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—— Abstract

Data sketches balance resource efficiency with controllable approximations for extracting features in
high-volume, high-rate data. Two important points of interest are highlighted separately in recent
works; namely, to (1) answer multiple types of queries from a single data structure built in one pass
over the data, and (2) perform both queries and updates concurrently. In this work, we now tackle
the new challenges arising when combining these useful directions together.

We investigate the trade-offs around efficiency, consistency, and accuracy to be balanced and
synthesize key ideas into LMQ-Sketch, a single, composite data sketch supporting concurrent updates
and multiple queries (frequency point queries, frequency moments F;, and Fs as representative
selection). Our method “LAGOM” is a cornerstone of LMQ-Sketch for low-latency global querying
(<100 ps), combining freshness, timeliness, and accuracy with a low memory footprint and high
throughput (>2B updates/s). We analyze and evaluate the accuracy of LAGOM, which builds on
a simple geometric argument and efficiently combines work distribution with synchronization for
proper concurrency semantics — monotonicity of operations and intermediate value linearizability.
Comparing with state-of-the-art methods, which, as mentioned, provide either mixed queries or
concurrency separately, LMQ-Sketch shows highly competitive throughput, with additional accuracy
guarantees and concurrency semantics, while also reducing the required memory budget by an
order of magnitude. We expect the methodology to have broader impact on concurrent multi-query
sketches.
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1 Introduction

Data sketches provide approximate summaries of data streams and can answer questions
of interest efficiently, with bounded memory requirements. Examples include estimation
of element frequencies, set/multi-set size, frequency moments (norms), frequent elements,
distributions, quantiles, and more [1, 5, 8, 10, 13, 15]. Summarizations involve suitable
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hash functions, and the results are controllable approximations of the targeted aggregate —
commonly for skewed data — in form of (e, §) guarantees (the estimate deviates at most €, with
probability at least 1 —¢§). The approximation reflects a trade-off between accuracy and sketch
size, and, in consequence, the operations’ time cost. Due to their usefulness in data analytics
and feature extraction, sketches get a major role in data processing platforms [3, 2, 23, 28, 36].

Mixed query sketches. Data analysis requires more information than a single metric.
Typically, this would require one sketch for each metric to be tracked [9], requiring additional
memory and processing — a prohibitive overhead stressed as early as in [13] — and their contents
may be inconsistent. Can it be done differently? Important questions regarding having
a single sketch for answering mized queries have been asked in works such as [16, 32, 38],
showing potential to improve approximation guarantees and quality of results compared to
using separate sketches. A notable sketch supporting, with auxiliary data structures, multiple
queries is the Count-Min Sketch (CMS) [13, 15]. Besides, at the core of many statistics are
frequency moments (the i-th such defined as the sum of the i-th power of the frequency of each
element). E.g., Fy, also called “surprise number”, has uses in linear algebra [45], calculating
the Gini index [7, 22], evaluating skewness of distributions, quantiles [20], range queries,
heavy-hitters, histograms, or wavelet synopses helping for compression [11, 12, 19, 21]. In
conjunction with other metrics, F» enables to detect anomalies [10, 29, 33, 43] and associates
with universal sketching [4, 31]. F, can be estimated via, e.g., CMS [14] or Fast-AGMS [10].

Concurrency. Given the rates of real-world, continuous streams, multi-threaded processing
of updates and concurrent querying is both a necessity and a challenge, since, on one hand,
the perceived order of updates by queries influences accuracy, and, on the other hand,
synchronization overhead can dramatically influence throughput, operation timeliness and
result freshness. Work to address concurrency among queries and updates on sketching was
initiated in recent years, for single-query sketches [18, 27, 34, 42].

Our Targets. We integrate these directions, opening up the arising challenges not tackled
by existing approaches in balancing concurrency and accuracy with resource footprint and
timeliness, through workload distribution, data structure design, and synchronization for
proper consistency guarantees. We target a single, low memory-footprint composite data
structure with concurrent updates and queries for a representative selection of queries: Fi,
Fy, and point queries (individual element frequencies), with extensibility to other queries in
mind.

Challenges. Concurrency adds new factors and trade-offs; the influence is complex: stronger
consistency can imply better compliance with sequential sketch accuracy bounds but also
higher synchronization overhead, increasing query latency and staleness, in turn aggravating
accuracy and throughput. Further, mixed queries should not diverge excessively in observed
input to ensure consistency. In short: various trade-offs impact the metrics of interest: set of
queries, result quality, resource footprint, operation timeliness, and scalability.

Idea and Contributions. We study these trade-offs in detail and construct LMQ-Sketch
(Lagom!' Multi-Query Sketch), a low memory-footprint sketch supporting concurrent and
mixed frequency queries. The input domain and data structure are partitioned to support
multiple threads processing updates, a design also present in [42] albeit for point queries only,
showing benefits in accuracy and memory-efficiency. However, queries spanning multiple
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partitions, global queries, face higher operation complexity, synchronization overhead and
latency. To this end, our algorithmic design LAGOM employs Intermediate Value Linearizabil-
ity (IVL) [39], a modular consistency property suitable for sketches, admitting more efficient
implementations compared to requiring linearizability (unnecessarily strong for sketches
which approximate by definition) and which can preserve (e, d) bounds of the sequential coun-
terparts. LAGOM demonstrates significant gains in efficiency, timeliness, and result accuracy.
It gathers “just enough” information (shown using a geometric argument) from partitions
while maintaining accuracy in line with sequential methods. We also show monotonicity of
scans [17] for cross-query consistency of LMQ-Sketch.

The analysis is complemented by a detailed empirical study using real-world CAIDA
data [6] and synthetic stress-tests for extended insights. We compare to state-of-the-art
methods: SW-SKT [9] employs separate sketches for multiple, albeit non-concurrent, queries;
Delegation Sketch [42] supports concurrent updates and queries (for point queries only).
Further, we define elementary baselines based on the competing factors in the trade-offs. Our
evaluation shows how LMQ-Sketch efficiently balances memory, accuracy, and concurrency,
scaling beyond 2B updates/sec concurrently with high-rate queries. We also propose a
methodology to experimentally study the impact of concurrency on accuracy. Fy query
latency between 1-100 ps implies freshness with error below 0.01 %, with a sketch just 4 MiB
in size.

Roadmap. After preliminaries (§ 2) and problem analysis (§ 3), we present and analyze
the methods constituting LMQ-Sketch (§ 4, 5), detail our empirical evaluation (§ 6, with
open-source implementation [26]) and other related work (§ 7), concluding in § 8. Throughout,
claims are backed by the main ideas; proof sketches are provided in Appendix A.

2 Background

Count-Min Sketch (CMS) and Frequency Moments. CMS [13] estimates the frequency
of keys in the input stream, via point queries, with potential overestimation by a factor e
with probability 1 — 4. It uses a matrix of counters, CMS[H x K], alongside H hash functions,
each mapped to a row. H and K balance memory against accuracy, by H = [e/e]| and
K = [In(1/6)]. A CMS update for a key a increments CMS[j, h;(a)] for each row j. To
answer a point query for a, its frequency f(a) is estimated as f(a) = min; CMS[j, h;(a)].

For a stream S of keys from a domain U, the n-th frequency moment is [46]: F,, =
> acu f(@)". CMS provides an exact F as ZfCMS[j, k] for any row j. To estimate Fj,
which gives an indication of the skewness of the frequency distribution, [14] introduces CM~
and CM™ for different levels of skewness, encoded by the z parameter of a Zipfian, as many
real-world phenomena follow Zipf’s Law; CM~ for z < 1, while CM™ yields better accuracy
for skewed data (2 > 1). Similar to CMS point queries, CM* can only overestimate.

» Definition 1 (CM* [14]). CM™" estimates Fo from a CMS[H x K| by min; ZkK CMSJ[j, k]
with relative error 1 + € with probability 1 —6 =1 — %7H, where € = O(Kw)

Augmented Sketch (ASketch). ASketch [41] is a CMS extension for skewed streams, where
a small subset of keys account for the majority of updates. It uses a filter, denoted AF,
behaving as a fixed-size map of keys and counters, to count occurrences of the heaviest

! Lagom (link) describes “just the right amount”, indicating appropriateness rather than suggesting lack.
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keys separately from the CMS matrix, improving throughput and accuracy. Alg. 1 shows
its operations; updateAndPQ (line 1.10) is a simple extension of the CMS update to also get
a point query estimate for the key by returning the min of the updated counters. AF can
be efficiently searched for a key (line 1.2), e.g., using SIMD; if the key is found, the update
increments just a single counter in AF (line 1.3), bypassing calculation of H hash functions
and counter increments, and avoiding collisions with light keys in CMS. Keys are swapped
between AF and CMS as needed to keep the most frequent keys in the filter (line 1.11). Note
that A (line 1.13) is the exact number of occurrences of key a while resident in the filter.

Algorithm 1 ASketch — with highlighted enhancements for LMQ-Sketch, detailed in § 4.

Function ASketchUpdateEnhanced(key a, value v)

if a in AF then > Increment count in filter
AFla] += v;
AF™%V8[q] +— wov + (1—w)AF™*V8[a]; >w = 0.8, bias towards recent changes in skew
else if AF not full then >Add key to filter
AF[a] + wv;
AF°4[q] + 0;
AF™8VE[q] <+ v;
else >Update sketch

estimatedFreq <— CMS.updateAndPQEnhanced(a, v);
if estimatedFreq > mingey in ar(AF[key]) then
minKey argminkey in AF(AF[key]);
A + AF[minKey] — AF°'[minKey];
CMS.updateEnhanced (minKey, A);
AF[a(l < estimatedFreq;
AF°![q] « estimatedFreg;
AF™8V8[q] «— v;

Function ASketchQuery (key a)
if a in AF then return AF[a];
else return CMS.pointQuery(a);

3 Problem Description and Analysis

We target to estimate item frequencies and frequency moments using a single sketch, built
from one pass over a high-rate input data stream. The stream consists of tuples (a,v),
representing v occurrences of key a; we consider the cash register model, so v > 0. We target
multi-core shared memory systems supporting atomic primitives including fetch-and-add and
compare-and-swap. Threads communicate via a coherent memory model, and do not fail or
crash. Operations on the sketch object are updates, processing input tuples, and queries of
various kinds, and may all be invoked concurrently by different threads. A solution needs to
balance a delicate multi-way trade-off that we analyze in the following.

Accuracy and Consistency. Strong consistency for queries requires atomic views of the
sketch state, which may involve significant overhead; weakening these semantics arbitrarily
may reduce accuracy in unclear ways. We aim for a balance: fresh query results with low
synchronization overhead, yet with clear semantics, avoiding the accuracy pitfalls of both.
To facilitate this, we build on the idea of Intermediate Value Linearizability (IVL) [39],
that extends weak regularity [35], requiring that a concurrent query return a value in the
interval between the minimum and maximum ones it could return in any linearization of the
execution. In the cash register model, the considered query values increase monotonically
with updates; hence:

» Observation 2. For a monotonically increasing function, the minimum return value of
query @, concurrent with updates, is given by an idealized return value of the query (e.g. by
a perfect external observer) that observes updates up to the ones completed before Q’s start
(i.e. no overlapping ones). Similarly, the mazimum return value of Q is given by an idealized
return value that observes also all updates overlapping Q.
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Q observes all updates completed before it started ezactly once; the range of permitted
return values, effectively the “inaccuracy” accepted as a consequence of IVL, is due to
updates concurrent with Q). As we target high data rates, a short query latency is critical for
minimizing this range and preserving freshness. To this end, performance can be improved
by further relaxing consistency where tolerable: [39] combines r-relaxation [24] with IVL —
allowing @ to also miss up to r updates preceding it — paraphrased here:

» Definition 3. A query Q is r-relaxed IVL if it returns a value between the min and max
values it could return in any linearization that may reorder Q with up to r operations.

Multiple Query Types. The targeted queries include local and global ones. The former
involve part of the data, e.g., a point query for a certain key; the latter consider complete
contents of the sketch and associate with semantics for bulk operations [17, 35, 37]. Supporting
multiple queries also concerns their relative consistency; we identify operation monotonicity
as a useful notion to tell us how aligned the views of different queries are; paraphrasing
from [17, 35]:

» Definition 4 (Monotonicity of scans). For queries Q1 and Qa, where Q1 precedes Q2
(denoted — ), all updates observed (i.e., accounted for) by Q1 must also be observed by Qs.

Accuracy and Memory. The (e,6) bounds of sketches allow trading more memory for
improved accuracy; e.g., in CMS, a query can overestimate due to hash collisions — more
counters (or filters as in ASketch) reduce collisions. In the sequential setting, bounds are
well-studied, and ideally should be preserved under concurrency. Similarly important are
memory layout and management. Partitioning the input domain can aid parallelism as
partitions can safely be summarized concurrently, enhancing accuracy and efficiency, shown
for local queries in [42]. However, aforementioned accuracy-consistency challenges arise for
global queries.

Summary: Goals and Challenges. (G1) IVL and associated relaxations are identified
as consistency targets, due to explainability and efficiency advantages for synchronization.
Low query latency becomes a significant goal, allying with freshness. (G2) Monotonicity
of scans is desirable for multiple query types. (G3) Maintaining a single data structure
for answering multiple queries can enable better use of the memory budget if the accuracy
for each query can benefit from the full memory. We identify partitioning as an ancillary
approach to improving accuracy and memory utilization, also aiding parallelization and
hence throughput.

4 LMQ-Sketch — Design and Coordination

We describe the design space and coordination in LMQ-Sketch to enable concurrent estimation
of multiple queries from a single, composite data structure (Fig. 1) in conjunction with
partitioning, as motivated in § 3, for consistency, memory efficiency, and accuracy-friendliness.
The input domain is split into P partitions, as is the data structure (horizontal slices in
Fig. 1). Updates are performed by P threads, each “owning” one partition (ASketch and
other components) with exclusive update access to it. When thread T; processes an update
for a key owned by another partition, the update is buffered in a corresponding delegation
filter DF (Alg. 2). Similar to ASketch filters, delegation filters behave as maps of C keys,
and are small enough to be searched efficiently with SIMD operations. Periodically (upon a
triggering condition, line 2.13) filters are handed over to the owning thread (using, e.g., a
Treiber stack [44]), and contents are transferred in bulk to its local ASketch (Alg. 3).

36:5

DISC 2025



36:6

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14

LMQ-Sketch: Lagom Multi-Query Sketch for High-Rate Online Analytics

Sk AF

1
1

[0 Flpartial E - keys :

Partition 1 ED V1i,V2 H : (C)i)&lnts :
| o K F'2partials mave !

' I

1

[ 1

1

Partition P !
> |

l 1

1

Figure 1 LMQ-Sketch’s composite data structure. Partitions, horizontal slices of memory, are
modifiable only by the owner thread. All updates eventually reach partition-local ASketches (Sk and
AF, managing owned heavy keys), to the left of the vertical boundary. Delegation filters, DF, on
the right, buffer updates owned by other partitions and are periodically handed over to the owning
thread. C is a parameter, e.g. 16. Dotted components are for optimizations.

Table 1 Notation used throughout.

Symbol Description Symbol Description
P No. of partitions & threads Sk.F2partials Sum for CM™ per row (Def. 1)
K, H CMS rows and columns T;.AF ASketch filter for T;
C No. of slots in ASketch and del- AF[a], Count & Old count of heavy key
egation filters AF°[q] @ in AF
B Max. no. of updates buffered in AF™&[q]  Projected count of buffered oc-
delegation filter currences of heavy key a

T;.DF; Delegation filter of T; for up-
dates owned by partition j
DF;la] Count of key a buffered in DF;

DF;.size, ~Number of keys and updates
DF;.sum  buffered in DF;

Owner(a) Get partition owning key a
T; Updater thread for partition %
T;.Sk Local sketch for T;
T;.Flpartial No. of updates completed by T;

Algorithm 2 Delegation Sketch update Algorithm 3 Processing delegated up-
on T;. Enhancements for LAGOM in green. dates on T;. Enhancements for LAGOM in

Function update (key a, value v) green.

ﬁltc.r A Ti'D!:OW"er(a); 3.1 Function processDelegatedUpdates
while filter.size = C or filter.sum > B do 3.2 while T;.pendingFilters is not empty do
| processDelegatedUpdates(); 3.3 Wait until T;.beingScanned = false;
if a in filter then 3.4 T; V1++;
filter[a] += v; 3.5 filter < T;.pendingFilters.pop();
filter.sum += v; 3.6 foreach a in filter do
else 3.7 | Ti.AsketchUpdateEnhanced(a, filter[a])
filter[a] < v; 3.8 Clear filter contents;
filter.size += 1; 3.9 filter.size < 0O;
filter.sum += v; 3.10 filter.sum < 0;
T;.Flpartial += v; 3.11 T; V2++;
if filter.size = C or filter.sum > B then i
L Towner(a)-PendingFilters.push(filter);

Point Queries. The idea of domain-partitioning and delegation is also the basis of the
Delegation Sketch [42] for point queries, summarized here for self-containment. Moreover,
we here show their consistency properties as a query type in LMQ-Sketch. A point query
(Alg. 4) for key a is answered by Towner(a), the thread owning a, estimating f(a) as the
sum of occurrences of a in the thread-local ASketch of Towner(q) (line 4.2) and in relgvant
delegation filters of other threads (line 4.3). Skew in the input data is beneficial to f(a)’s
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accuracy; frequent keys are often present in the filters where they are counted accurately,
akin to ASketch. Based on the IVL definition and Obs. 2, along with the fact that entries in
the partition-local sketch are increasing with subsequent updates, and that only the thread
owning a key performs updates and queries on this sketch (hence cannot miss completed
updates or double-count any), we have:

» Lemma 5. Delegation Sketch-based PQ is an IVL implementation of ASketch point query.

4.1 Global Query Trade-offs

This approach of assigning query work to the owner thread will however not work for global
queries which span all partitions. We investigate the trade-offs relating concurrency and
accuracy for such bulk queries, as identified in § 3: the extremes of the spectrum serve as
baselines, followed by our balancing approach.

STRICT: A baseline for strong consistency, using a Readers-Writer lock to allow shared
access for updates and point queries, but exclusive access for global queries (acting as writers)
to see a consistent global state. F} is estimated by summing all counters on any row of
each T;.Sk and counts in all ASketch and delegation filters, yielding the number of updates
completed before the query. Fy can be estimated using CM™* by merging all sketches and
flushing filter contents (treating them as updates), thus preserving its error bounds. Note
several drawbacks: updates incur locking overhead even when no global query is taking place;
further, while thread-safe, the result can be stale due to “stopping the world” — input tuples
keep arriving but are not processed or visible to the query.

NOSYNC (§ 4.2): This approach targets optimistic synchronization, for exploring freshness
and concurrency maximization, at the cost of consistency, possibly risking mis-calculations.

LAGoM (§ 4.3): Our balanced method for concurrent queries with low latency, “just-
enough” calculation, and lightweight synchronization. Query results have stronger semantics
than NOSYNC, and are based on fresher state than STRICT.

4.2 Nosync for Bulk Queries

We explore a baseline with no synchronization between updates and global queries, to explore
freshness and concurrency maximization (at the cost of consistency).

F;. To estimate Fp, improving efficiency and freshness compared to an approach as in
STRICT, we introduce partial results in form of per-thread counters (7;.Flpartial) for the
number of performed updates (line 2.12). The FYNOSYNC qery (Eq. 1) sums these counters,
improving locality, efficiency, and NUMA-friendliness compared to STRICT.

P
FlNosch — ZTi.Flpartial (1)

» Lemma 6. [ NOSYNC estimates Iy with IVL semantics.

F>. A global Fy equals the sum of per-partition Fg, as partitions contain independent,
non-overlapping parts of the input. However, an approach as for F; with per-partition partial
results poses obstacles: threads would update the partial result at the owning partition,
reintroducing contention and serialization on shared data into the delegation design.
Instead, LMQ-all” (Eq. 2) uses CM™* to estimate Fy for each T;.Sk: for each key a in
T;.AF, HNOSYNC (Eq. 3) performs a point query (Alg. 4, using the fast path on line 1.19) to
obtain f(a)?, the Fy contribution of a. However, some occurrences of a may be stored in
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- 5 LAGOM
Algorithm 4 Point query on Towner(a)- Algorithm 6 F3 on own thread.
Function pointQuery(key a) 6.1 Function queryF2Lagom
result <= Touwner(a)-ASketchQuery(a); 6.2 result < 0;
foreach T; do result += T;.DFouner(a)lal; 6.3 fOTeaCh_Tq‘, do
return result; 6.4 T;.beingScanned < true;
- ~ 6.5 repeat
Algorithm 5 F>N™ on own thread. 6.6 v2 < TiV2 )
6.7 localResult < min(7};.Sk.F2partials);
Function queryF2Nosync 6.8 foreach a in T;.AF do
result < 0; 6.9 aFreq < T;.AF[al;
foreach T; do 6.10 aFreq += P - T;. AF™®V8[a] / 2;
result += Fb GM+(T71.SI<); 6.11 localResult += aFreq? — (Ti‘AFOId[a])2;
foreach a in T;.AF do 6.12 vl « T;.V1;
aFreq « T;.AF[a]; 6.13 until vl = v2; >Retry until match
foreach T; do aFreq += T;.DF;[a]; 6.14 T;.beingScanned < false;
result += aFreq? — (T;.AF°'4[a])?; 6.15 result += localResult;
return result; 6.16 return result;

T;.Sk and their contribution included in the CM™ estimate; this needs to be subtracted. We
provide a geometric illustration, elaborating on the argument for this calculation, in § 5.3 and
Fig. 2¢c. Alg. 5 shows the synchronization (or, rather, lack thereof) for concurrent LMQ-all™.

P T;.AF
LMQ-all" =) (F’QCM+(Ti.Sk) + ) 'HN"SYNC(a)> (2)

7
2
P

NS () = | T, AF[a] + ZTj.DFO[a] — (T,.AF°"[a])*>  where 0 = Owner(a) (3)

J

» Observation 7. An F,Nosync query Q can miss or double-count updates, due to data
movement by overlapping processing of delegated updates (Alg. 3).

While NOSYNC avoids the overhead of STRICT, serving as a baseline for maximal con-
currency and exploration of freshness, the lack of synchronization leaves weak consistency
guarantees for F estimations?, implying arbitrary fluctuations from the accuracy bounds.

4.3 Lagom for Bulk Queries — F»

We now present our design to enable high throughput with clear concurrency semantics. We
build upon some of the described components, i.e. support updates via Alg. 2, with highlighted
enhancements, point queries via Alg. 4 (§ 3.11) and Fy via Eq. 1 (§ 4.2). The crux to efficient,
concurrent [ queries with consistency and accuracy guarantees lies in two key ideas:
(1) efficient maintenance of partial results, which, based on a geometric observation, allows to
argue about accuracy relative to the sequential bounds; and (2) lightweight synchronization
implying IVL, over only few variables to scan, due to how partial results are maintained.

Partial results for F,. While a global F, can be obtained from summing per-partition
F, values as in F'QNOSYNC, maintaining these per partition is, unlike Fi, not straightforward.
Instead, we compute partial results to simplify the heaviest operations in Eq. 2, 3, which are:
(1) CM™ on the underlying CMS, that requires reading all H x K counters of the sketch, and
(2) HNOSYNC (Eq. 3), that reads all delegation filters for each heavy key.

2 To be precise, F»N""C is quiescence-consistent [25]: in absence of concurrent updates, the “bad things”

in Obs. 7 cannot happen. But this property is to little purpose in high-rate scenarios.
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For (1), we maintain the per-row sums in Def. 1 for each sketch row, labeled F2partials in
Fig. 1. This is done within the enhanced CMS update in Alg. 1, with incremental (associative)
calculations. Fj CM” can then return the min of these H values (highlighted in Eq. 4).

For (2), we aim to avoid scanning delegation filters when estimating the frequency of
heavy keys. However, as filters can buffer a significant number of updates, particularly for
skewed streams, their contents should not be ignored to avoid excessive underestimation
(analyzed in § 5.3). To compensate, we devise H“M (Eq. 5) as a lightweight estimation of
the number of heavy-key occurrences buffered in delegation filters. For each slot, ASketch
filters maintain an exponentially weighted moving average of the number of occurrences
received during filter flushes (line 1.4, invoked from line 3.7). We replace the scan over
delegation filters in HNYNC with the following idea (highlighted in Eq. 5), requiring only
one read from the ASketch filter: there are P delegation filters for a partition, projected to
contain AF™V8[a] counts of a once full and getting flushed. At any point when the query
scans a partition, filters are on average half full. This yields LMQ-proj™ (Eq. 5). In § 5 we
analyze the accuracy implications and the association with the sequential bounds.

P T, AF
LMQ-proj" = Z (min(Ti.Sk.F2partials) + Z HLAGOM(a)> (4)
T,.AF™ave

HLAGOM(a) _ (TO.AF[G] + P 5 [a])Z_ (TO.AFOId [aDQ where 0 = Owner(a) (5)

Lightweight Synchronization. The F,LA¢OM query (Alg. 6) uses lightweight synchronization
to safely calculate LMQ-proj* concurrently with updates. To achieve the IVL-semantics goal
(G1) set in § 3 and avoid the safety problems of E,NOSYNC goon in Obs. 7, FLACOM synchronizes
with each partition ¢ being scanned (i.e., with thread T;) via a handshake, involving a pair
of initially equal version numbers (as in [30]) for detecting a concurrent filter flush, and an
atomic flag set by the query, to signal when the partition is being scanned.

In the common case, when T; processes a tuple (a,v), Alg. 2 with enhancements finds
available space in T;.DFoyner(q) (condition on line 2.3); T;.DFowner(a)[a] is then incremented
by v (line 2.6 or 2.9), but a handover is not triggered immediately (line 2.13 is false). F,LAcoM

queries cannot directly account for this update before T;.DFoyner(q) is flushed to Towner(a)-
FylAGOM targets a consistent view of each partition’s relevant information independently.

Concurrent filter flushes (Alg. 3) are detected if version numbers mismatch (line 6.13), causing
the query to retry, though only for at most one concurrent flush per partition, as subsequent
flushes will be stalled by the flag (line 3.3). The sum of the collected per-partition partial
results is then returned as Fh. The update-query interaction implies:

» Lemma 8. F,lacom gets an atomic snapshot per partition, and cannot deadlock with
updates.

Optimizations on Filters: Bounds and Self-Delegation. To bound the interval between
filter flushes, a parameter B limits the buffering capacity of filters (line 2.7 and 2.11). Lower
values for B trade performance for accuracy — both for updates, as filters are unavailable
more often, and for queries, where more overlapping flushes interfere with them. The impact

of B is studied in § 5.3, according to this observation, motivating tracking of updates in
ﬁzLAGOM:

» Observation 9. At most r = PB single increment updates can be buffered in delegation
filters and may thus not be explicitly observed by Fy %M queries.
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Further, in Delegation Sketch, a thread processing an update for a key it owns updates
its ASketch directly. However, in LAGOM, ASketch updates require synchronizing with global
queries, causing delays particularly in partitions owning heavy keys. To improve efficiency,
each partition is extended with a self-delegation filter to buffer local updates and process
them in bulk, also interfering less with queries.

4.4 Multiple Query Types — Relative Consistency

In § 3 we identify monotonicity of scans [17] (G2) as intuitive and desirable behavior — a
query should observe the updates observed by a previously performed query. Having a single
data structure implies certain monotonicity compared to a disjoint per-sketch data structure.
As LMQ-Sketch consists of multiple components, an update can become visible to queries
of different types at slightly different points. Here we bound how much/little “the world
can differ” between query types. To this end, we identify as sub-operations of an update U
the atomic operations, denoted here U’O , after which U becomes visible to a query of the
respective type: U|PQ at line 2.6 or 2.9, U|F1 at line 2.12, and U|F2 at line 3.11. We have

U’ Po U | T U | P from program order. The cross-query consistency properties are:
» Lemma 10. For queries Q1 —> Qo the monotonicity of scans for each combination follows

Q:: PQ Fy Fy

PQ  Monotonic P-relaxed monotonic  r-relazed monotonic

Q;:: F; Monotonic Monotonic rP-relaxed monotonic

Fs Monotonic Monotonic Monotonic

Note that: (1) The bounds are pessimistic, e.g. for PQ — F; to deviate by P updates,
all must occur in the partition queried by @1, while for all other updates except these, i.e.,
where U| F, — Q2, full monotonicity of scans applies. (2) P is small relative to update
rates. (3) Due to the compensation scheme of FpLA¢oM
the maximum deviation in operations observed occurs, actual results differ significantly less.

, even in the very unlikely case that

5 Accuracy of F, Estimation

We analyze the consistency and accuracy of LMQ-Sketch for F,, as done for PQ and F,
queries in § 3.11 and § 4.2. We develop a sequence of auxiliary designs (Table 2) and argue

LacoM We develop a geometric interpretation of

for their properties, ultimately arriving at F
F5 in terms of areas of squares, illustrating accuracy properties. For each step, we describe
the organization of the data structure and the F; query on it in a sequential setting along

with its accuracy, followed by a parallelized construction and its concurrency semantics.

5.1 Count-Min Sketch & Partitioning

We begin by comparing a “wide” CMS with a partitioned one, on fixed memory budget.

WIDE: A Count-Min Sketch with H rows and P x K columns. 1 2,3 | 4
A toy example is shown to the side. 4 1,2 3

Sequential. CM™ (Def. 1) estimates Fy from WIDE. Consider the example CMS; each
number represents a unique key hashed to that counter, and is simultaneously the frequency
of that key (i.e., f(1) = 1, f(2) = 2, etc.). Colliding keys are separated by commas;
CMS will only store their sum. The true F, is 12 + 22 4 32 4 42 = 30. CM™ computes
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Vg
Table 2 Sequential (for accuracy reasoning) & . -
5 . 2
concurrency-aware Fy (for IVL reasoning). boss
2

72777777
72

207250007
12 ¢

77777777
v2r27222)

Data structure Sequential Concurrent

WiDE (CMS)  OM* CMe f(a) [ PTyDFl
PARTCMS PARTCMS™ PARTCMSY,,.  — ‘ = !
PARTAS PARTAS™ PARTASY,,. A |
LMQ-Sketch LMQ-all* FyNoswe !
LMQ-Sketch ~ PARTAS*(LMQ) PARTASY,,, 0 L
LMQ-Sketch ~ LMQ-proj* [ylacon (b) ASketch Fa.  (c) HNOC and HMAGOM,

Figure 2 Geometric interpretation of Fj.

12 + (2 + 3)2 + 42 = 42 from the first row and 42 + (1 + 2)2 + 32 = 34 from the second,
returning the smaller estimate. Overestimation arises from colliding keys. Fig. 2a illustrates
the CM™ calculation for the counter containing (1,2). The true Fy contribution of the
contained keys is 5, the sum of the plain areas. CM™ calculates (1 + 2)? = 9, the entire
square, thus overestimating by an amount equal to the striped areas. The impossibility of
underestimating is clear. Heavy keys induce particularly large extra areas, suggesting a need
to treat them specially.

Concurrent. CMS updates and queries can be parallelized by, e.g., atomic fetch-and-add.

In [39], Rinberg and Keidar show a similar construction to be an IVL implementation of
CMS. On top of this parallel CMS, consider CM7, . as a concurrency-aware adaptation of

conc
CM* using atomic reads; a similar argument as [39, Lemma 5.3] implies:

» Lemma 11. CM "

conc

is an IVL implementation of CM™, preserving CM™’s (€,68) bounds.

For reduced contention relative to WIDE, the space is now partitioned into P sketches:
PARTCMS: P partitions, each with a H x K CMS. Each partition 1 2 3,4
sketches a subdomain of the input. (Toy example on the right). 1,2 || 4 3

Sequential. Partitioning the memory of the example into P = 2 partitions (note each key
is only present in one partition), to estimate Fy from PARTCMS, PARTCMS™ sums a CM™*
estimate for each partition. In the example, 5 is calculated for the first partition and 25 for
the second. Their sum is an F} for the complete PARTCMS.

» Observation 12. PARTCMS™ can only improve accuracy of Fy compared to CM* on
WIDE, as it selects sketch rows with minimum overestimation independently for each partition.

Concurrent. Each partition is assigned a thread to perform updates. For now, assume
that each thread only receives tuples for keys of its partition. Consider PARTCMS, . as a
parallelization of PARTCMS™ using atomic reads (similar to CM, ) to perform PARTCMS™

conc
concurrently with updates. Similar reasoning as in Lemma 11 implies:

» Lemma 13. PARTCMST

conc

is an IVL implementation of PARTCMST.
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5.2 Augmented Sketch & Partitioning

ASketch [41], § 2, introduced filters to track heavy keys more accurately. In a similar fashion
to PARTCMS, partitioning can be applied to ASketch while keeping total memory constant:
| PARTAS: P ASketches, each of size H x K’ — reducing width to fit filters in same total memory. |

Sequential. Consider PARTAS™: for each partition, CM™ is applied to its CMS; the F}
contribution of each key a in the filters is f(a)?, shown in Fig. 2b, where f(a) = AF|d]
(line 1.19). Note, f(a) contains 0 = AF°"[a] occurrences which are also in the CMS from
times when a did not reside in the filter due to not being heavy enough. Hence, CM™* already
included 0? (dotted area in Fig. 2b). To avoid double-counting this quantity, o* is subtracted
(HNOSYNC (Eq. 3) and HAM (Eq. 5)). Finally, the contributions are summed to get an Fy.

» Observation 14. Higher P is beneficial to PARTAS™T ’s accuracy, reducing overestimation
through P filters accurately counting heavy keys, while maintaining one-sided error as CM™.

Concurrent. As in PARTCMS, ., each partition is updated by a dedicated thread, (still)
with the simplifying assumption that input tuples are distributed to the owning partition.

Instead of unsafe scanning, consider PARTAS] ~ which obtains an atomic snapshot of each

conc
partition-local ASketch (using any synchronization that can guarantee that) and computes
an estimate as PARTAS™, implying:
» Lemma 15. PARTAS,

conc

is an IVL implementation of PARTAS™.

5.3 Concurrency Awareness — Delegation

We now waive the simplification of input being distributed to the owning partition; threads
delegate updates to the owner. We describe and compare three approaches to estimating Fb.

LMQ-Sketch: Each partition of PARTAS uses P delegation filters to buffer updates, periodically
flushed to the owning partition. K is adjusted to maintain the memory budget.

All DFs. LMQ-all* (Eq. 2) extends PARTAS™ to include all delegation filters when es-
timating f(a), shown as S.DFla] in Fig. 2c. Buffered occurrences of light keys are not
considered, as they by definition do not significantly contribute to F5, particularly for skewed
streams which we target. F,NOSYNC (§ 4.2) calculates this as a concurrent query, but lack of
synchronization makes it unsafe (Obs. 7). Further, LMQ-all” scales quadratically in P; all P
delegation filters are read from other threads for each of C' heavy keys in P ASketch filters.

No DFs. To query more efficiently, we consider outright ignoring delegation filters, which
will underestimate Fy, by applying PARTAS™ to the LMQ-Sketch data structure. However,
the number of buffered, hence ignored, updates per partition is bounded (Obs. 9).

» Lemma 16. PARTASY, . on LMQ-Sketch (i.e. its ASketch part) is an r-relaved IVL

implementation of LMQ-all™ per partition, where r = PB.

» Corollary 17. Since IVL is a local property [39], PARTAST

conc 0 LM@Q-Sketch is an
rP-relaxed IVL implementation of LMQ-all™.

Note the worst-case is extremely unlikely to happen, as all 7 updates would need to be
for the same key (i.e. extreme skew), and filters do not become full simultaneously.
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Lagom. To compensate for this relaxation yet maintain its high efficiency, LM Q-proj* (§ 4.3)
projects the number of buffered occurrences of heavy keys to replace the exact calculation of
> DFla] in Fig. 2c and HNSYNC (Eq. 3).

» Observation 18. HIAM (Eq. 5) projection compensates for up to r/2 ignored occurrences
per heavy key, bringing the query result closer to the actual Fs, based on the reasoning of the
geometric argument and observations 12 and 14.

From the above and Lemma 8, we have:
» Lemma 19. FLEACOM s an VL implementation of LMQ-proj™.

The behavior of F5*M within the bounds is data- and execution-dependent and is
evaluated in the next section. Summarizing the properties of LMQ-Sketch, we have:

» Corollary 20. LMQ-Sketch is a composite concurrent sketch data structure for multiple
queries: (1) PQ (§ 3.11), an IVL implementation of the ASketch point query; (Lemma 5);
(2) FyNOSYNC -, TV implementation of exact Fy (Lemma 6); (3) Fy™9°M an IVL imple-
mentation of LMQ-proj* (Obs. 18, Lemma 19). Queries follow the monotonicity properties
in Lemma 10.

6 Evaluation

Baselines. We study LMQ-Sketch relative to: (1) SW-SKT [9], the software implementation
of SKT which targets FPGA-acceleration for high-rate sketching. SKT uses separate sketches
for multiple queries (Fy, point queries, and F, via HLL, CMS, and Fast-AGMS) updated in
parallel, but no concurrent queries (first merging all thread-local sketches before querying).
This comparison is for insights about answering mixed queries in a single sketch, from a
memory, accuracy and scalability point of view. (2) Delegation Sketch [42], which supports
concurrent updates but with point queries only. By comparing, we aim to understand the
synchronization overhead for concurrent global queries. (3) The elementary STRICT and
NosyYNC designs are used to evaluate the balance achieved by LAGOM. Note that simply
adding concurrent queries to SW-SKT would imply effects similar to NOSYNC and STRICT
and hence are not studied separately.

Datasets and Hardware Platform. From the CAIDA [6] network packet traces we extract
18.5M tuples of headers. Besides, synthetic datasets with skew z = 1, 1.5, 2 and 3 (each
having 100 M tuples sampled from a domain of size 1 M) are used to explore performance
characteristics up to extreme skew levels where a majority of input tuples are owned by a single
partition. All experiments are conducted on a 128-core AMD EPYC 7954 running at 2.25 GHz,
without using SMT. The server runs openSUSE Tumbleweed 20250211. LMQ-Sketch is
implemented in C++23 [26], compiled with GCC 14.2.1 and -03 -march=native.

Metrics. To study the scalability and efficiency of LMQ-Sketch, we measure throughput
(updates per unit-time) at different thread counts, without and with concurrent queries. To
study accuracy in presence of concurrency, we focus on latency of global queries, which has
implications on the IVL-permitted interval; we propose a methodology to evaluate accuracy
of IVL-associated queries (cf. § 5), measuring the difference of returned values relative to
the estimated IVL-bounds, giving insight into the synergy of IVL semantics, query latency
and freshness. Finally, we compare the impact of memory budget on accuracy for FyLAGOM
state-of-the-art sketching techniques, and reference methods in § 5.
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Parameters. Threads, partitions & memory: we stress-test with high thread counts (P = 1
to 128). Memory budget per partition is constant at 32 KiB: Hx K = 8x1024, while reducing
K when having filters (cf. evaluations in [41, 42]), and keeping sketch rows (hash function
computations) fixed. Filter size: C' is kept at 16 as in [42], delegation filter buffer capacity
is bounded at B = 1000. Synchronization: we compare LAGOM with the aforementioned
baselines, including two Delegation Sketch configurations: the plain one (unbounded B) and
one with B=1000. Skewness of input data: z > 1 for the synthetic data, and z ~ 1.4 for the
CAIDA data. Frequency of concurrent queries: stress testing with global queries at rates of
1000/s and point queries for 0.1 % of update tuples, following the benchmark in [42].

Experiments. We begin by comparing the impact of synchronization on update operation’s
throughput when processing a complete input dataset from system memory (§ 6.1). Next, we
investigate the accuracy and freshness of global query results, in relation to memory budget
and concurrency. Higher weight lies on the more complicated F5 queries, F’s behavior being
studied mainly in terms of query latency and PQ’s behavior evaluated in [42] (§ 6.2, 6.3, 6.4).
For brevity, the results are shown in figures with summary descriptions in the caption, and
main takeaways in associated paragraphs. More detailed discussions appear in Appendix B.

6.1 Concurrency and Synchronization

Design and Parameters. FEach dataset is processed with varying numbers of partitions
and threads, P. First, we measure update throughput with no concurrent queries. We then
repeat the measurement with a constant high load of concurrent queries: Fy and Fy at 1000/s
each, and point queries at 0.1 % of updates, for the designs that support them.

SB.- Zipf 1.0 . CAIDA ) Zipf 1.5 ) Zipf 2.0 . Zipf 3.0

6B ] ] ] ] —e— Delegation Sketch
o 4B] ] ] 1 1 Del. Sketch B=1k
2 284 | /J__,,("":: 1 r’,.#i'f{. 1 % 1 /j:' —+— STRICT
g Ol P et e, (e (e —+ LacoM B=1k
—g ;g 1 1 1 1 —#— NOSYNC
= 1Bl | ﬁ ?: ] f ] | SW-SKT

0 -u‘ﬁ"fo 1

1 326496128 1 326496128 1 32 64 96128 1 32 64 96128 1 32 64 96128
Threads

Figure 3 Mean update throughput, without (upper row) and with concurrent queries (lower row,
for designs that support them). Fluctuations are small and omitted for clarity. Note the minimal
overhead of LAGOM for global queries as it matches Delegation Sketch with B=1k. STRICT does
not scale with increasing threads or skew. With concurrent queries, LAGOM stays close to NOSYNC,
affirming the lightweight-ness of the synchronization design; increasing skew improves performance,
as the latency hiding of delegation counteracts and postpones saturation even at extreme skew.

Takeaways. The results, shown in Fig. 3, imply that LMQ-Sketch with LAGOM is able
to maintain state in a way that allows independence by different threads, enabling high
processing throughput, yet still imparting the necessary consistency to serve the purpose
of sketching for continuously and concurrently answering multiples queries in a streaming
setting.
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6.2 Memory and Accuracy

We consider a sequential setting, to explore the impact of sketch memory budget on F5
estimation accuracy for several baselines and our methods. Note: There are two main
parameters for memory budget, but with differing impact on accuracy: per-partition memory
(given by H and K) and the total number of partitions P (also number of threads when
parallelizing). In the partitioned design, an increase in any of these improves accuracy (§ 5).

Design and Parameters. The methods in the analysis (§ 5) form points of reference;
additionally, we compare with Fast-AGMS [10], used in SW-SKT. For each method and
skew z = 1, 1.5 and 2, five synthetic datasets (length 100M, cardinality 1M) are processed
under various memory budgets, for F}, and the mean absolute percent error (MAPE) relative
to the true Fy, at the end of the execution (i.e., based on the global state for the filter-
enabled designs). For each method in § 5, we use constant per-partition memory 32 KiB
(H x K = 8x1024 with adjustments in presence of filters, as before); total memory increases
with P.

Fig. 4 shows the MAPE in log-scale, along the outcome for a single-partition Fast-AGMS
at several budgets: 6x2!3 (as in the original evaluation of [9]), 8 x 1024 (same P = 1 in the
partitioned approaches), and 128 x 8 x 1024 (identical to the total budget of LMQ-Sketch
at P=128). Increasing parallelism for thread-local designs such as SW-SKT will require
P times this memory at runtime, but the accuracy bounds of queries remain the same as
for a single sketch of 1/P of the total memory (since the local sketches simply get merged).
Fig. 5 shows memory budget scaling for SW-SKT and LMQ-Sketch when the number of
partitions/local-sketches follow the number of threads when run in parallel.

Zipf 1.0 Zipf 1.5 Zipf 2.0 .
S M g
~ - >
o les & 40M
n, le6 * =
) 220M
“ter2l L 1 =
1 32 64 96 128 1 32 64 96 128 1 32 64 96 128 & (0] ebe—eo— o °
Memory (Partitions) = T ¢ y v T
cM” —s— PARTCMS™ —+— PARTAS™ 1 32 64 96 128
—— LMQ-all* PARTAS™ (LMQ) LMQ-proj* Threads
% SW-SKT, orig 3% SW-SKT, P=1 SW-SKT, P=128 SW-SKT  —e LMQ-Sketch
Figure 4 Non-concurrent MAPE for F, estimations at Figure 5 Total memory scal-

various z and memory budgets, in multiples of 1 partition ing linearly with P. LMQ-Sketch
occupying H x K = 8x1024 counters (32KiB). Thread-local uses 32KiB per thread/partition.
approaches (SW-SKT) must merge local sketches before query- SW-SKT, with 6x2'3 counters for its
ing, and achieve the accuracy of this single sketch, various sizes CMS and Fast-AGMS as in the eval-
of which are shown here. For such designs, increasing memory uation of [9] (but without the HLL
budget with additional threads does not improve accuracy. for Fg) uses 393 kB per thread.

Takeaways. PARTCMS™ and PARTAS™, our stepwise enhancements for CM™* in § 5,
improve estimation accuracy. Unlike for thread-local designs, the partitioned approach
allows LMQ-Sketch to utilize the increased memory budget for a two-fold benefit: increasing
per-partition memory improves (sequential) accuracy in isolation; increasing the number of
partitions benefits both accuracy and parallelism. Although Fast-AGMS is one of the most
accurate Fy sketches, its thread-local-oriented design does not see improved accuracy for the
same per-partition memory budget, while LMQ-Sketch achieves the same or higher accuracy
by effectively navigating the memory and concurrency trade-offs.
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6.3 Query Latency and Accuracy

Next, we consider concurrent queries. As described in (G1) (§ 3), IVL, while preserving
bounds for sketches, cannot fully characterize the final accuracy of the result; query latency
plays a key role. LMQ-Sketch addresses this by optimizing query latency using partial results
at insertion. We evaluate the latency improvement due to this algorithmic design.

Design and Parameters. We measure the latency of global queries with different values
of P, concurrent with updates. After 100 ms of warmup to populate delegation filters, queries
are performed at a rate of 1000/s. For F; queries, we focus on the FyNosYNe TV, design
(§ 4.2). For F», the more complex query, we benchmark the synchronization designs.

/UQ?IOk T‘}* Zipf 1.0 CAIDA Zipf 1.5 Zipf 2.0 Zipf 3.0
= ?é Z 10M e S o )
g 1k é@[# E M . . - e T
% lﬂ’ l”’ glook l-n..', t : *¢‘. it “.‘ Lt ‘*.- ““
5100 S 10k{, + ot L R Y
16 32 64 128 5 1000 } t y f
Threads PO BEWD = PEWDR BERWD R 0 WO
m Zipf 1.0 @ CAIDA [ Zipf 1.5 SNER  oneR  obel  obel  oneR
Zipf 2.0 Zipf 3.0 0 Strict [ LacoMm [ Nosync L hreads
Figure 6 Latency of FyNosY™~¢ Figure 7 Latencies of 100 F queries concurrent with

queries concurrent with updates scales updates. LAGOM is 2-3 orders of magnitude faster than
linearly with P. No impact from skew. other designs, which struggle with high thread counts.

Takeaways. £} NOSYNC query duration ranges from 100 ns to 10 ps at high thread counts. Our
optimizations in F,Lacom yield significant improvements in query latency, which stays below
100 ps. Such short latencies suggest the suitability of our queries for accurate estimation
under IVL, due to reduced number of overlapping updates, evaluated next.

6.4 Concurrency and Accuracy

Building on insights from measuring concurrent query latencies, we now evaluate the impact
on accuracy. Query duration in conjunction with update throughput determine the IVL
interval size. Although IVL does not exactly target accuracy guarantees, to complement, we
explore the admissible freshness of this interval.

Design and Parameters. We compare the return value of concurrent F5“4¢M with the
IVL-permitted interval. We adopt the following methodology to determine the relative error
induced by concurrent executions, without interfering with execution patterns, e.g., as an
approach based on stopping and starting updater threads to record measurements would do.
Methodology to determine bounds of return interval of concurrent query QQ: We reconstruct ideal
query return values at Q*'*™* and Q"¢. A threshold Fi-value T is selected (beyond the warmup
period), as a trigger point for performing @ which overlaps an arbitrary number of updates n. To
reconstruct Q*'**, updates are stopped when F; = T and a sequential query is performed. In
a new execution, reaching Fi = T instead triggers ) concurrently. Upon the completion of @,
updates are stopped and Q™

is recorded in a sequential setting.
We set T' = 10M tuples and perform 50 repetitions for each dataset (CAIDA and synthetic
with z = 1, 1.5 and 2) and increasing P. We study F,NOYNC and FLEAGOM yging the same
methodology to determine the effect of latency and weaker semantics on accuracy.
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Figure 8 Comparison of query return value against bounds of IVL-permitted interval. For both
designs, Q observes more updates than Q***"* (which is what 55" would return) but misses some
updates observed by Q°"?. LAGOM consistently yields (orders of magnitude) narrower return value
intervals compared to NOSYNC, which may miss many updates due to its long operation latency.

Takeaways. The concurrent Fy queries can observe overlapping updates (towards improving
STRICT’s freshness). However, the interval of return values for NOSYNC is arbitrarily
large, while LAcoM (with agile calculation and IVL guarantees) imparts a seriously smaller
uncertainty, particularly at low—intermediate P, demonstrating that LAGOM’s properties
preserve, and are useful for, accuracy.

7 Other Related Work

Rinberg et al. in [40] present a snapshot-based methodology for sketch querying concurrently
with updates, building on a thread-local design with limited local buffering and a global
propagator which merges local sketches into a global one when full. Concurrent queries
require a snapshot of this global sketch, which gets more costly with the size of the state, also
leading to a tradeoff with respect to accuracy. Using a partitioning design as in LMQ-Sketch
allows efficient queries taking snapshots per partition, while supporting distributed state
and fine-tuning of freshness. Concurrent queries and updates are also targeted in [18] for
estimating quantiles; although not using the generic framework of [40] due to risk of sequential
bottlenecks.

Several recent orthogonal works such as Hydra [32] and OmniSketch [38] explore using
sketches for multiple querying of multidimensional data streams. These works are not
targeting queries concurrent with updates, though, instead using an online sketching phase
followed by an offline querying phase, during which the sketch is no longer updated.

Universal Sketching appears in [31, 32] as a useful technique to estimate sums of monotonic
functions applied to stream frequency vectors, such as F; and F, from a single sketch in
small (polylogarithmic) memory. As its core functions associate with the ones in LMQ-Sketch,
the latter can be a possible candidate for supporting concurrency in it.

8 Conclusions

LMQ-Sketch is a concurrent, multi-query sketch in a single, low memory-footprint object,
with explicit concurrency semantics that lead to predictably high accuracy even with very
demanding stream properties. The analytical and detailed empirical insights using real-world
and synthetic data showed that (1) having a single data structure balances multiple targets:
accuracy (Fig. 4), timeliness (Fig. 6, 7), memory footprint (Fig. 5), freshness (Fig. 8),
concurrency, and throughput (Fig. 3); (2) besides the memory budget, the way that the
memory is used is catalytic for the achievable concurrency and accuracy, both for local and
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global queries; (3) employing IVL, in conjunction with low query latency and concurrency-
aware compensation, enables accuracy aligning with that of the sequential sketches, even
under very high-rate, skewed streams.

LMQ-Sketch can be a useful component in systems such as Redis, Apache Druid/Spark/

DataSketches and more. The method facilitates continued research towards supporting
additional queries concurrently, which all need to deal with the same challenges regarding
efficiency, consistency, and accuracy; e.g. top-k elements, possibly supporting wavelets,

quantiles, and associating with queries required for universal sketching.
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A.l1 From § 4
» Lemma 5. Delegation Sketch-based PQ is an IVL implementation of ASketch point query.

Proof sketch. While Toyner(a) executes PQ, other threads may concurrently update relevant
delegation filters. However, only updates overlapping P@Q can be missed; updates completed
before PQ are reflected in the returned f (a) [42, Claim 2]. Double-counting of updates is not
possible [42; Claim 3], as this would mean P@ observed an update both while it is buffered
in a delegation filter, as well as when it has been flushed to the partition-local ASketch.
This would require a flush of the delegation filter, which can only be performed by the same
thread as PQ itself, and hence cannot overlap PQ. Therefore, the maximal return value is
the one for a linearization which observes all overlapping updates. |

» Lemma 6. [} NOSYNC cstimates Fy with IVL semantics.

Proof sketch. The partial results form jointly a shared counter, where each thread maintains
a local counter of completed updates. The query, performing one atomic read per partition,
can neither double-count updates not omit completed ones. <

» Observation 7. An FyNOC query Q can miss or double-count updates, due to data
movement by overlapping processing of delegated updates (Alg. 3).

This can occur when @ overlaps with processing delegated updates (Alg. 3), which non-
atomically moves occurrences of keys from delegation filters to the ASketch of the owning
partition. Updates can be missed when @ scans a sketch T;.Sk (line 5.4), whereupon a filter
T;.DF; is handed over to T; and flushed (Alg. 3), followed by @ reading the now-empty filter
(line 5.7), thus missing all the concurrently flushed updates, regardless of whether they were
completed before @) began. Or, if Q) overlaps a flush of T};.DF;, updates may be seen both in
the ASketch of T; and in T};.DF; before the latter is cleared.?

» Lemma 8. FLLASM gets an atomic snapshot per partition, and cannot deadlock with
updates.

Proof sketch. Atomic per-partition snapshot — When a full delegation filter is flushed,
buffered updates move to the owning partition’s ASketch and associated partial results
are updated (Alg. 1). As this operation is not atomic, the query synchronizes with it to
avoid mis-calculations, such as double-counting updates or omitting completed ones:
A flush begins by incrementing V1 and increments V2 upon completion (line 3.4 and 3.11).
A query reads these in reverse order (V2 then V1) to detect concurrent modification of
the data it read, and the scan is retried is they do not match (condition on line 6.13).
To prevent unbounded retrying in the (unlikely) event that repeated flushes occur in a
query’s duration, the query flags the partition it is scanning (line 6.4). If the flush finds
the flag set (line 3.3), it waits until the query has cleared the flag (line 6.14).
If the flag is not set, the flush can proceed to increment V1 (line 3.4) and begin updating
the ASketch contents. If a query now sets the flag, it will either find the version numbers
match and knows that a consistent view was obtained, or detect a mismatch, indicating
the observed state may be inconsistent, and retry the scan (line 6.13). The query can be
blocked by at most one concurrent filter flush, as subsequent ones will be stalled by the
flag.

3 Similarly, there can there be omissions and double-counting if we swap the relative order of scanning of
sketches and delegation filters.
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The synchronization design performs a double-collect of the version numbers (line 6.13) which
indicate concurrent modification of the ASketch of the partition being scanned. As a scan
gets an image of a partition’s partial results without interferences from filter flushes, it sees
a linearizable view of that information in the partition.

No deadlock — Deadlock entails one or more updater threads and the F5 query thread
being unable to proceed because they are waiting for one another. The query algorithm
interacts with only one partition at a time; all remaining updater threads for other partitions
are not involved and continue executing independently. If the query has set the flag for
updater thread T; (line 6.4), T; will not proceed past line 3.3. Within bounded steps, the
query will complete its scan of partition ¢, as T; is currently blocked and cannot update
the version numbers to mismatch, and ultimately reset the flag (line 6.14), thus unblocking
T;. Similarly, if the query is attempting obtain a consistent scan while 7} is performing
a filter flush operation and has incremented V1 — causing the query to retry —, from our
system properties, T; is guaranteed to make progress and complete the flush within bounded
time, finally incrementing V2 to match. Again, the query will be blocked by at most one
concurrent filter flush, as subsequent ones will be stalled by the flag. |

» Lemma 10. For queries Q1 —> Qo the monotonicity of scans for each combination follows
QQ: PQ Fy Fa

PQ  Monotonic P-relaxed monotonic  r-relazed monotonic

Qq: F Monotonic Monotonic rP-relazed monotonic

Fy Monotonic Monotonic Monotonic

Proof sketch. If @; and Q- are of the same type or if U 0 U o, according to program
order, then monotonicity of scans is immediate. There are three remaining cases where it is
possible that U|Q1 — Q1 — Q2 — U|Q2

PQ — F; At most one update operation per updater thread can overlap both @1 and Q.
Therefore, a PQ is limited to observing at most P updates that are not yet visible to a
subsequent F} query.

PQ — F, Since @, is a local query, hence only observes one partition, at most r = PB
updates buffered in delegation filters for this partition may be observed by @J1 but not by
QQ (ObS 9)

F; — F, Similar to the previous case; however, J; is now a global query and may in the
worst case observe up to r = PB buffered updates per partition not yet visible to Q.
Hence, the queries may deviate from each other by up to rP updates, but no more. <«

when U overlaps both queries:

A.2 From §5
» Lemma 11. CM{, _ is an IVL implementation of CM*, preserving CM™ ’s (¢,6) bounds.

Proof sketch. Following a similar argument as [39, Lemma 5.3]; as updates only increment
counters, each counter read by a CM;;M query @ will return a value at least as large as the
value at the start of ), and no larger than the value at the end of ). Transitively, this holds
The returned Fg
will be the minimum of these per-row results, and it cannot be lower than the least per-row
result at the start of the query, or larger than the least per-row result at the end of the query,

as required for IVL of monotonically increasing quantities (Obs. 2). <

also for the sum of squared values of said counters as computed by CM},

conc*®

» Lemma 13. PARTCMST

conc

is an IVL implementation of PARTCMS™.

Proof sketch. Similar reasoning as for Lemma 11. |
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» Lemma 15. PARTAST

conc

is an IVL implementation of PARTAST.

Proof sketch. Similar to earlier lemmas. By virtue of being atomic, the snapshots for each
partition will linearize with updates by the corresponding updater thread. Since counter
values read by the query are non-decreasing, the return value is bounded between an ideal
return value at the start of the query (observing all preceding updates) and an ideal return
value at the end of the query (additionally observing all concurrent updates). |

» Lemma 16. PARTASY . on LMQ-Sketch (i.e. its ASketch part) is an r-relazed 1VL

implementation of LMQ-all™ per partition, where r = PB.

Proof sketch. For a partition, up to » = PB updates buffered in delegation filters (Obs. 9)
may be missing from the atomic snapshot taken by PARTASY, .. Hence, the return value is
bounded between the value at query start excluding the r buffered updates, and the value at
the end, including all r buffered updates. |

B Evaluation & Discussion

Due to space limitations, the discussion supporting the main takeaways of the empirical
study is presented in more detail in this appendix.

B.1 Concurrency and Synchronization (§ 6.1) — Results

Fig. 3 shows the mean rate of update operations for sketching the complete input data
sets. LAGOM exhibits very similar scaling as Delegation Sketch with B = 1000, processing
approximately 1.5 billion updates/second on real-world data, demonstrating the very low
overhead of its synchronization design for consistent global queries. STRICT cannot scale and
performance worsens with more threads as contention around the global RW lock increases.
NOSYNC scales similarly to the plain Delegation Sketch (neither of them support consistent
global queries). As expected, SW-SKT throughput grows linearly with the number of
threads, as threads process updates entirely independently. However, concurrent queries
cannot be supported. With increasing skewness, a clear upwards trend in throughput of
the delegation design is seen, as delegation filters are able to buffer more updates locally,
reducing inter-thread communication.

On the lower row, Fig. 3 shows the mean rate of update operations with concurrent
queries for designs which support them. STRICT shows similar scaling to before. LAGOM
achieves very similar performance in presence of concurrent queries. Decreases in update
throughput are explained by the fact that updater threads are responsible for serving point
queries alongside their update workload. NOSYNC clearly shows this effect as global queries
have no impact in this design, but the overhead of point query work leads to a reduction
in peak throughput not seen in LAGOM by around 50 % compared to Fig. 3 at 0.1 % point
queries (exactly reproducing the result in [42]).

B.2 Memory and Accuracy (§ 6.2) — Results

Fig. 4 shows the accuracy of various F5 methods, without concurrent updates during query
execution. As discussed in § 5, PARTCMS™ and PARTAS™, our enhanced versions of CM™ for
more efficient data structures, improve estimation accuracy. Further, for partitioning-based
approaches, increasing the memory budget by increasing the number of partitions leads to
improved accuracy, as more memory is available for (1) avoiding hash collisions (Obs. 12) and
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(2) accurate tracking of heavy keys in ASketch filters (Obs. 14). Although Fast-AGMS, used
in SW-SKT, is one of the most accurate techniques for Fy estimation for arbitrary skewness,
a thread-local design does not see improved accuracy for the same memory budget, while
LMQ-Sketch’s partition-targeting methods, navigating memory and concurrency trade-off
challenges, achieve higher accuracy. Of course, to be fair, one should observe that SW-SKT
was not designed with concurrent queries as a target.

B.3 Latency and Accuracy (§ 6.3) — Results

Fig. 6 shows FyNSY"C query latency to be small — implying a low number of overlapping
updates — growing linearly with the number of threads and partitions and not impacted by
skew.

Similarly, Fig. 7 shows the distribution of F5 query durations for various synchronization
designs. The operational complexity of F,NOSYNC scales with the number of delegation filters
and ASketch filters, as for each slot in ASketch filters, all delegation filters of that partition
are read (HNOSYNC, Eq. 3). FyLacoM g gionificantly faster, both absolutely and comparatively,
at less than 100 s, 2 to 3 orders of magnitude faster than FRSTRICT apnd [, Nosyxe

of skew, demonstrating the impact of our projection-based latency optimization.

, regardless

B.4 Concurrency and Accuracy (§ 6.4) — Results

Fig. 8 shows how query return values relate to IVL interval boundaries for F,L40M and

F,NOsYNe p all cases, the concurrent query @ observes more updates than Q%" — which is
what F55™T would return — but ignores some updates that Q"% observes, as expected. Thus,
the truly concurrent F, query results are more fresh than STRICT synchronization. However,
the size of the interval for NOSYNC is large compared to LAGOM, due to its significantly
longer query latency (seen in Fig. 7) and the weakness of its semantics (described in Obs. 7),
while LAGOM imparts a much smaller IVL-interval on the return value of @), demonstrating
that our lightweight synchronization preserves accuracy of results close to the sequential
expectation.

B.5 Overall Takeaways

While IVL, as a useful correctness criterion, allows reasoning about semantics of concurrent
queries and can preserve (€,d) bounds of sketches, it cannot alone fully characterize the
accuracy of results. Our study shows that EF,14%°Mg compensation scheme is very close
to accurate estimations in a sequential setting, utilizing available memory for improved
parallelism and accuracy in a concurrent one, where efficient synchronization permits low
query latency, implying freshness of returned results. These observations illustrate the
challenges tackled in this work.
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