), and fi(ϕ2) =
⋃

τ∈Facen−1−k(i+1) ϕ2

Ψ(τ, [τ, ϕ2]).
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If fi(ϕ1)∩fi(ϕ2) = ∅, then fi(ϕ) = ∅ by the monotonicity of carrier map fi. So let us assume
that fi(ϕ1) ∩ fi(ϕ2) ̸= ∅. Let us then consider an arbitrary simplex σ ∈ fi(ϕ1) ∩ fi(ϕ2).
There exists τ ∈ Facen−1−k(i+1) ϕ1 and τ ′ ∈ Facen−1−k(i+1) ϕ2 such that

σ ∈ Ψ(τ, [τ, ϕ1]) ∩ Ψ(τ ′, [τ ′, ϕ2]).

This implies that there exists a simplex τ ′′ ⊆ τ ∩ τ ′ ⊆ ϕ1 ∩ ϕ2 such that

σ ∈ Ψ(τ ′′, [τ, ϕ1]) ∩ Ψ(τ ′′, [τ ′, ϕ2]) ⊆ Ψ(τ ′′, [τ, ϕ1] ∩ [τ ′, ϕ2]).

We claim that τ and τ ′ are faces of ϕ. Indeed, if τ (which is a face of ϕ1) is not a face of
ϕ, then τ is not a face of ϕ2. Then, [τ, ϕ1] ∩ [τ ′, ϕ2] = ∅, which contradicts the fact that
fi(ϕ1) ∩ fi(ϕ2) ̸= ∅. Consequently,

σ ∈ Ψ(τ ′′, [τ, ϕ1] ∩ [τ ′, ϕ2]) ⊆ Ψ(τ ′′, [τ, ϕ] ∩ [τ ′, ϕ])
= Ψ(τ ′′, [τ ∪ τ ′, ϕ]) (8)

⊆
⋃

ρ∈Facen−1−k(i+1) ϕ

Ψ(τ ′′, [ρ, ϕ])

⊆
⋃

ρ∈Facen−1−k(i+1) ϕ

Ψ(ρ, [ρ, ϕ])

= fi(ϕ). (9)

where Equation (8) follows from the fact that τ (resp., τ ′) is a face of every simplex
in [τ, ϕ] (resp., [τ ′, ϕ]). Equation (9) implies that fi(ϕ1) ∩ fi(ϕ2) ⊆ fi(ϕ), from which
fi(ϕ1) ∩ fi(ϕ2) = fi(ϕ) follows by monotonicity of carrier maps. ◀

▶ Theorem 3.16. For integers t ≥ 0 and k ≥ 1, let P be the protocol complex of k-set
agreement after N = ⌊ t

k ⌋ rounds in the synchronous t-resilient model with the complete
communication graph, where exactly k processes crash per round. For every J ⊆ [k + 1], P [J ]
is a (dim(J) − 1)-connected subcomplex.

Proof. Let J ⊆ [k + 1]. For every i = 1, . . . , ⌊ t
k ⌋, let P(i)[J ] be the protocol complex after

i rounds, starting from P(0)[J ] = I[J ] = Ψ({(pi, J) | i ∈ [n]}) and P[J ] = P(N)[J ]. By
construction, K0 = P(0)[J ] = I[J ], K1 = P(1)[J ], . . . , KN = P(N)[J ] are the complexes
induced by the carrier map fi : Ki → Ki+1 given by Equation (4), which crashes exactly k

processes in round i + 1, 0 ≤ i < N . Consider the sequence

K0
f0−→ K1

f1−→ . . .
fN−1−−−→ KN

id−→ KN . (10)

By Lemma 3.15, we have fN−1 ◦ · · · ◦ f0 : K0 → KN is a (k − 1)-connected carrier map. Since
the input complex I[J ] is a pseudosphere, and hence pure and shellable, Lemma 3.10 implies
that KN = P[J ] is (k − 1)-connected. Therefore, P[J ] is also (dim(J) − 1)-connected. ◀

B Proofs for Section 4 (A Lower Bound for the Agreement Overhead
for Arbitrary Graphs)

▶ Lemma 4.6. Let R = M − N . For a static communication graph G, if R < Rad(G, t + k),
then g : PN → PM is a (k − 1)-connected carrier map.
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Proof. We show that for every face σ of PN with codim(σ) ≤ k, g(σ) ̸= ∅. Then, since g(σ)
is a face of PM , g(σ) is (k − 1)-connected. Recall that g(σ) = {ρ}, where ρ is the maximal
simplex in

⋂
ϕ∈Tσ

g(ϕ) satisfying names(ρ) ⊆ names(σ).
Let S = V (G) \ names(σ), |S| ≤ t + k. Since R < Rad(G, t + k), there is a node

p ∈ names(σ) such that p does not hear from any node in S after R rounds in G. It implies
that, for every ϕ ∈ Tσ, node p does not hear from S in Gϕ in rounds N + 1, . . . , M . There is
hence a vertex x with names(x) = p ∈ names(σ) and x ∈

⋂
ϕ∈Tσ

g(ϕ). Thus, x ∈ g(σ) ̸= ∅
as claimed. ◀

▶ Theorem 4.7. For every graph G, t ≥ 0 and k ≥ 1, there are no algorithms solving k-set
agreement in the t-resilient model in G in less than R = ⌊ t

k ⌋ + Rad(G, t + k) rounds.

Proof. The proof is literally the same as the one for Theorem 3.16, except that it replaces
Equation (10) by the following chain of carrier maps, with N = ⌊ t

k ⌋ and M = N + R:

K0
f0−→ K1

f1−→ . . .
fN−1−−−→ KN = PN

g−→ PM (11)

Herein, K0 = P(0)[J ] = I[J ] = Ψ(Pi, J | i ∈ {0, . . . , n}) is again the input complex,
K1 = P(1)[J ], . . . , KN = P(N)[J ] are the protocol complexes resulting from the N crashing
rounds, PN = KN is the source complex for our carrier map g, and finally P [J ] = PM is the
protocol complex reached from PN after M − N = Rad(G, t + k) rounds. ◀

▶ Lemma 4.9. Let R = M −N . If R < rad(G, t, k), then g : PN → PM is a (k−1)-connected
carrier map.

σ

σ′τ τ ′

x y z′

z

Figure 2 Two facets τ, τ ′ in PN with τ ∩ τ ′ = σ′. The vertices x resp. y resp. {z′, z} belong to σ

resp. σ ⊆ σ′ resp. τ ′ as shown.

Proof. Let σ be a face of PN with codim(σ) ≤ k. It suffices to show that g(σ) ̸= ∅: since
g(σ) is a face of PM , g(σ) must be (k − 1)-connected.

For every facet τ of PN , recall that Gτ denotes the subgraph sequence of G induced by
names(τ). Choose D = Π \ names(σ), which must satisfy t ≤ |D| ≤ t + k. Due to condition
C1 in Definition 4.2, there is indeed a facet τ containing σ in PN such that names(τ) = Π\D′.
Since R < rad(G, t, k), there is hence a process p ∈ names(σ), and D′ ⊆ D, |D′| = t such
that p does not hear from any process in D \ D′ in Gτ in rounds N + 1, . . . , M .

Let x = (p, λp) ∈ σ be the vertex corresponding to p. So even if every node broadcasts
in Gτ during rounds N + 1, . . . , M , node p ∈ names(σ) does not hear from any process in
names(τ) \ names(σ).

Now assume that there is a facet τ ′ ⊇ σ in PN such that process p = names(x) hears
from a process names(z) ∈ names(τ ′) \ names(σ) in Gτ ′ in rounds N + 1, . . . , M , see Figure 2
for an illustration. Define σ′ = τ ∩ τ ′ ⊇ σ. Let P be a path in Gτ ′ (of course of length
less or equal to R) leading from names(z) → names(x), and let names(z′) ∈ P \ names(σ)
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be the node closest to names(x) in P outside σ. If names(z′) belonged to names(σ′), then
names(x) would hear from names(z′) also in Gτ within R rounds, through the path suffix
P ′ ⊆ P going from names(z′) → names(x), which contradicts our assumption. Thus,
names(z′) ∈ names(τ ′) \ names(τ). Consequently, the path P ′ from names(z′) to names(x)
only contains names(z′) and processes from names(σ). Let names(y) ∈ P ∩ names(σ) be the
neighbor of z′ in P contained in σ, i.e., names(z′) ∈ Innames(y)(GN ) in round N : Indeed, in
the scenario corresponding to the facet τ , names(z′) is dead in PN , but alive in the scenario
corresponding to τ ′. Therefore, in round N , process names(y) hears from names(z′) in Gτ ′ ,
but does not hear from names(z′) in Gτ . But then, according to g’s “discarding” of “dirty”
source vertices in Equation (5), y ̸∈ σ′, contradicting our assumption.

Thus, for every facet τ ′ ⊇ σ in PN , names(x) does not hear from any process in names(τ ′)\
names(σ) in Gτ ′ in rounds N + 1, . . . , M . Consequently, there must be a vertex x in σ with
names(x) = p, and x ∈ g(σ). So, g(σ) ̸= ∅. ◀

C Proofs for Section 5 (Upper Bound for Fixed Graphs)

▶ Theorem 5.1. There exists an algorithm solving k-set agreement in G in ⌊ t
k ⌋ + D(G, t)

rounds.

Proof. The algorithm and its proof of correctness are directly inspired from the k-set
agreement algorithm for the clique Kn in [8], and from its analysis. The algorithm is merely
the min-flooding algorithm for ⌊ t

k ⌋ + D(G, t) rounds. That is, every node sends its input
value to all its neighbors at the first round, and, at each round r ≥ 2, every node forwards the
minimum value received so far to all its neighbors. After ⌊ t

k ⌋ + D(G, t) rounds, every node
outputs the smallest value it became aware of during the whole execution of the protocol,
which may be its own input value, or the input value of another node received during
min-flooding.

Termination and validity are satisfied by construction. We now show that at most k

values are outputted in total by the (correct) nodes. Let r ∈ {1, . . . , ⌊ t
k ⌋}, and let us consider

the system after r − 1 rounds of min-flooding have been performed. We focus on the nodes
that have not crashed during the first r − 1 rounds, and, among these nodes, we consider
those that are holding the smallest values currently in the system. More precisely, let U ⊆ V

be a set of k nodes that have not crashed during the first r − 1 rounds, and satisfying that,
for every value x held by a node u /∈ U that has not crashed during the first r − 1 rounds, x

is at least as large as any value currently hold by the nodes in U .
We claim that, if some node u ∈ U does not crash at round r and holds a value x then,

then by the end of round r + D(G, t) each correct node will either know x or a smaller value.
Indeed, if u does not crash at round r, then, at this round, u sends x to all its (correct)
neighbors. Since t < κ(G) ≤ deg(u), we have that, for every suffix of the current execution,
at least one neighbor u′ of u is correct, i.e., one correct node u′ holds x at the end of round r.
It follows that all the correct nodes will have received x or smaller values by the end of round
r + D(G, t).

As a consequence of the claim, if less than k nodes crash at some round r ∈ {1, . . . , ⌊ t
k ⌋},

then at the end of round r + D(G, t), every correct node knows at least one value among the
smallest k values present in the system at the end of round r − 1. This guarantees that at
most k distinct values are outputted by the nodes.

On the other hand, for all executions in which at least k nodes crash in each of the first
⌊ t

k ⌋ rounds, less that k nodes can crash at round ⌊ t
k ⌋ + 1. So, let v be a node that does

not crash at round ⌊ t
k ⌋ + 1, and that holds one of the smallest k values in the system after

DISC 2025



31:22 Lower Bounds for k-Set Agreement

⌊ t
k ⌋ rounds, say x. Round ⌊ t

k ⌋ + 1 can be viewed as the first round of broadcast of value
x from node v. This broadcast will complete in D(G, t) rounds in total, no matter which
nodes distinct from v crashes at rounds r ≥ ⌊ t

k ⌋ + 1, and no matter whether v itself crashes
at some round r > ⌊ t

k ⌋ + 1. Therefore, at the end of round ⌊ t
k ⌋ + D(G, t), all correct nodes

have received at least one value among the smallest k values present in the system at the end
of round ⌊ t

k ⌋. This guarantees that at most k distinct values are outputted by the nodes. ◀
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