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—— Abstract

We provide new distributed interactive proofs (DIP) for planarity and related graph families. The
notion of a distributed interactive proof (DIP) was introduced by Kol, Oshman, and Saxena (PODC
2018). In this setting, the verifier consists of n nodes connected by a communication graph G. The
prover is a single entity that communicates with all nodes by short messages. The goal is to verify
that the graph G satisfies a certain property (e.g., planarity) in a small number of rounds, and with
a small communication bound, denoted as the proof size.

Prior work by Naor, Parter and Yogev (SODA 2020) presented a DIP for planarity that uses
three interaction rounds and a proof size of O(logn). Feuilloley et al. (PODC 2020) showed that the
same can be achieved with a single interaction round and without randomization, by providing a
proof labeling scheme with a proof size of O(logn). In a subsequent work, Bousquet, Feuilloley, and
Pierron (OPODIS 2021) achieved the same bound for related graph families such as outerplanarity,
series-parallel graphs, and graphs of treewidth at most 2. In this work, we design new DIPs that use
exponentially shorter proofs compared to the state-of-the-art bounds. Our main results are:

There is a 5-round protocol with O(loglogn) proof size for outerplanarity.

There is a 5-round protocol with O(loglogn) proof size for verifying embedded planarity and

O(loglogn + log A) proof size for general planar graphs, where A is the maximum degree in

the graph. In the former setting, it is assumed that an embedding of the graph is given (e.g.,

each node holds a clockwise orientation of its neighbors) and the goal is to verify that it is a

valid planar embedding. The latter result should be compared with the non-interactive setting

for which there is lower bound of Q(logn) bits for graphs with A = O(1) by Feuilloley et al.

(PODC 2020).

The non-interactive deterministic lower bound of 2(logn) bits by Feuilloley et al. (PODC 2020)

can be extended to hold even if the verifier is randomized. Moreover, the lower bound holds

even with the assumption that the verifier’s randomness comes in the form of an unbounded
random string shared among the nodes.
We also show that our DIPs can be extended to protocols with similar bounds for verifying series-
parallel graphs and graphs with tree-width at most 2. Perhaps surprisingly, our results demonstrate
that the key technical barrier for obtaining o(loglogn) labels for all our problems is a basic sorting
verification task in which all nodes are embedded on an oriented path P C G and it is desired for
each node to distinguish between its left and right G-neighbors.
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1 Introduction

Planarity is a fundamental graph property that has been widely studied due to its rich
combinatorial structure and numerous algorithmic applications. While in the centralized
setting, the task of verifying if a given graph is planar can be done in linear time [18], in
the distributed setting the running time depends linearly on the diameter of the graph
[13]. The non-local nature of planarity motivates the use of a powerful, but potentially
untrusted, prover that can aid the distributed verification by providing each node with a
short auxiliary string, a.k.a. a proof label. The nodes then engage in brief communication to
collectively determine whether to accept or reject the provided proof. This framework has
been formalized into proof labeling schemes by Korman, Kutten and Peleg [20]. In this work
we focus on the interactive extension of this model to distributed interactive proofs (DIP) as
proposed by Kol, Oshman, and Saxena [19]. In this setting, the nodes are allowed to interact
with the prover through multiple rounds of communication. The key complexity measures
are the number of interaction rounds and the proof size.

The first evidence of the power of such proof systems for certifying planarity was provided
by Naor, Parter, and Yogev [21]. Their result for planarity was in fact implied by a more
general machinery that translates any (centralized) computation in O(n) time — such as, the
centralized planarity verification of [18] — into a three-round distributed interactive protocol
with O(logn) proof size. Subsequent work by Feuilloley et al. [6, 7] demonstrated that the
same proof size could be achieved with just a single interaction round, effectively reducing
to the classical proof labeling scheme setting. Their work is accompanied by a matching
lower bound of Q(logn) bits, that holds already for graphs with maximum degree of O(1).
These developments bring us back to the fundamental question of whether interaction truly
provides an advantage in certifying planarity.

» Question 1.1. What is the power of distributed interactive proofs for certifying planarity?

We address this question by providing new DIPs for planarity and related graph families.
Namely, we obtain constant-round protocols with a proof size of O(log logn) for outerplanarity,
embedded planarity, series-parallel graphs, and graphs of treewidth at most 2; and a proof
size of O(loglogn + log A) for planarity in graphs of maximum degree A (we distinguish
between embedded planarity in which we assume that a graph embedding is given in a
distributed manner, and planarity in which no embedding is given; see full version [14] for
formal definition). We also show that the Q(logn) lower bound of [6] can be extended to
one-round DIPs. Therefore, our results give the first evidence to the advantage provided
from interaction in planarity certification.

Model. In this paper, we consider distributed interactive proofs (DIPs) based on the model
of [19].2 In the DIP setting, instances are graphs G = (V, E) taken from some universe U
and the goal is to distinguish between yes-instances that come from a yes-family Fy C U
and no-instances that come from a no-family Fy = U — Fy.?> A DIP is an interactive
protocol between a distributed verifier operating concurrently at all nodes of the graph and a
centralized prover that can see the entire instance. The prover and verifier interact back and
forth in rounds. Let Z,+ denote the rounds in which the verifier interacts with the prover
and let Z,;, denote the rounds in which the prover interacts with the verifier.

2 We note that [19] uses the terms dAM and dMAM to denote the special cases of a DIP protocol with 2
and 3 rounds, respectively.

One can easily adapt the setting so that instances also include some local information to the nodes (e.g.,
identifiers, weights, etc.). We chose to avoid this additional notation as the results of this paper apply
to graphs without local node information.



Y. Gil and M. Parter

Our protocols are public-coin which means that in each round i € Z,.¢, the verifier at
each node v € V interacts by drawing a random bitstring p! € {0,1}* and sending it to the
prover (in particular, the verifier cannot hide any random bits from the prover). The prover
interacts with the verifier in rounds ¢ € Z,;, by sending a message ui € {0,1}* to each node
v € V. Keeping up with the terminology of [20], we sometimes refer to the messages sent
by the prover as labels. The interaction ends with a round in which the prover interacts
with the verifier, after which the verifier at each node v € V' computes a local yes/no output
based on: (1) the random bitstrings p! drawn by v throughout the protocol; (2) the labels
wi assigned to v by the prover throughout the protocol; and (3) the labels !, assigned to v’s
neighbors u € N(v) by the prover throughout the protocol. We say that the verifier accepts
the instance if all nodes output “yes”, and that the verifier rejects the instance if at least one
node outputs “no”.

As standard, the correctness of a proof system is defined by completeness and soundness
requirements. The completeness requirements asks that if G € Fy, then there exists an
honest prover causing the verifier to accept the instance; whereas the soundness requirement
asks that if G € Fp, then for any prover, the verifier rejects the instance. In the DIP setting,
the correctness requirements are relaxed so that the completeness and soundness hold with
probabilities 1 — €. and 1 — €, respectively, for some parameters 0 < e, e5 < 1/2. In this case,
we refer to €. as the completeness error and to €, as the soundness error. A protocol is said
to have perfect completeness if ¢, = 0. The performance of a DIP protocol is measured by
the amount of prover-verifier communication it requires. Namely, the objective is to design
protocols with a small number of interaction rounds and a small proof size which is defined
as the size of the longest label assigned by the honest prover during the protocol.

The Challenge of Going Below the logn Barrier. As observed in [21], achieving sub-
logarithmic proof lengths presents a significant challenge in the DIP setting and also serves
as a lower bound for numerous problems in the non-interactive setting. This difficulty arises
because many fundamental operations — such as identifying neighboring nodes, counting,
or specifying node IDs — intrinsically require logn bits. While [21] made important initial
progress in this area, their results apply to a more permissive variant of the DIP model,
where nodes are allowed to send different messages to each of their neighbors. Indeed, their
key technique is based on a rooted spanning tree provided by the prover such that every
node identifies its tree-parent based on its internal port-numbering. Therefore, for each node
to be able to learn its children in the tree (which is crucial to their protocols), every node
has to send a distinct message to its parent.

In contrast, our work operates within the more restrictive DIP framework defined by Kol
et al. [19], where nodes may only forward the proofs they receive to their neighbors. This
constraint aligns with the non-interactive proof labeling model introduced in [20], where a
node’s decision is based solely on its own proof and those of its neighbors. This key difference
in model assumptions becomes especially important in the sub-logarithmic setting, effectively
preventing us from directly applying the techniques developed in [21].

Our Results. We present new distributed interactive proofs for various well-studied graph
families. The first graph family considered is that of path-outerplanar graphs (see Section
2 for definition). Previously, [6] showed that path-outerplanarity admits a proof labeling
scheme with a proof size of O(logn). We improve upon the communication complexity of
that result by designing a protocol with exponentially shorter proof labels as specified in the
following theorem.
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» Theorem 1.2. There exists a distributed interactive proof for path-outerplanarity running in
5 interaction rounds. The proof admits perfect completeness, a soundness error of 1/polylogn,
and a proof size of O(loglogn).

Building upon the path-outerplanarity protocol, we provide a protocol for (general)
outerplanarity with the same asymptotic communication guarantees.

» Theorem 1.3. There exists a distributed interactive proof for outerplanarity running in 5
interaction rounds. The proof admits perfect completeness, a soundness error of 1/polylogn,
and a proof size of O(loglogn).

We then move on to consider the case of planar graphs. In this context, we consider two
verification tasks referred to as planar embedding and planarity. In the planar embedding
task, an embedding of the graph is given in a distributed manner and the goal is to decide
if it is a valid planar embedding (i.e., if no edges cross). In the planarity task, the goal is
simply to decide if the given graph is planar. The details of our protocols for these tasks are
given in the following two theorems.

» Theorem 1.4. There exists a distributed interactive proof for planar embedding running in 5
interaction rounds. The proof admits perfect completeness, a soundness error of 1/polylogn,
and a proof size of O(loglogn).

» Theorem 1.5. There exists a distributed interactive proof for planarity running in 5
interaction rounds. The proof admits perfect completeness, a soundness error of 1/polylogn,
and a proof size of O(loglogn + log A).

We also consider the two closely related graph families of series-parallel graphs and graphs
of treewidth at most 2. We obtain the following two results.

» Theorem 1.6. There exists a distributed interactive proof for series-parallel graphs running
in 5 interaction rounds. The proof admits perfect completeness, a soundness error of
1/polylogn, and a proof size of O(loglogn).

» Theorem 1.7. There exists a distributed interactive proof for graphs of treewidth at most
2 running in 5 interaction rounds. The proof admits perfect completeness, a soundness error
of 1/polylogn, and a proof size of O(loglogn).

Finally, we provide the following lower bound.

» Theorem 1.8. For each of the following graph families, any one-round distributed interactive
proof with completeness and soundness errors smaller than 1/10 requires a proof size of
Q(logn): (1) path-outerplanar graphs; (2) outerplanar graphs; (3) embedded planar graphs;
(4) planar graphs; (5) series-parallel graphs; and (6) graphs of treewidth at most 2;

We note that Theorem 1.8 strengthens the lower bound presented in [6] in the following ways.
First, the lower bound of [6] only applies to one-round proofs with deterministic verifier.
Theorem 1.8 states that the same bound holds even if the verifier is randomized. Combined
with the upper bounds stated above, our results present a strong evidence of the power
added from interaction in the context of distributed proofs for planarity and related tasks.
We remark that our lower bound holds even if the nodes have access to (unbounded) shared
randomness. We also note that the lower bound of [6] does not explicitly apply to some of
the graph families that appear in Theorem 1.8 (namely, path-outerplanar graphs, embedded
planar graphs, and series-parallel graphs).
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Open problems. Our results leave some intriguing unresolved questions that can be explored
in follow-up works. Here, we highlight three of them.

As the main open problem, we ask whether the additive O(log A) term is necessary in
the proof size for planarity. That is, we pose the following question.

» Open Question 1. Is it possible to obtain a constant round protocol for planarity with a
proof size of O(loglogn) even on graphs with mazimum degree A = w(polylogn)?

One may also ask whether 5 interaction rounds are necessary in order to obtain a proof size
of O(loglogn) for the tasks discussed in this paper. Of course, we know by Theorem 1.8
that 1 round is insufficient. However, for any 1 < r < 5, whether an r-round protocol exists
remains open even if we simply look for a proof size of o(logn). This leads to the following
open problem.

» Open Question 2. Is it possible to obtain an r-round protocol for e.g., outerplanarity,
with a proof size of o(logn) for some 1 <r < 5¢

Finally, we ask whether it is possible to improve our protocol’s communication bound.

» Open Question 3. Is it possible to obtain a protocol for e.g., outerplanarity, where the
prover communicates o(loglogn) bits with each node?

2 Preliminaries and Definitions

Conventions. Throughout, if not specified otherwise, a graph G = (V, E) is assumed to
be undirected and connected. For each node v € V, we stick to the convention that Ng(v)
denotes the set of v’s neighbors in the graph, E(v) denotes the set of edges incident on v, and
deg(v) = |Ng(v)| = |E(v)| denotes v’s degree in G. Whenever G is clear from the context,

we may omit it from the notation and write N(v) and deg(v) instead of Ng(v) and degq(v).

For a node-subset V' C V', we denote by G(V’) the subgraph induced on G by V'.

As part of our technical tools, we also consider directed graphs. If G is directed, we assume
that the edge orientation is given to the nodes such that each node v € V' can distinguish
between its incoming and outgoing incident edges. For a directed edge e with endpoints u

and v, we write e = (u,v) to reflect that e is directed from u to v, and e = (v, u) otherwise.

In the context of a distributed interactive proof, we assume that the label assigned by the
prover to node v € V' can be viewed by both its incoming and outgoing neighbors.

Hamiltonian paths. Consider a graph G = (V, E) with a Hamiltonian path P. For a pair
u,v € V of nodes, define the relation <p so that u <p v if u precedes v in P. Naturally,
this extends to u <p v if u <p v or u = v. Going forward, when P is clear from context, we
may omit it from our notation and write © < v and u < v instead of u <p v and u <Xp v,
respectively. Whenever we encounter a Hamiltonian path, it will be convenient to think
of it drawn as a straight line from left to right. Keeping up with this convention, for each
node v € V, we can partition its non-path edges in G into v-left edges which are incident
on neighbors u < v, and v-right edges which are incident on neighbors v < u. We say that
a non-path edge (u,v) is the longest v-left (resp., v-right) edge if u < v (resp., v < u) and
u < u (resp., u’ < u) for every neighbor v’ € N(v).

Left-right sorting. We define a verification task called left-right sorting (LR-sorting) which

is used as a sub-task in our protocols. In LR-sorting, a directed graph G = (V, E) is given.

The graph G admits a directed Hamiltonian path P which is given such that each node
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Figure 1 A path-outerplanar graph. The longest c-right edge is (c, f); the longest f-left edge is
(b, f); the successor of (c,e) is (¢, f).

v € V knows its incident edges in P. The path P is assumed to be directed from left to right.
The goal of the task is to decide if u < v for every directed edge (u,v) € E — P. That is, a
yes-instance is defined so that u < v for every edge (u,v) € F; whereas a no-instance admits
at least one edge (u,v) € E such that v < u. Observe that equivalently, yes-instances are
ones in which G is a DAG (in which case the P-ordering is the unique topological sort of G);
and no-instances are ones in which G admits some cycle.

Path-outerplanar graphs. A graph G = (V, E) is said to be path-outerplanar if it admits a
Hamiltonian path P such that all non-path edges can be drawn above P without crossings.
If the edges can be drawn in such a manner, we say that they are properly nested within
P (or simply properly nested when P is clear from the context). Equivalently, a graph
is path-outerplanar if no two edges (u,v), (u/,v') € E satisfy u <p v’ <p v <p v’ with
respect to some Hamiltonian path P (cf. [6]). Refer to Figure 1 for a pictorial example of a
path-outerplanar graph and some of the related definitions.

The following simple observation will be useful in our protocol for path-outerplanar
graphs in Section B.

» Observation 2.1. Suppose that G is a path-outerplanar graph and let (u,v) € E be a
non-path edge such that uw < v. The edge (u,v) is either the longest u-right edge or the longest
v-left edge.

Proof. Assume that (u,v) is neither the longest u-right edge nor the longest v-left edge. Let
(u,v") and (u',v) be the longest u-right and v-left edges, respectively. These edges satisfy
u’ < u < v < v which contradicts path-outerplanarity. |

Given a path-outerplanar graph G, we make the following definitions. For a non-path
edge (u,v), u < v, define its successor as the edge (u/,v") that satisfies: (1) v/ < u < v < v/;
and (2) u” 24’ < v 20" for every edge (u”’,v”) that satisfies v” < u < v < v”. Intuitively,
the successor of an edge is the edge drawn directly above it. For cohesiveness, for any edge
e that does not have a successor in the graph, define the successor to be a virtual edge
e* = (u*,v*), u*,v* ¢ V, defined so that u* < v < v* for any v € V. Notice that each edge
has a unique successor. Naturally, we say that e is a predecessor of €’ if €’ is the successor of
e. We say that two edges e and €’ are siblings if they have a common successor.

The following observation is now straightforward from the definitions.

» Observation 2.2. Suppose that G is a path-outerplanar graph and let e = (u,v) be a (possibly
virtual) non-path edge such that uw < v. There exists an ordering (uy,v1), (ug, v2), . .., (Ug, vk)
of e’s predecessors such that u X u; < vy XUz <vo - J Uk <V X V.
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Encoding a spanning forest in a planar graph. As a building block in our protocol, we
would like for the prover to be able to communicate a spanning forest F' of the graph G to
the verifier. While it is trivial to achieve in general using O(logn)-bit labels, in our case
we would like much smaller labels. It turns out that this task can be achieved in planar
graphs deterministically and with constant-sized labels. This is done by slightly extending a
construction of [3] which is designed for the task of deciding whether a planar graph admits
a perfect matching. We state the construction’s properties in the following lemma.

» Lemma 2.3. Let G be a planar graph and let F be a rooted spanning forest of G (i.e.,
F is a collection of rooted trees). For some constant ¢ > 0, there exists a label assignment
L:V —{0,1}¢ such that each node v € V' can learn its parent and children in F only as a
function of L(v), and the labels L(u) assigned to v’s neighbors u € N(v).

For completeness of presentation, we provide a proof for the lemma. We emphasize that this
construction only allows the prover to communicate the forest F' to the verifier and does not
provide proof that F is indeed a spanning forest.®

Proof. For ease of presentation, let us assume that the prover tries to communicate a
spanning tree T (i.e., a connected forest). The case of an unconnected forest admits a similar
construction. Suppose that G = (V| E) is a planar graph and T is a spanning tree rooted
at some node r € V. For each node v € V — {r}, let parent(v) denote its parent and let
depth(v) denote its depth. Define the graph G,qq (resp., Geyen) to be the graph obtained by
starting from G and contracting all edges (v, parent(v)) that go from an odd (resp., even)
depth node v to its parent in T. Observe that Goqq and Geyepn are both planar and thus,
4-colorable. Towards providing the label assignment, the prover computes 4-colorings of Goq4q
and Geyen, respectively. For each node v € V, let ¢1(v) the color of the node into which v

contracted in Goqq and let co(v) be the color of the node into which v contracted in Geyen.

The prover assigns each node v € V' with the label L(v) = (¢1(v), c2(v), parity(v)) where
parity(v) = depth(v) mod 2.

We argue that the label assignment allows each node v € V to deduce which of its
neighbors are its parent and children in 7. The idea is as follows. If a node v € V' of odd
depth receives a color ¢;(v), then due to the validity of the coloring on Gy44, it holds that
parent(v) is the only neighbor of v with even depth for which ¢;(parent(v)) = ¢1(v). The
case of even depth nodes is similar.

To make things more concrete, consider some node v € V with parity(v) = 1 (resp.,
parity(v) = 0). Node v identifies its parent as its only neighbor v € N (v) with parity(u) =0
and ¢1(v) = ¢1(u) (resp., parity(v) = 1 and co(v) = ca(u)). Additionally, v identifies its
children as the neighbors « € N(v) that satisfy parity(u) = 0 and c3(v) = co(u) (resp.,
parity(v) =1 and ¢1(v) = ¢1(u)). <

Enabling edge-labels in planar graphs. In the technical sections, it will be convenient to
describe protocols assuming that the prover can also assign edge-labels (such that both of the
edge endpoints can see the label) rather than only node-labels. This assumption is facilitated
by the following lemma.®

The scheme extends to some classes of non-planar graphs; see [3] for full details.

Another way to formulate this construction is in terms of advice, based on the model of [9, 10].
Specifically, using the terminology of [10], the statement means that computing any spanning forest of a
planar graph admits an (O(1),0)-advising scheme.

Transformations that enable edge-labels in planar graphs have been presented in previous papers (see,
e.g., [6]). However, these constructions require the prover to assign an ordering to the nodes which

34:7

DISC 2025



34:8

New Distributed Interactive Proofs for Planarity: A Matter of Left and Right

» Lemma 2.4. Let IT be a class of planar graphs. Suppose that there exists a distributed
interactive proof deciding whether G € 11 in which the prover assigns labels of size £ to the
nodes and edges. Then, there exists a distributed interactive proof in which the prover assigns
labels of size O(£) only to the nodes. Furthermore, the two proofs admit the same number of
interaction rounds.

Proof. It is well-known that planar graphs have arboricity at most 3. This means that the
edge-set of any planar graph G = (V| E) can be partitioned into three edge-disjoint forests
F1, F5, F3. By Lemma 2.3, the prover can inform each node v € V' of its parent and children
in each F; using only constant-sized labels. Then, instead of assigning a label L(u;,v) to the
edge (u;,v) between v and its parent u; in F;, the prover simply writes L(u;,v) to a field in
v’s label which is designated for its parent in F;. This allows both endpoints to learn the
label L(u;,v), thus enabling the simulation of edge-labels. <

Spanning tree verification. Consider a graph G = (V| E) and let T be a subgraph of G
such that each node v € V knows its incident edges in 7. We define spanning tree verification
as the task of deciding whether 7' is a spanning tree of G. The following lemma is established
in [21].

» Lemma 2.5 ([21, Section 7.1]). There is a distributed interactive proof for spanning tree
verification with 3 interaction rounds and constant proof size. The proof admits perfect
completeness and a constant soundness error.

Observe that by standard parallel repetition, one can reduce the soundness error to 1/2¢ at
the expense of a ©(¢) proof size for any parameter £ > 0. Throughout the paper, this fact
will be used in a black-box manner.

Multiset equality. In the multiset equality problem, each node v € V receives as input two
multisets S1(v), S2(v) and the goal is to decide whether S; = Sy, where S; and S are the
multisets S1 = J,cy S1(v) and Sz = (J,cy S2(v). Notice that in the definition of Sy and Sy,
the union is taken with respect to multisets, i.e., the multiplicity of element s in S; (resp.,
S) is the sum of its multiplicities over all multisets S(v) (resp., S2(v)). The multisets Sy
and So are assumed to be of size at most k for some integer £ > 0, and the elements are
taken from a universe of size k¢ for some constant ¢ > 1. For our purposes, it would also be
convenient to assume that the nodes are given a distributed encoding of a rooted spanning
tree of the graph. The following lemma can be derived from the multiset equality protocol of
[21].

» Lemma 2.6 ([21]). Given a multiset equality instance (G, S1, S2, k) such that | S|, ]Sz < k
and a rooted spanning tree T of G, there exists a 2-round distributed interactive proof for
multiset equality. The proof admits perfect completeness, a soundness error of 1/k¢, and a

proof size of O(logk).

Since the lemma above is not explicit in [21] and since we use the details of the multiset
equality protocol in a white-box manner, we describe here the construction’s details. The
multiset equality protocol relies on the following idea. For a multiset S, define the polynomial
ps(x) = [I,cg(s — x).” Now, observe that S; = S, if and only if ¢s, = ¢g,. Moreover,

incurs an additive ©(logn) overhead to the label size. Thus, we cannot use these transformations for
our purposes.
7 Notice that we assume here w.l.o.g. that multiset elements are integers.
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notice that the degree of vg, (z) and vg,(z) is at most k. Define p as the smallest prime
number that satisfies p > k°*! and let z be a variable drawn uniformly at random from
{0,...,p—1}. By polynomial identity testing properties, if ps, Z ¢s, and @g, (2), vs,(z)
are computed over the field F, then Pr[pg, (2) = ¢s,(2)] < k/p < 1/k°.8

Following this idea, the multiset equality problem essentially reduces to evaluating a
polynomial at a random point z € {0,...,p—1}. Recalling that we assume that a distributed
encoding of a rooted spanning tree is provided to the nodes, the polynomial evaluation is
implemented as follows. First, the point z € {0,...,p — 1} is sampled by the root and sent
to the prover. Then, the prover assigns each node v € V with the value z and the values
¢sv(2), psy(2) (computed over F),) where S} (resp., S3) is the multiset of elements from S
(resp., S2) in v’s subtree. Given the assigned values, it is well-known that their validity can
be checked at each node v € V' based on its input, its label, and its children’s labels. This
is because polynomial evaluation is an aggregation task that can be verified “up the tree”
(see, e.g., [20, Lemma 4.4] for details). Following these checks, the root r can check that
¢sy(2) = sz (2) (which implies that g, (2) = ¢s,(2)).

To summarize, given a rooted spanning tree of the graph, the multiset equality protocol
runs for 2 interaction rounds, admits perfect completeness, a soundness error of 1/k¢, and a
proof size of O(logp) = O(log k).°

3 Technical Overview

In this section, we provide an overview of the techniques used to obtain the protocols
presented in the paper. To exemplify the challenge of planarity certification with labels of
size O(loglogn), let us first sketch a seemingly natural (yet unsuccessful) approach to which
we refer as the clustering approach. Suppose that the prover computes a partition of the
graph into node-disjoint connected clusters of size polylogn. Then, the prover provides a
proof that: (1) the subgraph induced by each cluster is planar; and (2) the graph obtained by
contracting all clusters is planar. Notice that in terms of proof size this approach is promising
(and indeed, a similar approach was used in [21] to achieve sub-logarithmic proofs for various
other problems). This is because one can use , e.g., the logarithmic proof for planarity of [6]
on each cluster to obtain a proof of size O(loglogn) for (1). As for (2), since each cluster
has size polylogn and acts as a single node in the contracted graph, one can hope that it is
possible to distribute the proof of a single cluster among the nodes within that cluster using
only O(loglogn)-sized labels per node. For the sake of this example, let us assume that it is
indeed possible to obtain a proof for (2) with a proof size of O(loglogn).

It is not hard to see that the proof provided from the clustering approach is complete
— if G is planar, then so are the subgraphs induced by the clusters as well as the graph
obtained from contracting every cluster. The fundamental problem however, is that a proof
for planarity obtained from this approach cannot be sound. To see why this is the case,
consider a non-planar graph that contains a single 5-clique H.'® A cheating prover can then
define the partition such that, e.g., two nodes of H are assigned to one cluster and the other
three are assigned to a different cluster. In this case, H does not violate planarity within any
cluster and translates to a single edge in the contracted graph. Therefore, in this instance
the verifier is likely to accept which violates the soundness requirement.

8 Recall that F, is the field whose elements are {0,...,p — 1} and operations are done modulo p.

9 Recall that standard density of primes properties assure that p cannot be too large. In particular,
p < kT2 and thus logp = O(log k).

10 Recall that a graph is planar if and only if it does not contain K5 or K. 3,3 as a minor.
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LR-Sorting
(Lemma 4.1)
Outerplanarity Path-Outerplanarity Embed('ied Planarity
— —— Planarity ——
(Thm. 1.3) (Thm. 1.2) (Thm. 1.4) (Thm. 1.5)

Series-Parallel
(Thm. 1.6)

|

Treewidth < 2
(Thm. 1.7)

Figure 2 High-level description of the main results and their connections.

Notice that even if somehow we were able to prevent the prover from constructing an
adversarial partition, it is possible to construct a no-instance in which the verifier is likely to
accept for any partition. For example, it is possible to create an instance where each edge of
H is subdivided such that its endpoints are at distance Q(n) in G (and thus, are separated
in any partition). Hence, we conclude that the clustering approach is doomed to fail for the
planarity task.

The inherent failure of the clustering approach compels us to come up with a different
approach. Similarly to the approach of [6], we seek to reduce planarity tasks to some other
well-structured task for which we are able to design an efficient protocol. Perhaps surprisingly,
we show that efficient protocols for all tasks considered in the current paper can be obtained
based on a protocol for the seemingly unrelated task of LR-sorting. Indeed, starting from
LR-sorting we present a sequence of reductions leading to new protocols for outerplanarity,
planar embedding, planarity, series-parallel, and graphs of treewidth < 2. Refer to Figure 2
for a chart depicting the dependencies between our different constructions. Notice that an
advantage of LR-sorting is that unlike the planarity task, it can benefit from the clustering
approach. As we explain below in more detail, this becomes useful in our protocol.

LR-sorting. To give an intuition for the LR-sorting protocol, let us first sketch a simple
one-round protocol for LR~sorting with a proof size of O(logn). The prover assigns each node
with its position on the path. Then, each node v € V that is located at the ¢-th position can
verify that: (1) its path-neighbors are located at positions ¢ + 1; and (2) all of its outgoing
edges go towards nodes of larger positions.

To obtain a distributed interactive proof with a proof size of O(loglogn), the idea is to
divide the nodes into node-disjoint blocks where each block is made up of [logn] consecutive
path-nodes. This allows the prover to distribute the position of block b, denoted by pos(d),
such that each node receives: (1) its index i € [[logn|] within b; and (2) pos(b)[i], i.e., the
i-th most significant bit of b’s position. Ideally, as in the clustering approach, we would like
for each block to act as a single node in the trivial protocol. In this short description, let us
assume for simplicity that the prover encodes the position of the blocks correctly according
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to the P-ordering and let pos(b) denote the position of block b. The main challenge of the
protocol is then captured by the following question: suppose that there is an edge (u,v)
where u and v belong to different blocks b,, b,,, how can the prover prove to uw and v that
pos(b,) < pos(b,)?

Towards answering this question, let us first consider the simpler case where (u,v) is
the only edge leaving the block for both b, and b,. Furthermore, we will describe the
protocol under the assumption that the prover can assign edge-labels. Recall that Lemma 2.4
implies that the edge-labels assumption can be simulated in planar graphs while incurring
only a constant overhead to the proof size. Let ¢ be the index of the most significant bit
in which pos(b,) and pos(b,) differ. Notice that by definition, if pos(b,) < pos(b,), then
pos(b,)[i] = 0 and pos(b,)[i] = 1. In addition, ¢ is in the range [[logn]] and thus, can be
encoded using O(loglogn) bits. In the first interaction, the prover encodes 4 to the label of
(u,v). The prover then needs to prove that (1) pos(b,)[i] = 0; (2) pos(b,)[i] = 1; and (3)
pos(b,) and pos(b,) agree on their ¢ — 1 most significant bits.

Let us focus on how (3) is proved. A straightforward way to obtain a proof for (3) is to
assign the edge (u,v) with the substring containing the ¢ — 1 most significant bits in their
blocks. The main problem with this approach is that the proof size could be as large as
O(logn). To avoid this large label size, we can use polynomial identity testing. That is, we
interpret the substrings containing the ¢ — 1 most significant bits in pos(b,) and pos(b,) as
polynomials of degree O(logn) and seek to have the prover and verifier evaluate them at
a random point over a field of size polylogn. The prover then assigns the outcome of the
polynomial evaluation to the label of (u,v). This introduces the following locality problem:
the verification that the polynomials were computed correctly is done at the (i — 1)-th
leftmost node in each block (using the standard aggregation technique of [20]). Since u and v
might be far from the (i — 1)-th leftmost node in their respective blocks, they cannot locally
detect that the prover is not lying about the outcome. We note that in the simplified case
where (u,v) is the only edge leaving b, and b, the problem is easy to solve. Indeed, since
(u,v) is the only edge considered by blocks b, and b,, the prover can assign the outcome
of the polynomial evaluation at the (i — 1)-th node to all nodes of b, and b,. The nodes
can then check the correctness of this assignment locally based on the assignment to their
block-neighbors.

Moving on to the general case where each block may have many edges leaving it, it is not
clear how to solve the locality problem described above. Of course, if the prover assigns each
node of the block with the outcomes of polynomial evaluations for every relevant index, this
could require assigning ©(logn) values to every node which completely defeats the purpose.
The main observation that we make is that one can formulate the locality problem as an
instance of multiset equality between two multisets that are carefully defined within each
block. Then, to check whether the multisets are indeed equal, a multiset equality protocol is
executed within the blocks. An important property of the constructed multisets is that they
are of size poly log n which means that this final step can be done while maintaining a proof
size of O(loglogn).

For the correctness, it turns out that the protocol’s completeness becomes straightforward
from the multisets construction, whereas the soundness argument requires a bit more care.
Essentially, we show that in a no-instance the prover is likely to commit to a pair of unequal
multisets within some block. Then, conditioning on this event, it is likely that the verifier
rejects the instance due to the soundness of the multiset equality protocol.
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From LR-sorting to path-outerplanarity. In Section B, we devise a protocol for path-
outerplanarity. To get intuition of how the protocol works, we first recall the labels assigned
in the non-interactive proof of [6]. Essentially, the prover assigns each node v € V' with its
position in the path P along with the position of the nodes u and ' for which (u,u’) € E is
the first edge that is drawn above v. The authors of [6] show that this labeling allows the
(deterministic) verifier to verify that indeed G is path-outerplanar.

Of course, assigning the positions of nodes in P is far too costly for our purposes, so we
seek to avoid it by using interaction and randomization. To that end, we first note that
the assignment of positions in [6] serves the following purposes: (1) each node learns its
P-neighbors; (2) each edge can be identified based on the positions of its endpoints; and
(3) each node learns a clockwise orientation of its incident edges. Note that since P is a
spanning tree, (1) can be obtained using only constant-sized labels based on Lemmas 2.3 and
2.5. For (2), we show that the edge identifiers can be replaced by random bits. As for (3), we
design a protocol in which it is sufficient for every node to only distinguish between its left
and right edges with respect to the path P. In fact, we show that under the assumption that
every node knows its left and right edges, path-outerplanarity can be solved in 3 rounds and
with a constant proof size (refer to Lemma B.1 for the full details of the reduction). To lift
this assumption, we can apply our LR-sorting protocol which leads to the stated complexity
bound of Theorem 1.2.

From path-outerplanarity to outerplanarity and planarity. We handle outerplanarity and
planarity through reductions to path-outerplanarity. We note that while such reductions are
presented in previous works ([6] for planarity; [2] for outerplanarity), we cannot use them
as-is in our setting. This is because these reductions incur an additive ©(logn) overhead to
the proof size. Nevertheless, our results rely on some modifications of the existing reductions.
For outerplanarity, our reduction is white-box and it avoids the ©(logn) overhead based
on the tools of Lemma 2.3 and Lemma 2.5 as well as some observations regarding the
path-outerplanarity protocol.

For planarity, we start from the planar embedding task as an intermediate point. To
reduce planar embedding to path-outerplanarity, we revisit some of the constructive proofs
presented in [6] and show that they can be used to obtain such a reduction. Once again,
Lemma 2.3 and Lemma 2.5 are used for the sake of efficient implementation. Then, we
show that planarity reduces to planar embedding while incurring only an additive O(log A)
overhead to the proof size, thus obtaining the stated result.

Lower bounds. The starting point for our lower bounds is the lower bound of [6] which
applies to proof labeling schemes (in fact, it holds also for the more general locally checkable
proofs [16]). The result of [6] shows that an Q(logn) proof size is required even for the
task of deciding whether a graph is outerplanar or non-planar. We start by adjusting the
lower bound’s details so that it would apply for the task of deciding whether a graph is
biconnected outerplanar or non-planar.'’ This adjustment leads to a bound for all the graph
families considered in the current paper since they are planar and contain all biconnected
outerplanar graphs. To extend the lower bound to one-round protocols in which the verifier
is randomized, we use a framework presented in [11].

1 Recall that a graph is biconnected if the removal of any node leaves the resulting graph connected. A
biconnected component of a graph G is a maximal biconnected subgraph of G.
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4 LR-Sorting Protocol

In this section, we present a protocol for the task of LR-sorting on a given directed graph
G = (V, E) with Hamiltonian path P. The protocol is implemented under the assumption
that the prover is able to assign labels to the nodes and the edges of G. If a label L(u,v) is
assigned to the edge (u,v) € E, then both endpoints u and v can view it. The main result of
the current section is the following lemma.

» Lemma 4.1. There exists a distributed interactive proof for LR-sorting running in 5
interaction rounds. The proof admits perfect completeness, a soundness error of 1/polylogn,
and a proof size of O(loglogn) where labels are assigned to both nodes and edges.

Recall that by Lemma 2.4, if the given graph is planar, we can lift the edge-labels assumption
of Lemma 4.1 to get the following.

» Lemma 4.2. There exists a distributed interactive proof for LR-sorting in planar graphs
running in 5 interaction rounds. The proof admits perfect completeness, a soundness error
of 1/polylogn, and a proof size of O(loglogn).

The rest of the section is dedicated to the protocol’s description. Recall that our goal is to
show how the prover proves that u < v for every non-path edge (u,v) directed from u to
v. This is described in two stages. First, a division of the path into node-disjoint blocks is
described. Then, we explain how the block construction allows the nodes to compare their
relative position on the path. For clarity, the stages are described without regard for the
number of interaction rounds. Then, in Appendix A, we explain how the protocol can be
implemented in 5 interaction rounds. Throughout, ¢ > 0 is defined as a positive constant
that can be made large enough to support the protocol’s soundness guarantee.

4.1 The Block Construction

The block construction is defined so that the first block consists of the [logn] leftmost nodes
in the path, the second block consists of the next [logn] nodes and so on. For ease of
presentation, we assume that all blocks are of size exactly [logn]. One can easily adjust the
protocol’s details to handle the general case in which (only) the rightmost block may have
more than [logn] (but less than 2[logn]) nodes.

The purpose of the block construction is to allow the nodes to receive information
regarding their position on the path. The position of a block b, denoted by pos(b), is defined
to be ¢ — 1 if b is the i-th leftmost block. Notice that due to the block size, it is possible
to encode an integer x € {0,...,n — 1} through the nodes of a block using only O(loglogn)
bits per node. To do so, assign the j-th leftmost node of the block with the number j as
well as the j-th most significant bit of = (leading zeros are added if necessary). Using this
mechanism, the prover assigns the values pos(b) and pos(b) + 1 to each block b.

In addition, the prover provides a proof that the two numbers assigned to each block are
consecutive. To explain how this is done, suppose that x is a nonnegative integer in binary
representation and let j be its least significant bit valued 0. Notice that z and = + 1 differ
(only) in their j least significant bits. For a block b, define j, to be the least significant bit in
pos(b) whose value is 0 and let v, be the node associated with the index j,. To prove that
the numbers assigned to b are consecutive, the prover marks v, and informs every other node
in the block whether it is to the right/left of .

To present the verification process at block b, let us denote by x1(b) and x2(b) the
bitstrings assigned to b under the claim x4 (b) + 1 = x2(b). If a node v € b was labeled to be
to the right of vy, then it checks that its bit in x;(b) is 1, its bit in x2(b) is 0, and its right
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neighbor in the block (if such neighbor exists) is also labeled as right of vp; if v was marked
as vp, then it checks that its bit in 21 (b) is 1, its bit in 2:5(b) is 0, its right neighbor is labeled
as right of vy, and its left neighbor is labeled as left of vy; and if v is labeled as left of vy,
then it checks that it received the same bit in both bitstrings and that its left neighbor is
labeled as left of vy,.

To complete the block construction stage, the verifier checks that the position assignment
is consistent between adjacent blocks. Let b and b’ be two adjacent blocks where b’ is to the
right of b. The verifier seeks to check that pos(b) + 1 = pos(d’). To that end, the multiset
equality protocol is used between x5(b) and x1(b'), where a bitstring is interpreted as the
subset of [[logn]] that contains the indices whose bit is 1. Notice that the sets (and so, the
degree of the multiset equality polynomials) are of size at most [logn]. The verifier and
prover run the multiset equality protocol over the field F,, where p is the smallest prime
satisfying p > log®n. The polynomials are computed at a random point r € {0,...,p — 1}
which is the same for all blocks. To that end, the variable r is sampled by the leftmost node
in the path and passed to all nodes in the graph by the prover. Each block b computes
(with the prover’s assistance) the values of the two polynomials associated with its encoded
bitstrings x1(b), z2(b). This allows every pair of adjacent blocks to check that the positions
assigned to them are indeed consecutive.

Correctness. If the position assignment given by the prover is valid, then zo(b) = z1(b") for
every pair of adjacent blocks b, b and by the completeness of the multiset equality protocol,
the verifier does not reject in this case. On the other hand, if the position assignment
is not valid, then at least one pair b,b’ of adjacent blocks satisfies xo(b) # x1(b') and
by the soundness of the multiset equality protocol, the verifier rejects with probability

1— [logn]/p=1-1/polylogn.

Remark. An alternative approach to verifying the validity of the block construction is to
use the RAM compiler of [21] concurrently on pairs of consecutive blocks. Nevertheless, the
approach and notations presented above will be useful in the presentation of the next stage.
We also note that it might be plausible to implement the block construction stage with proof
size of o(loglogn), we avoided these optimizations as the key “communication bottleneck”
lies in the next stage.

4.2 Comparing Relative Positions

We now describe how the prover uses the block construction to prove claims of the form
u < v for all non-path edges (u,v). To that end, we divide the edges into two types as follows.
The inner-block edges are defined as the edges (u,v) in which « and v belong to the same
block, and the outer-block edges are defined as the edges (u,v) in which u and v belong to
different blocks.

Inner-block edges. Suppose that (u,v) is an inner-block edge. To show that u < v, the
prover first assigns a bit to the edge (u,v) indicating that it is an inner-block edge. Let us
denote the indices of u and v within their block by 4, and i,, respectively (recall that these
indices were assigned to the nodes during the block construction stage). The nodes v and v
check that i, < i, and if not, reject immediately. If i, < 7,, then it is left to check that u
and v are indeed on the same block. To that end, the leftmost node of each block b (i.e.,
the node associated with the most significant bit of pos(b)) samples a number r;, € [log® n]
and sends it to the prover which in response, sends the value 7, to all nodes of the block b.
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Each node checks that the number it received is consistent with its block neighbors and the
leftmost node in the block checks that it received the same number it sampled. Then, for
every edge (u,v) that was labeled as inner-block, u and v check that they both received the
same 73 value and reject otherwise.

Correctness for inner-block edges. For completeness, observe that if w < v, then all checks
succeed and the verifier accepts. For soundness, if v < u and v and v are on the same block,
then it must hold that ¢, < ¢, and the verifier rejects. So, suppose that v and u are on
different blocks b # b’ but the prover labels (u,v) as an inner-block edge. Then, the verifier
rejects unless r, = r which happens with probability 1/poly logn.

Outer-block edges. We complete the protocol’s description by addressing the case of
outer-block edges. Consider an outer-block edge (u,v), i.e., u and v belong to different blocks
b, and b,, respectively. The prover’s goal is to show that pos(b,) < pos(b,). We divide the
proof into two parts referred to as the commitment scheme and the verification scheme.

The main idea behind the commitment scheme relies on the following simple fact. Suppose
that z and y are two nonnegative integers represented by binary strings of same length
(leading zeros are added if necessary). Then, x < y if and only if there exists an index ¢
such that the ¢ — 1 most significant bits of z and y are identical, the i-th most significant
bit of x is 0, and the i-th most significant bit of y is 1. We shall refer to this index as the
(z,y)-distinguishing index and denote it by I(z,y).

Counsider a non-path edge (u,v) whose endpoints belong to different blocks b, and b,,
respectively. The commitment scheme starts by having the prover write the value I,, , =
I(pos(by),pos(b,)) to the label of edge (u,v). Then, for each block b, the multiset equality
polynomial that is associated with pos(b) is computed at a random point ' € {0,...,p — 1},
where p is the prime number defined above. Similarly to the block construction stage, the

computation is done over the finite field F), and the variable 7’ is the same for all blocks.

For an index i € [[logn]], let pos(b)[1,...,7] denote the substring of pos(b) consisting of
its ¢ most significant bits and let us denote by cpi? the multiset equality polynomial that
is identified with the substring pos(b)[1,...,i]. We note that ©?(r') is exactly the value
computed at the i-th leftmost bit of block b. In addition to computing the multiset equality
polynomial values within the blocks, the prover writes the value wljz’vfl (r") (which is equal
to gpt}z __1(r") by the definition of the distinguishing index) to the label of each non-path
edge (u,v).

For an edge e = (u,v) which is classified as an outer-block edge, let p(e) = (4,5) be

the pair of values assigned by the prover on the label of e during the commitment scheme.

That is, here ¢ is claimed by the prover to be the distinguishing index between u and v’s
block positions, and j is claimed to be the multiset equality polynomial value computed at
the (¢ — 1)-th index of both blocks. To complete the commitment scheme, the verifier at
each node v € V makes some consistency checks. First, if the same index i appears as the
first element in two pairs p(u,v) and p(v,u’) associated with edges (u,v), (v,u’), then the
verifier rejects. To see why this condition is imposed, notice that u < v requires that the
i-th bit of v’s block is 1, whereas v < v’ requires that the ¢-th bit of v’s block is 0. For the
second consistency check, the verifier checks that if two of v’s incident edges agree on the first
element of p(-) (and did not fail the first check), then they agree on the second element of
p(+). For each node v € V, let us define Cy(v) (resp., C1(v)) as the set of pairs p(u,v) (resp.,
p(v,u)) assigned by the prover to the edges (u,v) (resp., (v,u)) during the commitment
scheme. Notice that we define Cy(v),C1(v) as sets and not multisets. In particular, this
means that |Co(v)| + |C1(v)] < [logn].
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The purpose of the verification scheme is to verify the validity of the values in Cy(v)
and C4(v) for each node v € V. Notice that this cannot be achieved locally in a trivial
manner since the indices that appear in Cy(v) and C;(v) may be associated with nodes on
v’s block that are not adjacent to v. We describe the verification of Cy(v) values and then
explain the small change required for the Cy(v) verification. For a block b, define Cy(b) as
the multiset C1(b) = U,¢, C1(v). Define F'(b) as the set of indices whose bit in pos(b) is
equal to 1 and let D1(b) = U,cp){(4, ©? 1 (7"))}. The main idea behind the verification
scheme is that in yes-instances, for each node v € b and pair (i,j) € Ci(v), it holds by
construction that (i,7) € D1(b). Thus, one can construct a multiset which is equal to C;(b)
by taking every element of D;(b) with some multiplicity between 0 and [logn] (notice that
it is not guaranteed that every element of Dq(b) is in C1(b), so we allow a “multiplicity” of
0). Following this idea, the validity of C;(b) can be verified by means of another multiset
equality protocol.

To make things more concrete, consider a node v € b which is associated with an index
iy € F'(b). The prover provides v with a value M, € {0,..., [logn]} that counts the number
of times the pair (i, ¢! _;(r’)) appears in C1(b). Then, the prover and verifier execute a
multiset equality protocol to compare between C;(b) and the multiset obtained by taking M,
copies of the pair (iy, p? _;(r')) for each i, € F(b). Here, notice that node v gets the value
iy from its own label and the value ¢! _; (') from the label of its left neighbor on the path.
When computing the multiset equality polynomials, each pair (i, j) € [[logn]] x{0,...,p—1}
is mapped to an element from the set [p - [logn]] by means of a fixed bijection known in
advance to all nodes. To accommodate this range of field elements, it suffices to execute the
multiset equality protocol over the field F,, such that p’ is the smallest prime that satisfies
p’ > p- [logn]. To verify the validity of Cy(b) = |U,c, Co(v), we apply a similar idea with
respect to the set Do(b) = U, p@) (4, ©? 1 (r"))}. Observe that all the multisets that are
involved in the equality protocols (and thus, the degrees of all polynomials) are of size
O(log®n).

Correctness for outer-block edges. The completeness follows directly from the definition
of the distinguishing index and the completeness of the multiset equality protocol. Regarding
soundness, suppose that for some edge (u, v) directed from u to v, it holds that v < u. Denote
by (¢, 7) the pair assigned to the edge (u,v) by the prover in the commitment scheme.

First, consider the case that u and v are in the same block b (but (u, v) is labeled as an outer-
block edge by the prover). Notice that (i,4) can be in at most one of the sets Dg(b), D1(b).
This is because i € F'(b) implies (i,5) ¢ Do(b) and ¢ ¢ F'(b) implies (¢,5) ¢ D;(b). Assume
w.l.o.g. that (¢,7) ¢ Do(b). Notice that by construction (i,j) € Cy(b), which means that
the compared multisets cannot be equal. Hence, by the soundness of the multiset equality
protocol, the verifier rejects in this case with probability 1—log? n/(plogn) = 1—1/polylogn.

Now, suppose that v and v are in different blocks b, # b,. Notice that by construction,
(i,7) € Co(by) and (i,7) € Cy(by). If i € F(b,) or i ¢ F(b,), then the soundness follows from
a similar argument to the former case. Otherwise, by the definition of the distinguishing index
and by the soundness of the multiset equality protocol, it follows that 2 (') # @b ()
with probability 1 — 1/polylogn. If this is the case, then it must be that either j # @, (1)
or j # 2 (r"). Let us condition on this event and assume w.l.o.g. that j # 2, (r'). Then,
(i,7) ¢ Do(b,) and since (i,5) € Co(b,), the soundness of the multiset equality protocol
suggests that the verifier rejects with probability 1 — 1/poly logn.
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Appendix
A  Complexity of the LR-Sorting Protocol

For ease of presentation, our protocol is described in separate stages. Here, we observe that
parts of the stages can be parallelized. First, we observe that the block construction stage
can be implemented in three interaction rounds. Indeed, it starts with the prover encoding
the block positions along with a proof that each block receives two consecutive numbers.
Then, the verifier interacts with the prover to compute two multiset equality polynomials
within each block. This can be done in two additional interaction rounds for a total of three.
Similarly, the proofs of u < v for inner-block edges (u,v), and the commitment scheme of
outer-block edges can be completed within three rounds. Moreover, a correct execution of
these steps does not depend on the execution of the block construction, thus they can be
executed in parallel. We also note that the multiplicity values M, that are presented in
the verification stage of outer-block edges can actually be precomputed by the prover and
assigned during the first interaction (they are placed in the verification scheme strictly for
the sake of clear presentation). Therefore, after three interaction rounds, it is the verifier’s
turn to speak and the remaining task is the multiset equality protocol of the verification
scheme of outer-block edges (here, notice that the verification scheme cannot be executed
sooner as it depends on the values assigned in the commitment scheme). This takes two
additional interaction rounds for a total of five rounds. Regarding proof size, a bound of
O(loglogn) is straightforward from the construction.

B Path-outerplanarity

In this section, we present a protocol that uses LR-sorting as a sub-task to decide whether a
given graph is path-outerplanar. The properties of the protocol are specified in the following
lemma.
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» Lemma B.1. Suppose that there exists a distributed interactive proof for LR-sorting
verification in planar graphs running in t interaction rounds. Let £ be the proof size, €. be
the completeness error, and €5 be the soundness error of the LR-sorting protocol. Then, there
is a distributed interactive proof for path-outerplanarity running in max{t,3} rounds and
admitting a proof size of O(£), a completeness error of €., and a soundness error of e, + 2.

As a consequence, we get Theorem 1.2.

Proof of Theorem 1.2. The protocol is obtained by plugging the LR-sorting protocol of
Lemma 4.2 into the statement of Lemma B.1. |

The rest of the section is dedicated to the description of the protocol that proves Lemma
B.1. For clarity, the protocol is described in separate stages without regard for the number
of interaction rounds. Then, by the end of the section, we explain how the protocol can
be implemented within the desired amount of interaction. Throughout, ¢ > 0 is defined
as a positive constant that can be made large enough to support the protocol’s soundness
guarantee.

Committing to a path. The protocol starts by having the prover commit to a Hamiltonian
path P of G. To encode P, the prover uses the labels of Lemma 2.3 where P is rooted at the
leftmost node in the path. Each node can verify that it has at most one child in the given
tree encoding. Additionally, to verify that the given subgraph is indeed a Hamiltonian path
of the graph, the prover and verifier execute the protocol of Lemma 2.5 amplified by means
of a ¢ - ¢ parallel repetition.

Observe that if the graph is indeed path-outerplanar, then the prover can successfully
send the verifier a Hamiltonian path. Consequently, each node knows its path-edges and is
able to differentiate between its right and left neighbor on the path. On the other hand, if the
graph is not path-outerplanar, then the graph is either not Hamiltonian or not outerplanar.
In the former case, the prover is not able to provide a Hamiltonian path which causes the
verifier to reject with probability 1 — 279, in the latter case, the prover is able to send the
verifier a Hamiltonian path but the non-path edges are not properly nested.

LR-sorting. This stage starts by having the prover inform the verifier whether u < v or
v < u for every edge (u,v) € E. To see how this is achieved, recall that in the simulation of
edge-labels that proves Lemma 2.4, e’s label is written within the label of one of its endpoints.
Let us refer to that endpoint as the endpoint accountable for e. So, if u is accountable for e,
then the prover assigns the bit 1 to u’s sub-label associated with e to signify that u < v, and
0 otherwise.

Following this assignment, the goal of the verifier is to check that all edges were labeled
correctly by the prover, i.e., to check that if an edge (u,v) was labeled u < v, then indeed u
appears before v in P. To that end, the prover and verifier execute an LR-sorting protocol.
To create an instance for LR-sorting, the edges of the graph are oriented according to the
prover’s labeling. That is, if edge (u, v) was labeled u < v, then it is oriented from u to v.

Notice that if the verifier accepts the LR-sorting instance, then this means that the prover
labeled all edges correctly (up to a soundness error of €;). So, for the rest of the protocol,
we assume that for every non-path edge e = (u,v), both endpoints know whether u < v or
v < u. Notice that in particular, this means that each v € V' can distinguish between its left
and right edges.
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Nesting verification. In this final stage, the goal is to verify that the non-path edges are
properly nested. The stage starts with the prover informing the endpoints of each non-path
edge e = (u,v), u < v, whether it is the longest u-right edge and whether it is the longest
v-left edge. This is done by assigning two bits within the label of the endpoint accountable
for e similarly to the previous stage.

Upon receiving the edge-labels, the verifier at each node v € V' runs the following checks.
If v has any right (resp., left) edges, then the verifier checks that exactly one of them is
marked as longest v-right (resp., v-left) edge. In addition, for every right (resp., left) edge
(v,u) that was not marked longest v-right (resp., v-left), the verifier checks that it was
marked longest u-left (resp., u-right). If one of the checks fail, then the verifier immediately
rejects. Otherwise, v samples a bitstring s, € {0,1}¢* uniformly at random and sends it to
the prover. For each non-path edge (u,v) such that u < v, define its name to be the pair
(Sus Sv)-

After receiving the s, values from all nodes, the prover assigns to each edge e its name
through a sub-label name(e) and its successor’s name through a sub-label succ(e) where
the name of the virtual edge e* = (u*,v*) is defined by the designated symbol L (recall
that e* is the successor of edges with no real successor in the graph). Additionally, if edge
e = (u,v) has predecessors (u1,v1), ..., (uk, vg) such that u <u; < vy <+ Jup < v I v,
then the prover assigns the label above(w) = name(e) = (s, ) to every node w such that
(u<w=wu)V@ Iw=u)V--- V(v 2w =<v). In other words, the prover assigns e’s
name to all nodes for which e is the first edge drawn entirely above them (including the
endpoints of e’s predecessors; excluding the endpoints of e). In particular, if e = (u,v) does
not have any predecessors, then above(w) = name(e) for all nodes w such that v < w < v.
Observe that by definition, each node is associated with only one such edge and thus, receives
only one edge name.

Consider a label assignment to the nodes and non-path edges. First, for each non-path
edge e, its endpoints verify that name(e) is consistent with their sampled values. Then, each

node v € V checks that there exists an ordering ef, RN e; of its right edges, and an ordering
er,-..,eg of its left edges such that the following conditions are satisfied:

1. e;r and e,, are marked as the longest v-right and v-left edges, respectively.

2. succ(e;) = name(e}, ) for all 1 <i < k, and succ(e; ) = name(e;, ) forall 1 <i <k’
3. above(v) = succ(e}) = succ(e,).

4. if u is v’s right neighbor on the path, then name(e]) = above(u) if the set of v’s right

edges is non-empty, and above(v) = above(u) otherwise.
5. if w is v’s left neighbor on the path, then name(e; ) = above(u) if the set of v’s left edges
is non-empty, and above(v) = above(u) otherwise.
We note that a pair of orderings that satisfies the described conditions does not have to be
unique. Also, notice that nodes which are not incident on any non-path edges only need to
check that they were assigned the same value as their neighbors on the path (conditions (4)
and (5)). This concludes the description of the nesting verification. We go on to establish its
correctness.

Correctness of nesting verification. Towards proving the completeness and soundness of
the nesting verification, we show the following two observations.

» Observation B.2. Fix some node uw € V. If the prover marks the longest u-right or the
longest u-left edge incorrectly, then the verifier rejects the instance with probability 1 — 2~¢*.

Proof. Suppose that edge (u,v) is the longest u-right edge but not marked as such. Recall
that by the initial verification conditions, (u,v) must be marked as the longest v-left edge
(otherwise the verifier rejects). If v has a right edge, then by verification conditions (1)
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and (3), the value succ(u,v) should be identical to the value succ(v,w), where (v, w) is
the right edge of v which is marked as longest. If v does not have a right edge, then by
verification conditions (3) and (4), the value succ(u,v) should be identical to the value the
value above(w’) where w’ is v’s right neighbor on the path. In either case, following the
verification conditions we get that succ(u,v) should be identical to name(u’, v") of some edge
(u',v") such that v < v'. Moreover, the edge (u/,v’) is fully determined by the marking of
longest left and right edges by the prover (and in particular, determined before the sampling
of names). Note that since (u,v) is the longest u-right edge and v < ¢, it must hold that
(u,v") ¢ E and thus, v’ # u. On the other hand, since (u,v) is not marked as the longest
u-right edge, by condition (2), the first element of succ(u,v) should be s,. So, the verifier
rejects unless s, = s,» which happens with probability 27¢*. The case of longest left edges
follows a similar reasoning. <

Going forward with the correctness proof, we shall assume that all longest left /right edges are
marked correctly. For two nodes u < v, denote by P, ,, the set of nodes on the (u,v)-subpath
in G.

» Observation B.3. Suppose that for a non-path edge (u,v), it holds that G(P, ) is path-
outerplanar w.r.t. P, , (i.e., the edges of G(P, ) are properly nested within P, ). If the
verifier accepts the instance, then succ(u’,v’) is the name of the successor of (u',v") in
G(Py) for all non-path edges (v, v") # (u,v), u 2 v <V 2.

Proof. Let (z,y) be a non-path edge in G(P, ) and let (x¢,y¢) and (z,, y,) be its leftmost
and rightmost predecessors, respectively. First, if y,. = y, then it must hold that x < =z,
which means that (z,,y,) = (z,,y) is not the longest y-left edge. Therefore, by condition
(2) it must hold that the second element of succ(z,,y,) is s,. Now, suppose that y, < y.
Here, since (x,,y,) is a predecessor of (z,y), it follows that (z,,y,) is the longest y,-left
edge. Applying conditions (1), (3), and (4) along the (y,,y)-path, we once again get that
the second element of succ(z,,y,) must be s,. For similar reasoning, we can deduce that
the first element of succ(xy,ye) is s;. Now, we observe that by conditions (1), (3), (4),
and (5), every pair of adjacent siblings must have the same succ(-) field. Therefore, every
predecessor (2/,y’) of (x,y) must satisfy succ(z’,y’) = (s4, sy) = name(z, y) which concludes
our proof. |

We can now prove the completeness and soundness of our protocol.

» Lemma B.4. The described nesting verification admits perfect completeness and a soundness
error of 2-9),

Proof. We start from completeness. First, we note that by Observation 2.1, the honest
prover can mark each edge (u,v) as longest u-right /v-left correctly. Furthermore, observe
that the feasibility of the name(:), succ(-), and above(-) labels assigned by the honest
prover is guaranteed by Observation 2.2. Now, consider some node v € V and let e, =

(v,up),...,e; = (v,uy),ef = (v,uf),.. .,eﬁ = (v,u}) be its incident non-path edges such
that u, <+ <u; <v=<uf < <u). Given the labels assigned by the honest prover,
the orderings e7 ,...,e,, and ef, ceey ez defined on the left and right edges of v satisfy all

the verification conditions, thus causing the verifier to accept.

We now establish the soundness guarantee. Let us define (u,v) as an edge that admits
a crossing edge (u/,v’) such that v < v’ < v < v’ but not a crossing edge (v, v") such that
u' < u < v <wv. That is, (u,v) is not crossed by edges that has an endpoint to the left of .
Moreover, assume that (u,v) is the deepest nested such edge, i.e., every edge (z,y) # (u,v)
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where © < < y < v does not admit a crossing edge. Observe that if there exists a pair
of crossing edges in the graph, then there exists an edge (u,v) satisfying the assumptions
stated above.

We start from the case where (u,v) is the longest v-left edge. Define u < v’ < v to be the
rightmost node incident on a right edge that crosses (u,v) and define (v, v’) as the longest '~
right edge (by definition, (u’,v") crosses (u,v)). Let e1 = (u1,v),ea = (u2,v),...,ex = (ug,v)
be v’s left edges ordered such that u = up < -+ < us < u; < v. Observe that by the
assumptions on (u,v), it follows that ' < ug_1. Moreover, all edges that are drawn below
er—1 are properly nested. Therefore, Observation B.3 implies that if the verifier accepts the
instance, then succ(e;) = name(e;41) for every 1 <4 < k — 1. Furthermore, recall that (u,v)
is marked as the longest v-left edge. Thus, for condition (2) to be satisfied at node v, it must
also hold that succ(ex—1) = name(ex) = (Su, Sv)-

To show that the verifier is likely to reject in this case, the idea is to define a sequence
of edges that must agree with ex_; on their succ(:) value, but also must have s, as their
succ(:) value’s first element. This implies that the verifier rejects unless s, = s,/ which
happens with probability 1/polylogn. The sequence (x1,¥1),. .., (x+, y:) of edges is defined
as follows. Start by taking x1 < ur_1 to be the closest node to uy_; incident on a left edge
and set (z1,y1) as the longest x1-left edge. Then, take x5 < y; to be the closest node to y;
incident on a left edge and set (z2,y2) as the longest za-left edge. Continue this process until
reaching y; such that all nodes w such that u’' < w < y; are not incident on a left edge. Notice
that the sequence construction is feasible since by our assumption on (u,v), no edge within
(u,v) crosses (u/,v") (and thus, the sequence is entirely to the right of u’). Moreover, since
u’ is the rightmost node incident on a right edge crossing (u,v), it follows that every edge
(z4,y;) in the sequence is the longest y;-right edge. We note that the verification conditions
dictate that every pair of adjacent edges in the sequence should have the same succ(-) value
and that succ(zy,y1) = succ(eg—1). On the other hand, for u’ to satisfy condition (4), the
first element of succ(zy, y:) must be s,» which concludes the soundness for this case.

We move on to the case where (u,v) is not the longest v-left edge. If (u,v) is also not the
longest u-right edge, then by the construction the verifier rejects. So, assume that (u,v) is the
longest u-right edge. Let u < u’ < v be the leftmost node incident on an edge crossing (u,v)
and let (u',v") be the longest u'-right edge (by definition, (u',v’) crosses (u,v)). By similar
measures to the previous case, it is possible to find a sequence (x1,y1), ..., (x¢,y:) of edges
such that must satisfy succ(z1,y1) = -+ = succ(ay, y¢) = succ(u/,v’); and the first element
of succ(x;,y;) is s, for each 1 <4 <t. On the other hand, by similar reasoning to the one
presented in the proof of Observation B.2, it must hold that succ(v’,v’") = name(w, w’) for
some edge (w,w’) such that v < w’. Moreover, this edge is fully determined by the marking
of longest left and right edges by the prover (and in particular before the sampling of names).
Recall that v < v' < w’ and that (u,v) is the longest u-right edge. Therefore, it must hold
that w # u which means that the probability of s, = s,, is at most 27, <

Analysis of the protocol. By construction, the proof size of the protocol is O(¢). Moreover,
all stages apart from the black-box use of the LR-sorting protocol admit perfect completeness
and a soundness error of 279 Thus, by union bound arguments, the completeness error
of the protocol is €, and the soundness error is e, + 27, Of course, taking a sufficiently
large ¢, we can have a soundness error of €, + 27¢ as desired. Finally, regarding the number
of interaction rounds, we note that all stages can be executed in parallel without affecting
the correctness of the algorithm. It is straightforward to see that the stages committing to a
path and nesting can be implemented in 3 interaction rounds. Since the LR-sorting protocol
requires ¢ rounds, we get that in total the protocol runs in max{¢, 3} rounds.
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C Additional Related Work

Beyond planarity. Following the introduction of efficient distributed proof systems for
planarity [21, 6], researchers have become interested in distributed proof systems for other
graph families. The aforementioned compiler of [21] implies a three-round distributed
interactive protocol with O(logn) proof size for families of sparse graphs (i.e., m = O(n)
edges) that admit a linear-time recognition algorithm. These include, e.g., bounded genus
graphs and outerplanar graphs. Distributed proofs for bounded genus graphs were studied
further in [5, 7] where proof labeling schemes with a proof size of O(logn) are presented. For
outerplanar graphs, a proof labeling scheme with a proof size of O(logn) is presented in [2].
Additionally, the authors show similar results for a myriad of minor-free graphs.

Distributed interactive proofs variants. In [4], trade-offs between different parameters of
the DIP model are explored. The parameters considered include the form of randomness,
the complexity measures, and the number of interaction rounds. Recently, the notion of
distributed quantum interactive proofs was introduces by the authors of [12] as a quantum
variant of distributed interactive proofs. The main result of [12] is a generic transformation
from a k-round “standard” proof into a 5-round quantum proof for any constant k& > 5.
Distributed quantum proofs have also been considered in a non-interactive setting in [8, 17].
Another exciting variant that was introduced recently in [1] is that of a distributed zero-
knowledge proof. In particular, the authors adapt the classical notion of knowledge from the
centralized setting (as defined in [15]) to a distributed setting.
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