
PIPQ: Strict Insert-Optimized Concurrent Priority
Queue
Olivia Grimes #

Lehigh University, Bethlehem, PA, USA

Ahmed Hassan #

Lehigh University, Bethlehem, PA, USA

Panagiota Fatourou #

FORTH ICS, Heraklion, Greece
Department of Computer Science, University of Crete, Heraklion, Greece

Roberto Palmieri #

Lehigh University, Bethlehem, PA, USA

Abstract
This paper presents PIPQ, a strict and linearizable concurrent priority queue whose design differs
from existing solutions in literature because it focuses on enabling parallelism of insert operations as
opposed to accelerating delete-min operations, as traditionally done. In a nutshell, PIPQ’s structure
includes two levels: the worker level and the leader level. The worker level provides per-thread
data structures enabling fast and parallel insertions. The leader level contains the highest priority
elements in the priority queue and can thus serve delete-min operations. Our evaluation, which
includes an exploration of different data access patterns, operation mixes, runtime settings, and an
integration into a graph-based application, shows that PIPQ outperforms competitors in a variety of
cases, especially with insert-dominant workloads.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis

Keywords and phrases Priority Queue, Concurrent Data Structures, Synchronization

Digital Object Identifier 10.4230/LIPIcs.DISC.2025.35

Related Version Full Version: https://arxiv.org/abs/2508.16023

Supplementary Material Software (Source Code): https://github.com/sss-lehigh/pipq [12]

Funding This material is based upon work supported by the National Science Foundation under
Grant No. CNS-2045976 and by the Greek Ministry of Education, Religious Affairs and Sports
through the HARSH project (project no. YΠ3TA - 0560901), which is carried out within the
framework of the National Recovery and Resilience Plan “Greece 2.0” with funding from the
European Union - NextGenerationEU.

Acknowledgements The authors would like to acknowledge Mike Spear for all his input, feedback,
and support.

1 Introduction

Concurrent data structures are at the heart of modern applications and thus, their efficient
and scalable implementation is of great importance. Priority queues, particularly, are widely
used data structures with many applications in diverse domains [5, 24, 20, 21, 22, 32, 3, 13, 6].
Applications include graph and encoding algorithms, big data analysis, task scheduling and
load balancing, event-driven simulation, query optimization, databases (e.g., in transaction
management, deadlock handling, process handling), network routing, and more.

A priority queue supports two operations: insert, which inserts a key-value pair in the
priority queue, and delete-min, which deletes and returns the element with the smallest key
(indicating the highest priority) in the queue.

© Olivia Grimes, Ahmed Hassan, Panagiota Fatourou, and Roberto Palmieri;
licensed under Creative Commons License CC-BY 4.0

39th International Symposium on Distributed Computing (DISC 2025).
Editor: Dariusz R. Kowalski; Article No. 35; pp. 35:1–35:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:oag221@lehigh.edu
https://orcid.org/0009-0003-4934-5720
mailto:ahmed.hassan@lehigh.edu
https://orcid.org/0000-0003-0232-305X
mailto:faturu@ics.forth.gr
https://orcid.org/0000-0002-6265-6895
mailto:palmieri@lehigh.edu
https://orcid.org/0000-0002-1530-4088
https://doi.org/10.4230/LIPIcs.DISC.2025.35
https://arxiv.org/abs/2508.16023
https://github.com/sss-lehigh/pipq
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

35:2 PIPQ: Strict Insert-Optimized Concurrent Priority Queue

The last decade has been characterized by innovations in the design of priority queues
focusing mainly on improving the performance of delete-min [18, 1, 30, 26, 24, 33], which is
unquestionably a sequential bottleneck for most designs, since these operations all target the
same highest priority element. These innovations focus mostly on relaxing the semantics of
the priority queue itself to allow for more parallelism when serving the delete-min operation.
In relaxed designs, the rank of the removed element is within some defined bound of the
highest priority element, although it may not be the highest priority element itself. However,
relaxed semantics are not sufficient for many applications in which the single highest priority
element must be removed each time. Some examples that may require strict semantics include
risk management systems to ensure critical tasks are addressed first, real-time systems such as
medical systems and devices, which must optimally treat patients, and in security applications
in which high-priority messages or threats must be processed ahead of all other requests.

Despite the highlighted importance of such strict behavior of priority queues in many
applications, the focus on relaxed priority queues in the last decade left a clear gap in
literature and made the performance of state-of-the-art strict priority queues significantly
inferior to their relaxed counterparts. However, if relaxation is not a viable option, the
performance of applications needing strict semantics will always be limited by the underlying
priority queue. In this paper, we fill this gap as follows. Optimizing on delete-min in the
strict setting is difficult due to its sequential nature. Thus, while still aiming to alleviate the
performance impact of the pessimistic nature of delete-min, we shift our focus to maximizing
the performance and parallelism of insert operations. In fact, achieving a significant speedup
for insert operations can offset the overhead of the delete-min operations. Beyond that,
there is a class of applications for which the performance of insert operations is important.
Examples include graph analytics [17], data series analysis [5, 20, 21, 22], and computation
over streamed data [23].

The core intuition is to improve the performance of insert operations by using a set
of data structures, one per thread, to avoid synchronization with other threads when the
inserted element is not among those with the highest priority. When this condition is met,
which we claim to be the common case for many applications [17, 5, 20, 21, 22, 23], insertions
can effectively be embarrassingly parallel. This ensures perfect scalability, Non-Uniform
Memory Access (NUMA)-awareness, and near-optimal performance.

We developed this intuition into PIPQ1, our linearizable, concurrent priority queue
whose main strength is its high-performance insert operation. PIPQ’s design encompasses a
hierarchical structure:

In the first level, called the worker level, we deploy one min-heap [16] per thread. Insertions
are performed to the thread’s min-heap unless the thread has observed the highest priority
element to be inserted.
The second level, called the leader level, collects the highest-priority elements in PIPQ,
hence creating a set of candidate elements to be returned by delete-min.

Delete operations remove elements from the leader level, which contains the most minimal
element(s) inserted by each thread, and thus the most minimal element(s) in the entire
structure. To avoid degrading the performance of delete-min due to this hierarchical structure,
we employ the combining technique [15, 9] to minimize contention between concurrent
removals.

1 Pronounced “Pip Q”, standing for Parallel Inserts Priority Queue.

O. Grimes, A. Hassan, P. Fatourou, and R. Palmieri 35:3

We develop PIPQ in C++2 and compare its performance against two state-of-the-art
strict linearizable priority queues, namely the Lindén-Jonsson priority queue [18], and the
Lotan-Shavit priority queue [28]. Experiments are conducted on an Intel server equipped
with 96 cores over four processors. Applications include a microbenchmark, in which threads
execute a mix of workloads, and benchmarks that mimic the access patterns generated by
recent applications of priority queues, in which inserting is a dominating factor. Evaluation of
the widely used single-source shortest path (SSSP) algorithm is additionally included in the
extended version of the paper. Across experiments, our evaluation reveals that the proposed
algorithm exhibits great performance benefits compared to competitors when insertions
dominate the workload. Importantly, PIPQ does not sacrifice performance in workloads
exhibiting an equal split of both operations, nor in delete-min heavy workloads.

2 Related Work

Lotan and Shavit [28] were the first to use a Skiplist [25] as a concurrent priority queue, a
design which has since largely become the standard for implementing concurrent priority
queues. Notably, the Lotan and Shavit [28] concurrent priority queue is not linearizable,
instead achieving the weaker condition of being quiescently consistent [16]. Sundell and
Tsigas [29] created a lock-free, linearizable concurrent priority queue based on a skip-list.
Lindén and Jonsson then presented their strict, linearizable priority queue algorithm [18];
their enhancement of Lotan and Shavit’s priority queue to the delete-min operation delays
physical deletion of elements to improve performance. The evaluation provided by Lindén
and Jonsson shows that their priority queue consistently outperforms that of Sundell and
Tsigas for various types of experiments. Braginsky et al. [4] similarly use a skiplist-based
design, modifying data nodes to be lock-free chunks and leveraging elimination to speed up
concurrent delete-mins, and inserts that insert to the first chunk. While PIPQ is optimized
to increase the parallelism of insert operations, the work in [4] still uses a non-thread-local
structure but reduces synchronization through coalescing elements. Zhang and Dechev [31]
implement a lock-free priority queue based on a multi-dimensional list. Their implementation
is only quiescently consistent. Similar to these solutions, PIPQ aims to create a strict
linearizable priority queue, but with a new design which does not include use of a skip-list
and aims to optimize insertions, all while achieving linearizability.

More recent work on priority queues has focused on relaxed solutions. In these designs,
the element removed by a delete-min may not be the highest priority element itself, but is
within some defined bound of it. Spraylist [1] is a well-known relaxed priority queue, and
many other relaxed solutions have been proposed [30, 33, 27, 26, 24]. Unlike these relaxed
solutions that optimize for the delete-min operation, PIPQ provides a strict priority queue
that optimizes for insert.

A recent related work of interest is the Stealing Multi-Queue (SMQ) priority scheduler
by Postnikova et al. [24], which innovates on the prior Multi-Queues work [26]. SMQ uses a
design similar to that of the worker level of PIPQ, such that it maintains per-thread heaps.
As a result, insert operations are optimized, and, in addition to that, it relaxes the semantics
of the delete-min operation with the use of the so-called stealing buffers. Despite their
similarities, removing the relaxation of SMQ would require additional synchronization, which
is effectively the goal accomplished by PIPQ.

2 The source code for PIPQ is publicly available here: https://github.com/sss-lehigh/pipq

DISC 2025

https://github.com/sss-lehigh/pipq

35:4 PIPQ: Strict Insert-Optimized Concurrent Priority Queue

3 Overview of PIPQ

PIPQ is a linearizable priority queue that provides the traditional priority queue API:
Insert, which inserts some key-value pair, and DeleteMin, which removes the element
with the smallest (i.e., highest priority) key in the structure. Our priority queue supports
duplicate keys and/or values. Figure 1 illustrates PIPQ’s architecture, including an example
instantiation relevant to a specific thread (red / bolded).

Figure 1 PIPQ on a 4-NUMA node testbed. Each oval represents a per-thread worker-level
min-heap; “n” represents the number of threads per NUMA node. Squares represent nodes of the
leader-level linked list; “s” represents the size of the leader-level linked list.

To create highly parallel insertions, PIPQ maintains a two-level hierarchy of supporting
data structures. The two levels include the worker level and the leader level. The worker
level provides fast, parallel insertions with minimal synchronization because each thread p

inserts to its own worker-level heap, Hp. Each Hp is implemented as a conventional min-heap
protected by a single global lock. The simplicity of this level’s design is justified by the fact
that most of the time no other threads need access to Hp, as subsequently discussed. At the
leader level, the algorithm maintains a sorted linked list L of keys, which stores the highest
priority elements in PIPQ, and is meant to serve delete-min requests.

Elements may be inserted to the worker or leader level and may move between levels
in order to maintain the following invariant: for each thread p, every element in L tagged
with p (that is, p inserted the element into the global data structure) has greater or equal
priority than the highest priority element in the worker-level heap of p, Hp. This ensures
that when we remove the highest priority element from the leader level, it is, in fact, the
highest priority element in the priority queue, allowing us to achieve linearizability without
relaxing operation semantics. The items in red in Figure 1 provide an example instantiation
of PIPQ relative to a specific thread, denoted thread 1. The highest priority element in H1
has priority 8. The corresponding nodes inserted by thread 1 in L have a higher priority
(smaller value of the key, k) than 8, and are ordered in L by k.

A thread p invoking insert on PIPQ will insert to the leader level only when the new
element is of higher priority than the highest priority element in Hp (or when Hp is empty).
Otherwise, the element will be inserted into Hp. The leader level is intentionally kept small
(explained below), so we expect most insertions to occur at the worker level.

The delete-min operation leverages the combining technique [15, 9] as used in several
prior works [8, 10, 7, 19]. Electing one thread to perform a sequence of delete-min operations,
which are inherently sequential, avoids the costly contention of many threads attempting
to access and remove the highest priority element in the leader-level linked list. We call
this thread the coordinator. A thread p that performs a delete-min operation on PIPQ first
announces its operation and then attempts to become the leader of its Non-Uniform Memory
Access (NUMA) node. Leaders of each NUMA node compete to become the coordinator;

O. Grimes, A. Hassan, P. Fatourou, and R. Palmieri 35:5

thus, there are up to n leaders competing for the coordinator role at any given time, where
n is the number of NUMA nodes in the machine. The coordinator is responsible for serving
the delete-min operations of threads that execute on its NUMA node. Thus, either p will
become the coordinator and complete its own request along with the other requests of its
NUMA node, or its request will be completed by some other thread of its NUMA node that
won the race to become the coordinator.

Depending on the sequence of insert and delete-min operations, the leader-level linked
list L may grow and shrink arbitrarily. However, the size of L is an important factor in the
overall performance of PIPQ. In fact, having many elements in L hinders the performance of
insertions for two reasons. First, traversals on L involve many elements. Second, a large size
of L increases the likelihood that an insertion has to act at the leader level as opposed to at
the worker level, since the range of the priority of elements in L increases with its size. For
these reasons, we limit the size of L by requiring insertions to move elements from L down
to its worker-level heap if the number of elements that the thread has inserted in L exceeds
a certain threshold, which we call CNTR_MAX.

On the other hand (and less intuitively), having too few elements in L hinders the
performance of delete-min operations. To successfully linearize delete-min operations while
ensuring the properties that L needs to satisfy, each thread has to have at least two of the
elements it has inserted in L; the justification for requiring at least two elements is detailed
in Section 5.1. If this requirement is not met, the coordinator must promote an element from
the thread’s worker-level heap. Having few elements in L means that the coordinator would
need to perform such a promotion more frequently. We address this issue by defining a second
threshold, CNTR_MIN (with a value less than that of CNTR_MAX), and use it to introduce a
helping mechanism.

The idea behind helping is that a thread can do work that does not directly impact
the operation it is performing but can “help” other operations complete their work in a
more efficient manner. Since threads performing the delete-min operation must wait on the
coordinator, we initiate helping during this waiting period to reduce the work required by
the coordinator. Specifically, if the number of elements inserted by some thread p in L is less
than CNTR_MIN, p will promote an element from Hp up to the leader level instead of waiting
for the coordinator to eventually do so.

We maintain an array of atomic counters containing one slot per thread such that each
thread p’s slot in the counters array stores the number of elements currently in L that were
inserted by p to the global structure. We refer to p’s counter value as L_countp. The use of
helping and the gap between CNTR_MIN and CNTR_MAX is meant to achieve the following two
goals: (1) it is less costly for a waiting thread p to help by moving elements from Hp to L,
compared to the coordinator needing to do so; thus, we reduce the frequency with which the
coordinator must do additional work, and (2) by helping only when L_countp is less than
the minimum threshold (which is, in turn, less than the maximum threshold), we reduce the
frequency with which an insertion has to move an element down from the leader level to the
worker level.

Before discussing the details of PIPQ, it is important to highlight that the leader-level
linked list, L, differs from traditional linked lists in that it requires tracking which thread
inserts each element in order to move them to the corresponding worker-level min-heap when
necessary. To do so, L stores tuples (key,val,tidp), where tidp represents the unique
identifier of the thread, p, that first inserted this key-value pair in the priority queue. L is
sorted based on the key and supports the following operations: a) L-Insert(key, val, tidp),
which inserts the tuple (key,val,tidp) in L; b) L-DeleteMin, which deletes and returns the

DISC 2025

35:6 PIPQ: Strict Insert-Optimized Concurrent Priority Queue

element with the smallest (highest priority) key in L; and c) L-DeleteMaxP(lead_largest,
tidp), which removes the element with the largest (least priority) key that was inserted to
PIPQ by the thread with identifier tidp (to be subsequently inserted into Hp).

4 Operational Workflow

Figure 2 contains flow diagrams for the DeleteMin and Insert APIs of PIPQ. Recall the
invariant maintained between levels, such that the priority of each element in L must be
greater than or equal to the priority of the highest priority element from their respective
worker level heaps. Deciding on which level to insert, as well as the movement of elements
between levels, aims to maintain this invariant. Pseudocode for the leader-level APIs is
provided in Section 5.1 and their helper (search) functions are provided in Appendix A. The
entire pseudocode of PIPQ is provided in the extended version of the paper.

Insertion Flow. We first describe how an insert operation works in PIPQ, taking into
consideration the different levels to which a new element might be inserted. The following
description corresponds to the diagram on the left in Figure 2. The steps mentioned below
refer to the numbered blocks in the diagram.

Let us consider an insert operation performed by thread p, identified by tidp, that inserts
key k and value v. Per Step 1, the thread begins by locking its local, worker-level min-heap,
Hp. In Step 2, it checks the minimum (i.e., highest priority) element in Hp’s key, kp, and
compares it to k. This comparison determines whether the insertion will follow the so called
fast path of the algorithm or one of two slow paths, named the slower and slowest path. If k
is greater than or equal to kp (i.e., has a lesser priority), then the fast path is taken as the
insertion is thus able to be performed in a completely parallel manner. Specifically, p inserts
the key-value pair, k and v, into Hp (Step 3), and then unlocks Hp and returns (Step 11).

On the other hand, if k is found to be less than the minimum of Hp at Step 2, then it is
necessary to compare k to the priority of elements in the leader level in order to maintain
proper ordering of elements. The comparisons in Steps 4 and 7 determine if the element
should be inserted to the leader-level, in which case the thread follows either the slower
path (orange, middle dashed box) or the slowest path (red, right-most dashed box), or if the
element should be inserted to the worker level via the fast path (following Steps 7 to 3).

Recall that in order to maximize the number of insertions to a thread’s local heap without
affecting the efficiency of insertions to L, we set a maximum number of elements for L,
CNTR_MAX. Assuming Step 4 finds that L_countp is not equal to CNTR_MAX (and is thus
smaller than it), we follow the slower path. Thus, in Step 5, we insert to L using L-Insert
and then perform the atomic fetch-and-add operation on L_countp (Step 6) to increment it.
Finally, we unlock Hp and return in Step 11.

On the contrary, if L_countp is determined to be equal to CNTR_MAX back in Step 4, this
indicates that if the new element is inserted to L, then an element must also be moved down
to the worker-level. If k is the largest element in L tagged with tidp, then it would be
wasted work to insert the element into L just to subsequently remove it to be inserted into
Hp. To avoid this situation, we maintain a per-thread pointer, lead_largestp, which points
to the node containing the largest key in L tagged with some tidp. Step 7 compares k to the
priority of the node pointed to by lead_largestp to determine if we can insert the element
to the worker level. If k is in fact larger or equal in priority to the current largest element
(Step 7), then p inserts the key-value pair, k and v, into Hp (Step 3), and then unlocks Hp

and returns (Step 11).

O. Grimes, A. Hassan, P. Fatourou, and R. Palmieri 35:7

Figure 2 Flow diagrams for the Insert (left) and Delete-Min (right) operations. In each diagram,
p represents the thread performing the respective operation.

Otherwise, the new element must be inserted to L, and thus the slowest path is followed.
In Step 8, L-Insert is called to insert tuple (k, v, tidp) into L. Then in Step 9, L-
DeleteMaxP is called to remove the node pointed to by lead_largestp from L. During
the traversal of L, the algorithm tracks the relevant predecessor of lead_largestp (i.e., the
first node tagged with tidp that appears before the node pointed to by lead_largestp) in
order to reset the pointer. Thus, the node pointed to by lead_largestp is removed from
L, lead_largestp is reset, and L-DeleteMaxP returns the relevant key and value (km,
vm). Finally, (km, vm) is inserted to Hp in Step 10, and in Step 11 Hp is unlocked and the
operation completes.

Delete-Min Flow. We now describe the flow of the delete-min operation. Steps mentioned
refer to those in the right diagram of Figure 2.

The delete-min operation begins with thread p announcing its operation in Step 1. The
blue (top-most) dashed box in the Figure shows the competition between threads of the same
NUMA node to become the leader of their node. Per Steps 3 and 4, if p fails to become the
leader, it waits until either its operation is completed by the current coordinator (Step 6) or
it eventually succeeds in becoming the leader. While waiting in Steps 4-6, the operation calls
a helper routine, Help-Upsert, which checks the calling thread’s counter value, L_countp,
and compares it to CNTR_MIN. If the comparison finds that L_countp is less than CNTR_MIN,
thread p will move the highest priority element from Hp to L, updating its counter value
accordingly.

DISC 2025

35:8 PIPQ: Strict Insert-Optimized Concurrent Priority Queue

If a thread becomes the leader of its NUMA node (Step 8), then it competes to become
the coordinator of the entire system, as reflected in the purple (middle) dashed box. If it
does not succeed, it follows a nearly identical waiting routine as previously described, the
only difference being that it does not check if its operation has been completed since the
coordinator only completes operations carried by threads in its own NUMA node.

Once a thread becomes the coordinator (Step 12), it completes the delete-min operations
in a combining manner [15, 9]. This is done by calling L-DeleteMin for each entry in
the NUMA-local announce array. After each L-DeleteMin call, it atomically decrements
L_countp. Recall that in order to maintain correctness at the leader level, each thread p

must have at least two elements in the linked list associated with its identifier, tidp. Thus,
after decrementing, if the new value of the counter is less than two, the coordinator must
move an element from the relevant worker-level heap up to the leader-level. To do so, the
coordinator first gets the lock on the relevant worker-level heap, Hp (unless the coordinator
happens to be the thread associated with identifier tidp). It next removes the highest
priority from Hp, and then inserts it (augmented with tidp) into L, and finally unlocks Hp

if necessary (i.e., if the lock was acquired). Before proceeding to the next active request, the
coordinator informs the originating thread that its operation has been completed via the
announce array. Once the coordinator has completed all the active operations, it gives up
its role as the coordinator and then as the leader of its NUMA node (Step 13) and finally
returns its operation (Step 14) to the application.

5 Internal Data Structures Design

5.1 Leader-Level Linked List
The implementation of the leader-level linked list structure, L, combines characteristics from
two state-of-the-art lock-free algorithms, namely Harris’ sorted singly-linked list algorithm [14]
and the Lindén-Jonsson priority queue algorithm [18], which implements the priority queue
using a skip list; we borrow ideas from the level-zero list implementation.

The Harris work introduces the idea of marking nodes for removal before performing
physical deletion (i.e., unlinking the node) to implement a lock-free linked list. The actual
technique used for marking nodes relies on stealing [2] and manipulating the last bit of the
pointer3 pointing to the next node. The physical deletion can then be performed.

An important difference between the Harris algorithm and Lindén-Jonsson’s level-zero
algorithm lies in their approach to logically marking nodes for removal before performing
physical deletion. In fact, in order for the Lindén-Jonsson algorithm to mark a node as
logically removed, the preceding node’s next pointer is marked instead of the next pointer
of the node itself. The algorithm must mark the previous node for deletion in order to
maintain a prefix of logically deleted nodes; having this prefix is an optimization that allows
for delaying physical removal, which improves performance.

In our leader-level linked list implementation, we use the same optimization as the
Lindén-Jonsson algorithm in the L-DeleteMin operation. However, we cannot use this
marking approach for the L-DeleteMaxP operation because L-DeleteMaxP removes
elements from the middle of the list (as opposed to the front, as in L-DeleteMin). Instead,
the L-DeleteMaxP operation follows the approach of Harris’ algorithm and marks the
next pointer of the node to be deleted. In fact, if we were to mark the previous node’s next

3 Memory is properly aligned to enable the bit-stealing technique.

O. Grimes, A. Hassan, P. Fatourou, and R. Palmieri 35:9

pointer for removal, it may cause a concurrent insertion to be falsely inserted. Specifically,
say a concurrent insertion inserts its new node, n, directly after some node r. It is then
possible that n is inserted before the physical removal of r, and upon the physical removal of
r, n would also be removed. This situation is prevented by marking r’s next pointer since
this would prevent the concurrent insertion after r.

These two different marking approaches present a correctness issue: an L-DeleteMin
operation and an L-DeleteMaxP operation cannot simultaneously mark the same node.
Note that it is only possible for one L-DeleteMin and one L-DeleteMaxP operation on L

to interfere at any single time, since at each moment there is only one active thread performing
L-DeleteMin (i.e., the coordinator), and only one thread performing L-DeleteMaxP
on a specific element, since a thread p only ever moves an element tagged with tidp. To
remedy this issue and guarantee that the L-DeleteMaxP and L-DeleteMin operations
never interfere, we maintain at least two elements in L from each thread. For this reason, we
require that CNTR_MIN (and thus, CNTR_MAX as well) must be at least two.

Note that we explored other designs for the leader level and found our current imple-
mentation to be the most effective. Despite the linear complexity of linked lists, our use of
CNTR_MIN and CNTR_MAX, which reduce the likelihood that either operation must follow its
worst-case path, combined with maintaining a small size of the list, makes the complexity
not a practical concern. More details are provided in Appendix C.

Implementation Details
The leader-level linked list has two immutable sentinel nodes pointed to by head and tail,
that contain −∞ and +∞, respectively. The actual elements of the list are stored in nodes
between the head and tail nodes. Each node contains a next pointer and the three fields
comprising the tuple key, val, and tidp.

The leader-level linked list (L) supports the following APIs: L-Insert, L-DeleteMaxP,
and L-DeleteMin. Internally, L additionally includes helper functions search, searchDe-
lete, and searchPhysDel. These helper functions are all variations of the search function
provided by Harris’ linked list [14], and more details are included in Appendix A.2 due to
space constraints (see Algorithms 4 and 5). The implementation is lock-free, like that of
Harris’ linked list [14] and Lindén and Jonsson’s priority queue [18].

Helper Functions & Marking. Each of the three helper functions, search, searchDelete,
and searchPhysDel, must traverse the leader-level linked list by following pointers which
may be marked as either logically deleted, or moved. We steal two bits from each node’s next
pointer to support the two marking techniques. We denote the bit associated with logical
deletion as the DELMIN bit, and the bit associated with moving an element as the MOVING
bit. Recall that a node is considered logically deleted if the next pointer of its predecessor
node’s DELMIN bit is set, and moved if its own next pointer’s MOVED bit is set.

The three search functions use the following methods to safely traverse the nodes and set
or unset the two bits. Note that there are variants for each function, expressed between the
“{}” braces, and the description of the return values for each function discusses them from
left to right, respectively.

Is_{ LogDel | Moving }_Ref(ptr*): returns True/False depending on whether the
LOGDEL bit or MOVING bit, respectively, is set in ptr.
Get_{ LogDel | Moving }_Ref(ptr*): returns modified ptr with LOGDEL bit set
or MOVING bit set, respectively.
Get_{ NotLogDel | Unmarked }_Ref(ptr*): returns modified ptr without the
LOGDEL bit set, or neither bit set, respectively.

DISC 2025

35:10 PIPQ: Strict Insert-Optimized Concurrent Priority Queue

L-Insert. The L-Insert operation (see Algorithm 1) begins by calling helper function
search (Algorithm 4 in the Appendix), which locates the two nodes to insert between,
namely l_node and r_node. The search function is very similar to that of Harris’; the
differences in our implementation account for the different types of marking used by PIPQ.

Once the search returns to L-Insert, new_node is allocated by calling NewNode (Line 4)
which sets fields key, val, tidp, and next. Finally, a CAS is performed in Line 5 of L-Insert
to swing l_node’s next field to point to new_node. Upon a successful CAS, the algorithm
returns. Otherwise, the operation is attempted again.

L-DeleteMaxP. Recall that the L-DeleteMaxP function removes the last element in L

tagged with the calling thread’s identifier, to be inserted to the worker level. L-DeleteMaxP
begins by storing a copy of lead_largest in pointer start_lead_largest, to be later used
when removing this node from L.

The algorithm then enters a loop and calls helper method searchDelete (Algorithm 5)
in Line 15, which identifies and returns l_node and r_node, such that r_node is the node to
be removed from L to move down to the worker-level, and l_node is its direct predecessor.
The search function additionally resets the thread’s lead_largest pointer.

Once the left and right nodes are returned to L-DeleteMaxP, a successful CAS in
Line 18 indicates that the node has been logically removed from the list and the algorithm
breaks from the loop; else it tries again. Lines 21-22 ensure that the node is physically
removed from the list; if the CAS in Line 22 fails, the search function searchPhysDel
is called to ensure physical removal of r_node. searchPhysDel varies only slightly from
search, such that instead of searching for a certain key value, it searches for r_node. If
the algorithm finds the node, then it will detect that it needs to perform physical removal
before returning, as the other search methods do; if it is not found, then another thread
has physically unlinked it. Finally, the key and value of the element to move down to the
worker-level are returned, which is subsequently handled by the thread in the calling function.

L-DeleteMin. L-DeleteMin removes the highest priority element from L, which is also
the highest priority element in the entire data structure. Like the Lindén-Jonsson algorithm,
L-DeleteMin performs batch physical deletions once some predetermined offset of logically
deleted nodes has been reached.

The thread performing L-DeleteMin first traverses past the prefix of logically deleted
nodes in lines 27-35. When the thread successfully marks the first element as logically deleted,
which is verified by checking x_next in Line 35 (i.e., the return value of the fetch-and-or from
Line 34), it exits the loop. If the offset has exceeded the maximum offset, the thread then
resets the head’s next pointer to the node just marked for logical deletion (lines 38-39). Note
that, unlike the Lindén-Jonsson algorithm, we do not need to perform a compare-and-swap to
unlink the prefix since only one thread is ever performing a delete-min operation at the time.
Nonetheless, it is still beneficial for performance to delay physical deletion, as concurrent
insertions face fewer cache misses when traversing the list.

5.2 Worker-Level Min-Heap
The min-heap is implemented as a pre-allocated array. If it becomes full, an additional array
is allocated and linked to the first array. Each min-heap is guarded by a single lock. There
are only ever up to two threads competing for a heap Hp’s lock: the thread p, which is local
to the heap, and the thread that is the coordinator performing a delete-min operation. In
practice, however, we find it very uncommon for a coordinator thread to need access to the
worker level thanks to our helping mechanism, as detailed in Section 3.

O. Grimes, A. Hassan, P. Fatourou, and R. Palmieri 35:11

Algorithm 1 Pseudocode for the interface methods of the leader-level linked list.
1: function L-Insert(list_t list, Node *lead_largest,

key_t key, val_t val, int tid)
2: repeat
3: l_node, r_node← search(list, key)
4: new_node←

NewNode(key, val, tid, r_node)
5: if CAS(&l_node.next, r_node, new_node)

then
6: if not *lead_largest or

key > *lead_largest.key then
7: *lead_largest = new_node
8: return
9: until True

10:
11: function L-DeleteMaxP(list_t list,

Node *lead_largest, int tid)
12: start_lead_largest← ∗lead_largest
13: repeat
14: l_ptrs← (lead_largest, start_lead_largest)
15: l_node, r_node←

searchDelete(list, l_ptrs, tid)
16: r_node_next← r_node.next
17: if not is_marked_ref(r_node_next) then
18: if CAS(&r_node.next, r_node_next,

get_moving_ref(r_node_next)) then
19: break
20: until True

21: if not CAS(&l_node.next, r_node,
r_node_next) then

22: searchPhysDel(list, r_node)
23: return [r_node.key, r_node.val]

24: function L-DeleteMin(list_t list)
25: offset← 0
26: x← list.head
27: repeat
28: offset← offset + 1
29: x_next← x.next
30: if get_notlogdel_ref(x_next) = list.tail

then
31: return EMPTY
32: if is_logdel_ref(x_next) then
33: continue
34: x_next← fetch_and_or(&x.next, 1)
35: until x← get_notlogdel_ref(x_next) and

not is_logdel_ref(x_next)
36: new_head← x
37:
38: if offset > MAX_OF F SET then
39: list.head.next ←

get_logdel_ref(new_head)
40: return [x.key, x.val, x.tid]

6 Correctness

A sketch of the proof of PIPQ’s linearizability is provided in Appendix B due to space
constraints. The complete proof and an analysis of PIPQ’s single-threaded worst-case
performance are included in the extended version of the paper.

7 Evaluation

We conduct our experiments on a machine running Ubuntu 22.04.3 LTS equipped with four
Intel Xeon Platinum 8160 processors containing a total of 96 cores split between four NUMA
nodes. Our code is written in C++ and compiled with -std=c++20 -O3 -mcx16. Our data
points represent the average of three trials performed for five seconds each. Threads are
pinned to cores using a NUMA node by NUMA node policy. Hyperthreading is disabled.

We compare PIPQ with the following two state-of-the-art, strict priority queues: Lotan-
Shavit [28] and Lindén-Jonsson [18]. Lotan-Shavit [28] is a priority queue implemented on
top of Fraser’s skiplist [11]. The delete-min operation is implemented by traversing the
lowest-level linked list, and atomically marking the first unmarked node as logically deleted.
This data structure is not linearizable but is quiescently consistent [16]. Lindén-Jonsson [18]
extends the Lotan-Shavit design by batching the physical deletions once a certain threshold
of logically deleted nodes has been met. Lindén-Jonsson outperforms Sundell and Tsigas’
linearizable priority queue algorithm [29] and Herlihy and Shavit’s [16] lock-free adaptation
of the LS priority queue [28].

We test different applications, workloads, and data access patterns: a traditional mi-
crobenchmark to evaluate concurrent data structures; a designated thread experiment, where
each thread performs either insert or delete-min, but not both; and a phased experiment, in
which the workload changes in phases. We additionally evaluate the single-source shortest
path graph algorithm, which is included only in the extended version of the paper.

DISC 2025

35:12 PIPQ: Strict Insert-Optimized Concurrent Priority Queue

7.1 Microbenchmark
Results for the microbenchmark are shown in Figures 3, 4 and 5 where we evaluate throughput
(millions of operations per second), latency (microseconds), and which path is followed by
PIPQ’s insert operations, respectively, as we increase threads. In our microbenchmark,
threads perform a series of insert and delete-min operations based on the given mixed
workload. The key and value are integers ranging between 1 and 100M and are randomly
generated using a uniform distribution. We include four workloads: 100% insert, 95% insert,
50% insert, and 100% delete-min operations. Via experimentation, we find that using values
of 10 for CNTR_MIN and 100 for CNTR_MAX achieves the goal of maintaining a proper size of
the leader-level linked list, as discussed in Section 3.

We also performed experiments (not included in the paper) in which we tracked the average
number of nodes traversed by the two functions that traverse L past its logically deleted
prefix of nodes, namely L-Insert and L-DeleteMaxP, for various values of CNTR_MIN and
CNTR_MAX. The following discussion relates to results captured for a 50% inserts workload.
Our results show that modifying the value of CNTR_MAX has small effect on the length of
traversals, whereas modifying the value of CNTR_MIN has a clear correlation. Despite this,
however, the overall throughput achieved by the runs hardly varied. Thus, we conclude that
the traversal on L does not introduce a performance cost on PIPQ.

(a) 100% insert. (b) 95% insert. (c) 50% insert. (d) 100% delete-min.

Figure 3 Throughput using a microbenchmark. The x-axis represents the number of threads.

Throughput Analysis. Refer to Figure 3 for the results containing throughput achieved by
PIPQ and its competitors. Overall, PIPQ performs better or as well as Lindén-Jonsson in
all experiments, both of which always perform better than Lotan-Shavit. When insertions
dominate the workload, the parallel nature of insertions provided by PIPQ showcases the
performance advantages of our approach compared to competitors.

We direct attention to Figure 3a, which shows the 100% insert workload. Since the
leader-level linked list remains small, containing up to 100 elements per worker, and there
are no threads removing the minimal keys, it becomes highly likely that threads will follow
the fast path of the insert operation as more elements are inserted. Thus, insertions become
nearly embarrassingly parallel and benefit from cache locality and the speed of the sequential
worker min-heap operations, providing significant speedup. At 96 threads, PIPQ performs
over 76x better than its closest competitor, Lindén-Jonsson.

Figure 3b shows the results of the 95% insert workload. In this case, we outperform
Lindén-Jonsson by almost one order of magnitude at 12 threads (i.e., within a NUMA node)
and by 2.4x at 96 threads. To explain the performance drops in the presence of the delete-min
operation, we perform an experiment to determine how many operations the coordinator
performs on average for the various workloads. We experimentally find that the coordinator

O. Grimes, A. Hassan, P. Fatourou, and R. Palmieri 35:13

performs, on average, about 24 operations in the case of the 95% insertions workload. Thus,
even with a workload of only 5% delete-min operations, nearly every thread in a NUMA node
eventually has to wait for the coordinator to complete that thread’s operation (or to become
the coordinator itself). Because our insert operation is so fast compared to the delete-min
operation, potentially many insert requests could be served during the waiting required by
the delete-min operation.

That said, however, PIPQ scales significantly better than competitors within a NUMA
node, showing the algorithm’s ability to increase overall performance for insert-dominant
workloads despite such a pessimistic operation (i.e., delete-min) in the mix. The drop in
performance after 24 threads is due to the additional synchronization needed to coordinate
delete-min operations carried by threads on other NUMA nodes. Nonetheless, PIPQ still
outperforms all competitors in the 95% insert case.

In the 50% insert workload (Figure 3c), PIPQ performs similarly to Lindén-Jonsson, and
outperforms Lotan-Shavit. PIPQ also performs similarly to Lindén-Jonsson for the 100%
delete-min workload (Figure 3d), though exhibits performance benefits within a NUMA
node (i.e., scaling up to 24 threads). Performing so comparably to Lindén-Jonsson for
the 100% delete-min workload for 24 threads and beyond shows an interesting correlation.
Essentially, the overhead of our multi-level hierarchy, which requires moving elements between
levels to ensure strict ordering, is seemingly comparable with the overhead of adjusting
Lindén-Jonsson’s skip list indexing levels.

(a) [I] 100% insert. (b) [I] 95% insert. (c) [I] 50% insert.

(d) [D] 95% insert. (e) [D] 50% insert.
(f) [D] 100% del-
min.

Figure 4 Latency using microbenchmark (less is better). [I]
indicates insert latency, [D] indicates delete-min latency. # of
threads in x-axis; microseconds in y-axis.

(a) 95% insert.

(b) 50% insert.

Figure 5 % path is fol-
lowed by insert operation; #
of threads in x-axis.

Latency Analysis. Figure 4 shows the latency of operations for PIPQ and its competitors.
The top row of plots shows the average latency of the insert operation for relevant workloads
(100% insert, 95% insert, and 50% insert). In each case, PIPQ has the lowest latency compared
to competitors by a large margin, revealing the benefit of PIPQ’s parallel insertions. For the
100% insertions workload (Figure 4a) PIPQ’s insert latency is 265x lower than the latency of
Lindén-Jonsson, and in the case of 95% inserts, PIPQ’s insert latency is 49x lower than that
of Lindén-Jonsson. Finally, in the case of 50% inserts, PIPQ’s latency is 40x lower than the
latency of Lindén-Jonsson.

DISC 2025

35:14 PIPQ: Strict Insert-Optimized Concurrent Priority Queue

The bottom row of the plots in Figure 4 shows the average latency of the delete-min
operation. For the 50% insert and 100% delete-min workloads (Figures 4e and 4f, respectively),
PIPQ’s latency is comparable to that of Lindén-Jonsson, both of which have lower latency
than Lotan-Shavit. For the 95% insert workload on the other hand, PIPQ’s latency is higher
than competitors. Note that PIPQ’s delete-min latency at 96 threads in the 95% inserts
workload (Figure 4d) is very similar to the latency of delete-min at 96 threads in the 50%
workload (Figure 4e), thus revealing that the latency of the operation remains somewhat
constant across workloads. This is due to PIPQ’s use of combining, and the implicit added
cost of Coordinator’s operating in a sequential manner.

Path Followed by PIPQ Insert. In order to understand how often the benefit of inserting
at the worker-level occurs for various workloads, we perform additional experiments in which
we track the path (fast, slower, and slowest) followed by each insert operation. Recall that
the fast path is when an insert is to the worker-level. The slow paths involve inserting to the
leader-level, and the slowest path requires the additional step of moving an element to the
worker-level. Per the results in Figure 5, the slowest path is rarely followed (the color red is
hardly visible on the plots); the percentage of the time that it is followed is less than 0.5%
for all thread counts in both workloads, significantly less so in many cases.

In the 95% insert workload (Figure 5a), the fast path is followed approximately 95% of
the time for all thread counts, and the slower path is followed about 4.9% of the time for
all thread counts. In the case of 50% inserts (Figure 5b) the fast path is taken by inserts
ranging from 24% of the time with one thread, scaling up to 35% of the time at 96 threads,
and the slower path is followed ranging from 76% of the time at one thread, scaling down to
64% of the time at 96 threads. The increased percentage in the slower path being followed
for the 50% insert workload compared to the 95% insert workload is simply due to the fact
that significantly more elements are being removed in the 50% case, so the probability that
an element needs to be inserted to the leader-level given a uniformly generated workload is
largely increased compared to that of the 95% case.

7.2 Designated Thread Experiments
Note that designating threads causes calls to Help-Upsert by delete-min operations to
be ineffective, since the threads performing delete-min do not ever insert. To address this
issue, we move the helping effort to the insert operation, such that after performing its insert,
but before it releases its lock on its local Hp, an insert carries out the logic of help-upsert,
removing an element from Hp and inserting it into L when necessary. We omit single-threaded
performance as it is not a relevant data point for this experiment.

We denote d as the fraction of the total running threads that are designated to perform
the delete-min operation. We compared PIPQ with our competitors for values of d = 1/24,
1/12, and 1/2. Making d = 1/2 represents the case where half of all threads perform the
delete-min operation, and the other half perform the insert operation. The values of d =
1/24 and 1/12 assign more threads for insertions. The results are in Figure 6. We separated
the throughput of insertions and delete-mins into distinct plots to better understand the
behavior of each operation.

PIPQ significantly outperforms competitors for insert throughput for all values of d

(see Figures 6a, 6b, and 6c). PIPQ achieves the largest speedup for insert throughput in
Figure 6a when d = 1/24, producing 50x speedup compared to the closest competitor. These
experiments show that our insert operation is able to retain performance in the presence

O. Grimes, A. Hassan, P. Fatourou, and R. Palmieri 35:15

(a) [I] d=1/24. (b) [I] d=1/12. (c) [I] d=1/2.

(d) [D] d=1/24. (e) [D] d=1/12. (f) [D] d=1/2.

Figure 6 Throughput for the designated thread experiment. “d” denotes the fraction of threads
performing delete-min. [I] indicates insert throughput, [D] indicates delete-min throughput. The
x-axis represents the number of threads.

of delete-mins, as long as the threads performing insertions are not stalled due to also
performing delete-min operations, as was the case in our microbenchmark experiment. For
delete-min, PIPQ achieves higher throughput than Lotan-Shavit and slightly less than that
of Lindén-Jonsson. As a result of the high speed of inserts, when we compare the cumulative
overall throughput (that is, the summation of the insert and remove-min operations), PIPQ
also outperforms its closest competitor by as much as 47x.

Comparing Figures 6f and 6c with Figure 3c exemplifies the effect of dedicating threads for
each operation. In Figure 3c, it is expected that half of the threads perform delete-min, and
half perform insert at any given time (similar to Figures 6f and 6c). However, PIPQ retains
higher performance of insert when threads do not alternate between the two operations.

7.3 Phased Experiment
Some applications of priority queues involve periods of only insertions followed by periods
of only delete-mins. We define this workload as “phased” to represent the various periods
experienced by the application. During each phase, the total work is split among active
threads. The results are shown in Figure 7. The experiments consist of the following phases:
in each experiment, 50 million elements are inserted into the priority queue in Phase 1.
Once all elements have been inserted, in Phase 2, we remove 1 million (Figure 7a), 5 million
(Figure 7b), 10 million (Figure 7c), and 50 million (Figure 7d), i.e. all, elements.

PIPQ outperforms competitors in the three experiments that only remove a fraction of the
elements inserted, significantly so within a NUMA node (i.e., up to 24 threads). In each case,
Lindén-Jonsson is the closest competitor. As the number of delete-min operations performed
in Phase 2 increases, the gap in performance becomes smaller. This aligns with one of our
initial motivations that PIPQ’s design fits applications where inserts outnumber deletes.
In Figure 7a, PIPQ achieves the largest performance gains, as expected, since insertions
most significantly dominate the workload in this experiment. Specifically, PIPQ produces up
to 15x speedup compared to Lindén-Jonsson at 24 threads and 6.3x speedup compared to

DISC 2025

35:16 PIPQ: Strict Insert-Optimized Concurrent Priority Queue

(a) 50->1. (b) 50->5. (c) 50->10. (d) 50->50.

Figure 7 Phased experiments. Workloads are denoted “A->B”, meaning Phase 1 is A million
inserts and Phase 2 is B million delete-mins. The x-axis represents threads.

Lindén-Jonsson at 96 threads. In Figure 7b, which shows removing 10% of inserted items,
7.4x speedup is produced compared to Lindén-Jonsson at 24 threads, and 2.3x speedup at 96
threads. For the case of removing 20% of the inserted items, shown in Figure 7c, PIPQ gains
5.1x speedup over Lindén-Jonsson at 24 threads and 1.6x speedup at 96 threads.

In Figure 7d, we show when 100% of insertions are then removed. Similar to before, the
lesser gap in performance compared to Figures 7a, 7b, and 7c is due to the asymmetry in
performance between our two operations; since our insertions are very fast, the amount of
time consumed during the second phase is greater compared to the first phase, and so the
effect of the delete-min becomes the overwhelmingly dominating factor in performance. That
said, however, PIPQ still gains 2.7x speedup over Lindén-Jonsson within a NUMA node.

8 Conclusion

In this paper we presented PIPQ, a strict, linearizable concurrent priority queue. Its design
focuses on increasing the performance and parallelism of insert operations as opposed to
focusing on the sequential bottleneck of delete-min operations, as done by the majority of
prior work. PIPQ achieves this by allowing insert operations to utilize per-thread data
structures in the common case. Our evaluation confirms that with PIPQ’s design, it is
possible to achieve high performance and scalability under various access patterns and
runtime configurations.

References
1 Dan Alistarh, Justin Kopinsky, Jerry Li, and Nir Shavit. The spraylist: a scalable relaxed

priority queue. In Proceedings of the 20th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP 2015, pages 11–20, New York, NY, USA, 2015.
Association for Computing Machinery. doi:10.1145/2688500.2688523.

2 Thaïs Baudon, Gabriel Radanne, and Laure Gonnord. Bit-stealing made legal: Compilation
for custom memory representations of algebraic data types. Proc. ACM Program. Lang.,
7(ICFP):813–846, 2023. doi:10.1145/3607858.

3 Mohamed Benaïchouche, Van-Dat Cung, Salah Dowaji, Bertrand Le Cun, Thierry Mautor,
and Catherine Roucairol. Building a parallel branch and bound library. In Afonso Ferreira
and Panos M. Pardalos, editors, Solving Combinatorial Optimization Problems in Parallel -
Methods and Techniques, volume 1054 of Lecture Notes in Computer Science, pages 201–231.
Springer, 1996. doi:10.1007/BFB0027123.

4 Anastasia Braginsky, Nachshon Cohen, and Erez Petrank. Cbpq: High performance lock-
free priority queue. In Proceedings of the 22nd International Conference on Euro-Par 2016:

https://doi.org/10.1145/2688500.2688523
https://doi.org/10.1145/3607858
https://doi.org/10.1007/BFB0027123

O. Grimes, A. Hassan, P. Fatourou, and R. Palmieri 35:17

Parallel Processing - Volume 9833, pages 460–474, Berlin, Heidelberg, 2016. Springer-Verlag.
doi:10.1007/978-3-319-43659-3_34.

5 Manos Chatzakis, Panagiota Fatourou, Eleftherios Kosmas, Themis Palpanas, and Botao
Peng. Odyssey: A journey in the land of distributed data series similarity search. Proc. VLDB
Endow., 16(5):1140–1153, January 2023. doi:10.14778/3579075.3579087.

6 Yanhao Chen, Fei Hua, Yuwei Jin, and Eddy Z. Zhang. Bgpq: A heap-based priority queue
design for gpus. In ICPP 2021: 50th International Conference on Parallel Processing, Lemont,
IL, USA, August 9 - 12, 2021, ICPP ’21, New York, NY, USA, 2021. Association for Computing
Machinery. doi:10.1145/3472456.3472463.

7 Dave Dice, Virendra J. Marathe, and Nir Shavit. Flat-combining numa locks. In Proceedings
of the Twenty-Third Annual ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA ’11, pages 65–74, New York, NY, USA, 2011. Association for Computing Machinery.
doi:10.1145/1989493.1989502.

8 Panagiota Fatourou, Nikos Giachoudis, and George Mallis. Highly-efficient persistent fifo queues.
In Structural Information and Communication Complexity: 31st International Colloquium,
SIROCCO 2024, Vietri Sul Mare, Italy, May 27–29, 2024, Proceedings, pages 238–261, Berlin,
Heidelberg, 2024. Springer-Verlag. doi:10.1007/978-3-031-60603-8_14.

9 Panagiota Fatourou and Nikolaos D. Kallimanis. Revisiting the combining synchronization
technique. In Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP ’12, pages 257–266, New York, NY, USA, 2012. Association
for Computing Machinery. doi:10.1145/2145816.2145849.

10 Panagiota Fatourou, Nikolaos D. Kallimanis, and Eleftherios Kosmas. The performance power
of software combining in persistence. In Proceedings of the 27th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP ’22, pages 337–352, New York,
NY, USA, 2022. Association for Computing Machinery. doi:10.1145/3503221.3508426.

11 Keir Fraser. Practical lock-freedom. PhD thesis, University of Cambridge, UK, 2004. URL:
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599193.

12 Olivia Grimes, Ahmed Hassan, Panagiota Fatourou, and Roberto Palmieri. PIPQ Priority
Queue. Software (visited on 2025-10-13). URL: https://github.com/sss-lehigh/pipq,
doi:10.4230/artifacts.24906.

13 Binglei Guo, Jiong Yu, Dexian Yang, Hongyong Leng, and Bin Liao. Energy-efficient database
systems: A systematic survey. ACM Comput. Surv., 55(6):111:1–111:53, 2023. doi:10.1145/
3538225.

14 Timothy L. Harris. A pragmatic implementation of non-blocking linked-lists. In Proceedings of
the 15th International Conference on Distributed Computing, DISC ’01, pages 300–314, Berlin,
Heidelberg, 2001. Springer-Verlag. doi:10.1007/3-540-45414-4_21.

15 Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat combining and the
synchronization-parallelism tradeoff. In Proceedings of the Twenty-Second Annual ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA ’10, pages 355–364, New
York, NY, USA, 2010. Association for Computing Machinery. doi:10.1145/1810479.1810540.

16 Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann,
April 2008.

17 Yuchen Li, Shixuan Sun, Hanhua Xiao, Chang Ye, Shengliang Lu, and Bingsheng He. A
survey on concurrent processing of graph analytical queries: Systems and algorithms. IEEE
Transactions on Knowledge and Data Engineering, pages 1–20, 2024. doi:10.1109/TKDE.2024.
3393936.

18 Jonatan Lindén and Bengt Jonsson. A skiplist-based concurrent priority queue with minimal
memory contention. In Principles of Distributed Systems. OPODIS 2013, pages 206–220.
Springer International Publishing, December 2013. doi:10.1007/978-3-319-03850-6_15.

19 Xiangzhen Ouyang and Yian Zhu. Core-aware combining: Accelerating critical section
execution on heterogeneous multi-core systems via combining synchronization. J. Parallel
Distrib. Comput., 162(C):27–43, April 2022. doi:10.1016/j.jpdc.2022.01.001.

DISC 2025

https://doi.org/10.1007/978-3-319-43659-3_34
https://doi.org/10.14778/3579075.3579087
https://doi.org/10.1145/3472456.3472463
https://doi.org/10.1145/1989493.1989502
https://doi.org/10.1007/978-3-031-60603-8_14
https://doi.org/10.1145/2145816.2145849
https://doi.org/10.1145/3503221.3508426
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599193
https://github.com/sss-lehigh/pipq
https://doi.org/10.4230/artifacts.24906
https://doi.org/10.1145/3538225
https://doi.org/10.1145/3538225
https://doi.org/10.1007/3-540-45414-4_21
https://doi.org/10.1145/1810479.1810540
https://doi.org/10.1109/TKDE.2024.3393936
https://doi.org/10.1109/TKDE.2024.3393936
https://doi.org/10.1007/978-3-319-03850-6_15
https://doi.org/10.1016/j.jpdc.2022.01.001

35:18 PIPQ: Strict Insert-Optimized Concurrent Priority Queue

20 Botao Peng, Panagiota Fatourou, and Themis Palpanas. Fast data series indexing for in-
memory data. VLDB J., 30(6):1041–1067, 2021. doi:10.1007/S00778-021-00677-2.

21 Botao Peng, Panagiota Fatourou, and Themis Palpanas. Paris+: Data series indexing
on multi-core architectures. IEEE Trans. Knowl. Data Eng., 33(5):2151–2164, 2021. doi:
10.1109/TKDE.2020.2975180.

22 Botao Peng, Panagiota Fatourou, and Themis Palpanas. SING: sequence indexing using gpus.
In 37th IEEE International Conference on Data Engineering, ICDE 2021, Chania, Greece,
April 19-22, 2021, pages 1883–1888. IEEE, 2021. doi:10.1109/ICDE51399.2021.00171.

23 Stefano Petrangeli, Jeroen Van Der Hooft, Tim Wauters, and Filip De Turck. Quality of
experience-centric management of adaptive video streaming services: Status and challenges.
ACM Trans. Multimedia Comput. Commun. Appl., 14(2s), May 2018. doi:10.1145/3165266.

24 Anastasiia Postnikova, Nikita Koval, Giorgi Nadiradze, and Dan Alistarh. Multi-queues can
be state-of-the-art priority schedulers. In Proceedings of the 27th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP ’22, pages 353–367, New York,
NY, USA, 2022. Association for Computing Machinery. doi:10.1145/3503221.3508432.

25 William Pugh. Skip lists: a probabilistic alternative to balanced trees. Commun. ACM,
33(6):668–676, June 1990. doi:10.1145/78973.78977.

26 Hamza Rihani, Peter Sanders, and Roman Dementiev. Multiqueues: Simple relaxed concurrent
priority queues. In Proceedings of the 27th ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA ’15, pages 80–82, New York, NY, USA, 2015. Association for Computing
Machinery. doi:10.1145/2755573.2755616.

27 Konstantinos Sagonas and Kjell Winblad. The contention avoiding concurrent priority queue.
In Chen Ding, John Criswell, and Peng Wu, editors, Languages and Compilers for Parallel
Computing, pages 314–330, Cham, 2017. Springer International Publishing.

28 N. Shavit and I. Lotan. Skiplist-based concurrent priority queues. In Proceedings 14th
International Parallel and Distributed Processing Symposium. IPDPS 2000, pages 263–268,
2000. doi:10.1109/IPDPS.2000.845994.

29 H. Sundell and P. Tsigas. Fast and lock-free concurrent priority queues for multi-thread
systems. In Proceedings International Parallel and Distributed Processing Symposium, pages
11 pp.–, 2003. doi:10.1109/IPDPS.2003.1213189.

30 Martin Wimmer, Jakob Gruber, Jesper Larsson Träff, and Philippas Tsigas. The lock-free
k-lsm relaxed priority queue. SIGPLAN Not., 50(8):277–278, January 2015. doi:10.1145/
2858788.2688547.

31 Deli Zhang and Damian Dechev. A lock-free priority queue design based on multi-dimensional
linked lists. IEEE Transactions on Parallel and Distributed Systems, 27(3):613–626, 2016.
doi:10.1109/TPDS.2015.2419651.

32 Guozheng Zhang, Gilead Posluns, and Mark C. Jeffrey. Multi bucket queues: Efficient
concurrent priority scheduling. In Kunal Agrawal and Erez Petrank, editors, Proceedings of the
36th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2024, Nantes,
France, June 17-21, 2024, pages 113–124. ACM, 2024. doi:10.1145/3626183.3659962.

33 Tingzhe Zhou, Maged Michael, and Michael Spear. A practical, scalable, relaxed priority queue.
In Proceedings of the 48th International Conference on Parallel Processing, ICPP ’19, New
York, NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3337821.3337911.

A Algorithm details of PIPQ

A.1 Structures and Definitions
Algorithms 2 and 3 contain definitions, variables, and structures regarding the worker-level
and PIPQ as a whole. Note that not all details are provided, but what is present should be
sufficient to properly understand the provided pseudocode.

https://doi.org/10.1007/S00778-021-00677-2
https://doi.org/10.1109/TKDE.2020.2975180
https://doi.org/10.1109/TKDE.2020.2975180
https://doi.org/10.1109/ICDE51399.2021.00171
https://doi.org/10.1145/3165266
https://doi.org/10.1145/3503221.3508432
https://doi.org/10.1145/78973.78977
https://doi.org/10.1145/2755573.2755616
https://doi.org/10.1109/IPDPS.2000.845994
https://doi.org/10.1109/IPDPS.2003.1213189
https://doi.org/10.1145/2858788.2688547
https://doi.org/10.1145/2858788.2688547
https://doi.org/10.1109/TPDS.2015.2419651
https://doi.org/10.1145/3626183.3659962
https://doi.org/10.1145/3337821.3337911

O. Grimes, A. Hassan, P. Fatourou, and R. Palmieri 35:19

Algorithm 2 Worker-level min-heap and leader-level linked list definitions.
1: struct Heap
2: list : pointer to HeapNode
3: size : integer
4: lock : pointer to integer

5: struct HeapNode
6: key : integer ▷ the priority of the element
7: val : val_t

8: struct LeaderListNode
9: key : integer ▷ the priority of the element

10: val : val_t
11: tid : integer ▷ the thread identifier
12: next : pointer to LeaderListNode

13: struct LeaderList
14: head : pointer to LeaderListNode (sentinel)
15: tail : pointer to LeaderListNode (sentinel)
16: max_offset : int

Algorithm 3 PIPQ Implementation.
1: struct PIPQ
2: ▷ The leader-level linked list, and array of worker-level min-heaps ◁
3: worker_heaps[T HREADS] : pointer to Heap
4: leader_list : LeaderList
5:
6: ▷ Locks protecting the Leaders (one per NUMA node) and the Coordinator ◁
7: compete_coord_locks[NUM_NUMA_NODES] : pointer to integer
8: coord_lock : pointer to integer
9:

10: announce[T HREADS] : AnnounceStruct ▷ Announcement for DeleteMin combining
11: lead_largest_ptrs[T HREADS] : pointer to LeaderListNode ▷ Least priority element in L
12: leader_counters[T HREADS] : pointer to integer ▷ Number of elements in L
13:
14: HLS, T HREADS, CNT R_MIN, CNT R_MAX, MAX_OF F SET : constant integer
15:
16: PIPQ(heap_size, nthreads, cntr_min, cntr_max, max_offset) :
17: HLS(heap_size)
18: T HREADS(nthreads)
19: CNT R_MIN(cntr_min)
20: CNT R_MAX(cntr_max)
21: MAX_OF F SET (max_offset)

A.2 Adapted Harris Search Functions for L

Recall that search (Algorithm 4) is used to support the L-Insert function of the leader-level
linked list, returning the two nodes to insert between (l_node and r_node). Text marked in
red in Algorithm 4 denote modifications made to the original Harris search algorithm.

In lines 8-17, search must first pass by the prefix of logically deleted nodes, and then
when finding l_node and r_node, account for the fact that a concurrent operation may have
marked a node between the left and right nodes as moving, but not yet performed physical
deletion (see the check in Line 21). If this is the case, a compare-and-swap operation in
Line 27 of search is performed to carry out the physical deletion. Finally, l_node and
r_node are returned to L-Insert.

Now direct attention to Algorithm 5, searchDelete. Recall that searchDelete
supports the L-DeleteMaxP function of the leader-level linked list, which removes the least
priority element tagged with some given tidp, to be moved down to the worker level. The
function begins by traversing L until it encounters start_lead_largest (i.e., the last node
in L tagged with the relevant thread identifier). Note that in L-DeleteMaxP we must store
pointer start_lead_largest (which initially points to the same node as lead_largest), in
case lead_largest is reset in Line 21, and then the subsequent CAS in Line 28 fails and
the function must be re-run.

DISC 2025

35:20 PIPQ: Strict Insert-Optimized Concurrent Priority Queue

Algorithm 4 Adapted Harris search, used to support the L-Insert method (see Algorithm 1) of
the leader-level linked list.
1: function search(list_t list, int key)
2: repeat
3: ▷ 1. Find l_node and r_node ◁
4: l_node, r_node
5: prev_log_del← F alse
6: x← list.head
7: x_next← x.next
8: repeat
9: if not is_moving_ref(x_next) then

10: l_node← x
11: l_node_next← get_notlogdel_ref(x_next)
12: x← get_unmarked_ref(x_next)
13: if x = list.tail then
14: break
15: prev_log_del = is_logdel_ref(x_next)
16: x_next← x.next
17: until x.key ≥ key and not is_moving_ref(x_next) and not prev_log_del
18: r_node← x
19:
20: ▷ 2. Check if l_node and r_node are adjacent ◁
21: if l_node_next = r_node then
22: if is_logdel_ref(l_node.next) or (r_node.next and is_moving_ref(r_node.next)) then
23: continue
24: return [l_node, r_node]
25:
26: ▷ 3. Remove one or more "moving" nodes ◁
27: if CAS(&l_node.next, l_node_next, r_node) then
28: if is_logdel_ref(l_node.next) or (r_node.next and is_moving_ref(r_node.next)) then
29: continue
30: return [l_node, r_node]
31: until True

During traversal, searchDelete tracks the nearest predecessor of the node pointed to by
start_lead_largest that is also tagged with tidp in variable new_lead_largest, in order
to reset lead_largest. Once the traversal is complete (i.e., start_lead_largest has been
found), lead_largest is reset to new_lead_largest (Line 21 of searchDelete). Note
that access to lead_largest is protected by the underlying lock acquired on the associated
thread’s heap. As in search, lines 24-29 of the algorithm ensures that there are not any
marked nodes between l_node and r_node (removing any if found), before finally returning
the two pointers.

The final search algorithm is SearchPhysDel. The algorithm differs only slightly from
Search (Algorithm 4), such that it searches for a specific node instead of the location to
insert a specific key. Its only goal is to ensure physical deletion of search_node, and thus
does not return node pointers. The pseudocode is included in the extended version of the
paper.

Also included in the extended version of the paper is pseudocode for the following
algorithms: Worker-Insert, Worker-Delete-min, Help-Upsert, and the insert and
delete-min APIs of PIPQ.

B Correctness

We assume a typical asynchronous system with n threads which communicate by accessing
shared variables. To prove the correctness of PIPQ, we break it down to its two-level
components: the worker level and the leader level. At the worker level, each thread p has
its own min-heap Hp protected by a single global lock lp. Lock lp also protects access to
lead_largestp. At the leader level, PIPQ maintains a linked list L of keys. Consider an
execution α of PIPQ. All our claims below are in reference to this execution.

O. Grimes, A. Hassan, P. Fatourou, and R. Palmieri 35:21

Algorithm 5 Adapted Harris search, used to support the L-DeleteMaxP method (see Al-
gorithm 1) of the leader-level linked list.
1: function searchDelete(list_t list, node_t start_node,

pair_t lead_largests = (lead_largest, start_lead_largest), int tid)
2: x, l_node, r_node← start_node
3: x_next← x.next
4: repeat
5: ▷ 1. Find l_node and r_node ◁
6: while True do
7: if not is_moving_ref(x_next) then
8: cur_l_node← x
9: cur_l_node_next←

get_notlogdel_ref(x_next)
10: x← get_unmarked_ref(x_next)
11: if x = list.tail then
12: break
13: x_next← x.next
14: if not is_moving_ref(x_next) and

x.tid = tid then
15: new_lead_largest← r_node
16: l_node← cur_l_node
17: l_node_next← cur_l_node_next
18: r_node← x
19: if x = start_lead_largest then
20: break
21: ∗lead_largest← new_lead_largest
22:
23: ▷ 2. Check if l_node and r_node are adjacent ◁
24: if l_node_next = r_node then
25: return [l_node, r_node]
26:
27: ▷ 3. Remove one or more "moving" nodes ◁
28: if CAS(&l_node.next, l_node_next, r_node) then
29: return [l_node, r_node]
30: x← list.head
31: x_next← x.next
32: r_node← new_lead_largest
33: until 1

Recall that L contains two sentinel nodes, one storing the key −∞ pointed to by pointer
head, and another storing the key +∞ pointed to by the pointer tail. The elements (or
nodes) of L at some point t are the keys (nodes) that are traversed if we start from the node
pointed to by head at t and we move forward following the value (at t) of the next pointer of
each node. We call p-element an element of L which is tagged with p (i.e., the tid field of
the element’s struct has the value p). Initially, L contains just the two sentinel nodes and it
is sorted.

The complete proof of PIPQ’s linearizability is included in the extended version of the
paper due to space limitations. To show the conceptual flow of the proof, in the following we
list the definitions, invariants, lemmas, and corollaries formally discussed in the extended
version of the paper.

▶ Lemma 1. For each thread p,
1. Hp is a linearizable priority queue; each worker operation that is applied on Hp is atomic

(as it is applied while the thread that executes it holds the lock lp);
2. All accesses to lead_largestp are performed atomically (while lock lp is held). Whenever

lead_largestp is read, it points to the p-element with the largest key in L among all
p-elements.

3. While p executes an L-Insert to insert a p-element in L, it holds the lock lp; moreover, the
inserted element is of a greater or equal priority than that of the highest priority element
in p’s worker-level heap, Hp, at the time that p acquired lp;

4. While p inserts a p-element into L it holds the lock lp;
5. Every key that appears as an argument of some PIPQ-Insert operation invoked by p (in α)

is inserted either in Hp or in L (and not in both).

DISC 2025

35:22 PIPQ: Strict Insert-Optimized Concurrent Priority Queue

▶ Lemma 2. For each thread p, whenever a L-DeleteMin is invoked, if Hp is not empty,
then the value of L_countp is greater than or equal to 2 indicating that there are at least two
active p-elements in L.

▶ Lemma 3 ([14], Sections 4.1 and 5.1). Consider any instance I of Search with key k.
Let l_node and r_node be the pointers returned by I; call left node and right node the nodes
pointed to by these pointers, respectively. Then, there is some point t during the invocation
and the response of I, at which all the following conditions hold:
1. the left node and the right node are nodes of L at t,
2. the key of the left node must be less than k (unless k is the highest priority in L, in which

case the left node may be a logically deleted node whose key is greater than or equal to k)
and the key of the right node must be greater than or equal to k,

3. neither node is marked as moved and the right node is not logically deleted, and
4. the right node must be the immediate successor of the left node in L.

▶ Invariant 4. L is a list whose last element is the sentinel node pointed to by tail.

▶ Lemma 5. An instance of L-DeleteMin and an instance of L-DeleteMaxP that are concurrent
never attempt to delete the same node in L.

▶ Corollary 6. A node in L will never have both its DELMIN and its MOVING bit marked.

▶ Invariant 7. The following claims hold:
1. The logically deleted nodes in L form a prefix of the list;
2. The suffix of L that is comprised of nodes that are not logically deleted is sorted;

▶ Corollary 8. The element with the highest priority in L is its leftomost (first) active node.

▶ Lemma 9. The linearization point of each L-Insert, L-DeleteMin, or L-DeleteMaxP is within
the execution interval of the operation.

▶ Lemma 10. Denote by ℓL the linearization order we derive by the linearization points of
the L-Insert, L-DeleteMin, and L-DeleteMaxP operations (of α). The response of a L-DeleteMin
or a L-DeleteMaxP operation is consistent with respect to ℓL.

▶ Corollary 11. The implementation of L is linearizable.

▶ Lemma 12. The linearization point of each PIPQ-Insert and PIPQ-DeleteMin operation op

of PIPQ is within the execution interval of op.

▶ Definition 13. Denote by ℓH the linearization of the worker operations (of α). Define
ℓH(p, t) (for a specific thread p), as the subsequence of ℓH containing those worker operations
that have been linearized by a fixed time t. For each p, the abstract state of Hp at t is the set
of elements contained in the priority queue that results when the operations in ℓH(p, t) are
applied sequentially on an initially empty priority queue.

▶ Definition 14. Denote by ℓL(t) the prefix of ℓL containing those operations on L that have
been linearized by a fixed time t. The abstract state of L at t is the set of elements contained
in the singly-linked list that results when the operations in ℓL(t) are applied sequentially on
an initially empty linked list.

▶ Invariant 15. For each process p, the keys of the p-elements contained in the abstract state
of L are the smallest among all the p-elements in the union of the sets that comprise the
abstract state of Hp and the abstract state of L.

O. Grimes, A. Hassan, P. Fatourou, and R. Palmieri 35:23

▶ Definition 16. At each point t, the abstract state of PIPQ is defined by the (multi-set)
union of the abstract states of H1, H2, ..., Hn and the abstract state of L.

▶ Lemma 17. Denote by ℓ the linearization order we derive by the linearization points of
the PIPQ-Insert and PIPQ-DeleteMin operations (of α). The responses of PIPQ-DeleteMin
operations in PIPQ are consistent with respect to ℓ.

▶ Theorem 18. PIPQ is a linearizable implementation of a priority queue.

C Complexity Analysis and Discussion

Given that PIPQ is blocking, and the leader-level linked list is lock-free (not wait-free), it
is impossible to give a worst-case bound for either. However, for completeness, it is worth
discussing the single-threaded worst-case bound, which is O(lg(m) + k) for both insert and
delete-min, where m is the size of the relevant worker-level heap, and k is the size of the
leader-level linked list. This is directly inherited from the worst-case performance of its
components.

We believe the above worst-case analysis is not a practical issue, due to several reasons.
First, for delete-min, this worst case will only occur when the coordinator must upsert an
element from a worker heap (i.e., when it removes an element and finds that its relevant counter
value is less than 2). In all other cases, the coordinator removes the highest-priority element,
which is the first non-logically-deleted element in the list. Also, our helping mechanism
offloads most of this “upsert” mechanism to the pending delete-min operations that are
waiting for the coordinator, which further reduces the probability that the coordinator will
ever need to “upsert” elements. For insert, the worst case represents the scenario in which
an element is inserted at the leader level, and an element is subsequently moved down to the
worker level. Similar to delete-min, as shown in Figure 5, this scenario (which we call the
“slowest path”) rarely occurs in practice.

Even when this worst case scenario is unavoidable, our design mitigates its effects by
configuring CNTR_MIN and CNTR_MAX. In particular, reducing CNTR_MAX makes the size of the
linked list as small as the number of threads (which is practically constant and comparable to
the cost of any alternative with logarithmic-time performance). Also, by increasing CNTR_MIN
we increase the chance that helper threads upsert elements ahead of the coordinator, which
reduces the likelihood of this worst-case scenario. In fact, some of our experimental trials
that we did not include in the paper aimed at assessing the effect of replacing the leader-level
linked list with other data structures, and we observed no performance gains in any of them.

DISC 2025

	1 Introduction
	2 Related Work
	3 Overview of PIPQ
	4 Operational Workflow
	5 Internal Data Structures Design
	5.1 Leader-Level Linked List
	5.2 Worker-Level Min-Heap

	6 Correctness
	7 Evaluation
	7.1 Microbenchmark
	7.2 Designated Thread Experiments
	7.3 Phased Experiment

	8 Conclusion
	A Algorithm details of PIPQ
	A.1 Structures and Definitions
	A.2 Adapted Harris Search Functions for L

	B Correctness
	C Complexity Analysis and Discussion

