
Towards Optimal Distributed Edge Coloring with
Fewer Colors
Manuel Jakob #

TU Graz, Austria

Yannic Maus #

TU Graz, Austria

Florian Schager #

TU Graz, Austria

Abstract
There is a huge difference in techniques and runtimes of distributed algorithms for problems that
can be solved by a sequential greedy algorithm and those that cannot. A prime example of this
contrast appears in the edge coloring problem: while (2∆ − 1)-edge coloring – where ∆ is the
maximum degree – can be solved in O(log∗(n)) rounds on constant-degree graphs, the seemingly
minor reduction to (2∆ − 2) colors leads to an Ω(log n) lower bound [Chang, He, Li, Pettie & Uitto,
SODA’18]. Understanding this sharp divide between very local problems and inherently more global
ones remains a central open question in distributed computing and it is a core focus of this paper.

As our main contribution we design a deterministic distributed O(log n)-round reduction from
the (2∆−2)-edge coloring problem to the much easier (2∆−1)-edge coloring problem. This reduction
is optimal, as the (2∆ − 2)-edge coloring problem admits an Ω(log n) lower bound that even holds
on the class of constant-degree graphs, whereas the 2∆ − 1-edge coloring problem can be solved
in O(log∗ n) rounds. By plugging in the (2∆ − 1)-edge coloring algorithms from [Balliu, Brandt,
Kuhn & Olivetti, PODC’22] running in O(log12 ∆ + log∗ n) rounds, we obtain an optimal runtime of
O(log n) rounds as long as ∆ = 2O(log1/12 n). Previously, such an optimal algorithm was only known
for the class of constant-degree graphs [Brandt, Maus, Narayanan, Schager & Uitto, SODA’25].
Furthermore, on general graphs our reduction improves the runtime from Õ(log3 n) to Õ(log5/3 n).

In addition, we also obtain an optimal O(log log n)-round randomized reduction of (2∆ − 2)-edge
coloring to (2∆ − 1)-edge coloring. This leads to a Õ(log5/3 log n)-round (2∆ − 2)-edge coloring
algorithm, which beats the (very recent) previous state-of-the-art taking Õ(log8/3 log n) rounds from
[Bourreau, Brandt & Nolin, STOC’25].

Lastly, we obtain an O(log∆ n)-round reduction from the (2∆ − 1)-edge coloring, albeit to the
somewhat harder maximal independent set (MIS) problem.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases distributed graph algorithms, edge coloring, LOCAL model

Digital Object Identifier 10.4230/LIPIcs.DISC.2025.37

Related Version Full Version: https://arxiv.org/pdf/2504.13003 [51]

Funding This research was funded in whole or in part by the Austrian Science Fund (FWF)
https://doi.org/10.55776/P36280, https://doi.org/10.55776/I6915.

Acknowledgements For open access purposes, the author has applied a CC BY public copyright
license to any author-accepted manuscript version arising from this submission.

1 Introduction

There is a huge difference in the techniques and runtimes of distributed algorithms for locally
checkable problems that can be solved by a sequential greedy algorithm and those that cannot.
For example, on bounded degree graphs, the former problems have distributed complexity

© Manuel Jakob, Yannic Maus, and Florian Schager;
licensed under Creative Commons License CC-BY 4.0

39th International Symposium on Distributed Computing (DISC 2025).
Editor: Dariusz R. Kowalski; Article No. 37; pp. 37:1–37:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:m.jakob@tugraz.at
https://orcid.org/0009-0009-0229-0287
mailto:yannic.maus@tugraz.at
https://orcid.org/0000-0003-4062-6991
mailto:florian.schager@tugraz.at
https://orcid.org/0009-0009-3923-051X
https://doi.org/10.4230/LIPIcs.DISC.2025.37
https://arxiv.org/pdf/2504.13003
https://doi.org/10.55776/P36280
https://doi.org/10.55776/I6915
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

37:2 Towards Optimal Distributed Edge Coloring with Fewer Colors

Θ(log∗ n) [24, 54, 60] while the latter require at least Ω(logn) time [17, 19]. Understanding
this sharp and potentially wide divide between very locally solvable problems and inherently
more global ones remains a central open question in distributed computing.

A prime example of this contrast – explained in detail next and forming the main topic of
this paper – appears in the edge coloring problem. A k-edge coloring of a graph G = (V,E)
is a function φ : E → {1, . . . , k} such that no two adjacent edges receive the same color. This
problem [60, 25, 28, 31, 4, 16], but also other greedy problems like (∆ + 1)-vertex coloring,
maximal independent set, and maximal matching [56, 1, 11, 6, 20, 2, 65, 43, 29, 37], has been
extensively studied in the field of distributed computing, particularly in the LOCAL model.

In this model the communication network is abstracted as an undirected graph G = (V,E).
Each vertex hosts a processor that may communicate with its neighbors in synchronous
rounds. In one round, each processor may send unbounded-size messages to all its neighbors
in G and perform unbounded local computations. The goal is to minimize the number of
synchronous rounds until every node outputs (a local part of) the solution. The related
CONGEST model additionally imposes a maximum message size of O(logn) bits per message.

In order to make progress in many parts of the graph in parallel, many distributed
algorithms crucially rely on the property that color choices made by other vertices do not
affect the solvability on the remaining graph. While this property is satisfied for k = 2∆− 1
(hence we call this the greedy threshold), for any k < 2∆− 1 there are partial k-edge colorings
that cannot be extended to the entire graph [5]. On the other hand of the spectrum, it is
known that every graph admits a (∆ + 1)-edge coloring by a celebrated result of Vizing [69].

The intuition that coloring with fewer colors is significantly more challenging – particularly
in the distributed setting – is evidenced by strong lower bounds: Any deterministic edge
coloring algorithm using less than 2∆ − 1 colors requires at least Ω(log∆ n) rounds, and
even randomized algorithms face an Ω(log∆ logn)-round lower bound [17]. On trees, where
these lower bounds are established, there is even a deterministic algorithm that solves the
greedy version of the problem in strongly sublogarithmic time, specifically in O(log12/13 n)
rounds [16]. On bounded degree graphs, the gap is even larger as the greedy version has
deterministic and randomized complexity Θ(log∗ n), yet the lower bounds for algorithms
that use fewer colors – Ω(logn) deterministic and Ω(log logn) randomized – still apply.

Despite these challenges, there has been extensive work on designing increasingly faster
deterministic and randomized algorithms for edge coloring with fewer than 2∆− 1 colors –
both in the LOCAL model [12, 13, 15, 17, 18, 44, 48], the more restricted CONGEST model
[44, 47], and in other models such as streaming [5, 23, 66]. The fastest known deterministic
distributed algorithm that operates below the greedy threshold runs in Õ(log3 n) rounds1

[15], while the fastest randomized algorithm, derived from a recent more general result on
∆-vertex coloring, achieves a runtime of Õ(log8/3 logn) rounds [14]. See the related work
section (Section 1.3) for further results on edge coloring with fewer colors.

This work aims to better understand the size and nature of the complexity gap between
greedy-solvable problems and those below the greedy threshold. Understanding this latter
class of problems is also central to the poorly understood regime in the complexity landscape
of local graph problems, see, e.g., [30, 22, 58].

1 We use the notation Õ(f(n)) to hide factors polylogarithmic in f(n).

M. Jakob, Y. Maus, and F. Schager 37:3

1.1 Our contributions
As our main contribution, we show that the considerably harder (2∆ − 2)-edge coloring
problem can be efficiently reduced to its greedy cousin (2∆− 1)-edge coloring2 in O(logn)
rounds of the LOCAL model.

▶ Theorem 1. There is a deterministic LOCAL algorithm computing a (2∆−2)-edge coloring
in any n-vertex graph with maximum degree ∆ in O(logn) + T2∆−1(n,∆− 1) rounds.

Secondly, allowing the use of maximal independent set (MIS) as a subroutine improves
the runtime of our reduction at the cost of reducing to a harder problem.

▶ Theorem 2. There is a deterministic LOCAL algorithm computing a (2∆−2)-edge coloring
in any n-vertex graph with maximum degree ∆ in O(log∆ n) + TMIS(∆2 · n, poly(∆)) rounds.

While the latter result might sound like a strict improvement over the former – especially
given the fact that the runtimes of the current state-of-the-art algorithms for (2∆− 1)-edge
coloring and MIS on general graphs coincide – we argue that the former version is, in fact,
the stronger result. A classic reduction from Luby [56] shows that (2∆− 1)-edge coloring is
no harder than MIS. Consequently, the Õ(log5/3 n) deterministic algorithm for MIS [37] also
solves the (2∆− 1)-edge coloring problem. On the other hand, there is a O(log12 ∆ + log∗ n)-
round (2∆− 1)-edge coloring algorithm from [4], which provably cannot be achieved by any
MIS algorithm due to the Ω(min(∆, logn/ log logn)) lower bound established in [3]. We
obtain the following corollary.

▶ Corollary 3. There are deterministic LOCAL algorithms computing a (2∆−2)-edge coloring
in any n-vertex graph with maximum degree ∆ within either O(log12 ∆+logn) or Õ(log5/3 n)
rounds.

For the class of graphs with maximum degree ∆ as large as 2O(log1/12 n), the first point of
this corollary yields an optimal runtime of O(logn) rounds. Previously, an optimal runtime
was only known for the class of bounded-degree graphs [15]. The second point significantly
improves the upper bound on the complexity of (2∆− 2)-edge coloring on general graphs,
which previously stood at Õ(log3 n) rounds [15]. Additionally, we present an exponentially
faster randomized reduction to the (2∆− 1)-edge coloring problem.

▶ Theorem 4. There is a randomized LOCAL algorithm computing a (2∆− 2)-edge coloring
in any n-vertex graph with maximum degree ∆ in O(log logn) + T2∆−1(n,∆− 1) rounds.

Theorem 4 yields the following corollary by plugging in the algorithms of [4] and [37].

▶ Corollary 5. There are randomized distributed algorithms computing a (2∆ − 2)-edge
coloring in any n-vertex graph with maximum degree ∆ within either O(log12 ∆ + log logn)
or Õ(log5/3 logn) rounds of the LOCAL model.

For the class of graphs with maximum degree ∆ as large as 2O(log1/12 log n), the first point
of this corollary yields an optimal runtime of O(log logn) rounds. The second point beats
the (very recent) previous state-of-the-art for randomized (2∆− 2)-edge coloring on general
graphs, which previously stood at Õ(log8/3 logn) rounds [14].

2 We use T2∆−1(n, ∆) (T2∆−1(n, ∆)) to denote the runtime of a deterministic (randomized) (2∆ − 1)-edge
coloring algorithm and TMIS(n, ∆) to denote the runtime of a deterministic MIS algorithm for n-vertex
graphs with maximum degree ∆.

DISC 2025

37:4 Towards Optimal Distributed Edge Coloring with Fewer Colors

1.2 Our technique in a nutshell
To illustrate the difficulty of the (2∆− 2)-edge coloring problem, let us first try to design an
O(1)-round reduction to the MIS and the (2∆− 1)-edge coloring problem; recall that such
a reduction provably cannot exist. One approach is to use the MIS algorithm to compute
a clustering of the graph, e.g., by computing an MIS of the power graph G2 and letting
each vertex join the cluster of the closest node in the MIS; see Figure 1 for an example.
As a result, we can partition the edge set of G into edges Eintra (black) within the clusters
and inter-cluster edges Einter (turquoise) that go between the different clusters. We could
simply color the edges in Eintra independently and in parallel for each cluster, as the edges
of different clusters are non-adjacent. Due to the constant diameter of each cluster, this
can be done in O(1) rounds and even using the existentially optimal number of colors, i.e.,
∆ + 1 colors. However, now the problem of coloring Eintra is no easier than the original
(2∆− 2)-edge coloring problem as it essentially corresponds to coloring a general graph but
with some colors – the ones used by adjacent edges in Eintra – being forbidden for certain
edges. In fact, it might not even be possible to complete the coloring at all.

Figure 1 A matching of the intercluster edges that assigns two edges to each clusters. The
matching edges are marked red. Arrows point towards the cluster the edge belongs to.

Instead, in our algorithm, we first color the edges between the clusters and then try to
complete it within the clusters. First, observe that the graph induced by Einter has maximum
degree ∆′ = ∆− 1, as each node has at least one adjacent edge within a cluster. Thus, we
can color Einter with one instance of greedy-type edge coloring, using only 2∆′ − 1 = 2∆− 3
colors. The main challenge that we address in this paper is how to ensure that the coloring
can be extended to the edges within the clusters.

For the rest of the this technical overview we assume that the graph is ∆-regular with a
sufficiently high girth such that each cluster looks like a tree; our full proof does not require
this assumption. In addition, let us assume for now that each cluster is a perfect ∆-ary tree,
that is, all leaves are at the same level. Then, a simplified version of our main technical
contribution gives a useful condition under which we can complete the coloring.

▶ Lemma 6 (Simplified version of Lemma 14). Consider a (2∆− 2)-edge colored graph except
for a perfect ∆-ary subtree T ⊆ G. If the number of distinct colors appearing on the incident
edges of any leaf in T combined is at least ∆, then the coloring can be extended to T .

For the remainder of this paper we will refer to the above condition as the colorful
condition. To build some intuition for it, consider the simplest possible case, where the set of
uncolored edges forms a star graph S ⊆ G. The only case, in which φ cannot be extended to
S is if each edge in S has the exact same set of ∆− 1 colors appearing among its adjacent
edges, which we illustrate in Figure 2. By setting up a bipartite graph with available colors

M. Jakob, Y. Maus, and F. Schager 37:5

on one side and edges on the opposite side, an application of Hall’s marriage theorem shows
that this is indeed the only bad case. In the proof of Lemma 14, we generalize this condition
from uncolored stars to uncolored trees.

1

2 2

3

41

3

2

4

S

(a) This coloring can be extended.

S

1

2 2

1

21

3
4

(b) This coloring cannot be extended.

Figure 2 Extendability of (2∆ − 2)-colorings for ∆ = 3.

Next, we turn our attention to how the partial edge coloring of Einter can be modified
in order to satisfy the colorful condition for every cluster of uncolored edges. The core
observation is that each leaf in the cluster already has ∆− 1 incident edges in Einter, whose
colors must all be distinct. Therefore, if we can manage to keep the set of colors fixed for one
leaf and modify at most one color at another leaf, the colorful condition is already satisfied.
Notably, our partial coloring of Einter only uses 2∆− 3 of the 2∆− 2 available colors. As a
result, every edge already has at least one free color it can switch to if needed.

The main difficulty now is to construct a set of edges such that each cluster can perform
these changes in parallel and without causing any conflicts. Hence, our desired set of edges
needs to satisfy two key properties: (1) Each cluster needs exclusive access to two edges in
its 1-hop neighborhood. (2) The set of all such edges needs to be a matching. Computing
a greedy maximal matching satisfies (2), but not necessarily (1). Therefore, we modify a
maximal matching M ⊆ Einter by letting each cluster send proposals to matching edges in
its 2-hop neighborhood.

(a) The intracluster edges Eintra
are dashed. We first compute a
maximal matching M ⊆ Einter,
which is highlighted red.

(b) Next, we assign two edges
in M to each cluster. This is
the only “non-greedy” part of our
reduction.

(c) Finally, we show how each
cluster can move those edges into
its neighborhood while maintain-
ing the matching property.

Figure 3 In order to complete the coloring on the edges within the clusters, our algorithm ensures
that each cluster can independently control the colors of two edges adjacent to the cluster. For
illustration purposes this example has many cycles that are dealt with separately in our algorithm.

To solve this non-greedy problem of assigning matching edges to clusters, we set up
a hypergraph H. Each cluster in G corresponds to a vertex in H and each edge e ∈ M
defines a hyperedge containing all clusters that sent at least one proposal to e. Note that a

DISC 2025

37:6 Towards Optimal Distributed Edge Coloring with Fewer Colors

hypergraph is in fact necessary here, since each edge in M may receive proposals from up
to 2∆ different clusters. Now our assignment problem can then be viewed as a hypergraph
orientation problem, where each hyperedge is said to be outgoing for exactly one of its vertices
and ingoing for all others. In this setting, the problem has already been studied in the
literature under the name hypergraph sinkless orientation. As long as each cluster sends out
sufficiently more proposals than any edge in M receives, it can be solved in O(log∆ n) rounds
deterministically and O(log∆ logn) rounds randomized [15]. This is the only “non-greedy”
part of our reduction and it dominates the runtime. Every other step runs in O(log∗ n)
rounds for constant-degree graphs, which shows that this is an essential part of our reduction
in light of the Ω(log∆ n) lower bound for edge-coloring with less than 2∆− 1 colors.

Now as a final technical remark, while each cluster may own two assigned edges, these
may not be directly adjacent to the cluster and controlling their color would still be useless
in terms of obtaining solvability of the cluster. To solve this issue we will show that cluster C
can move its assigned edges into its 1-hop neighborhood along a shortest path to C, satisfying
(1), while maintaining the matching property (2). Finally, the colorful condition is satisfied
for every cluster and we can complete the (2∆− 2)-edge coloring for each cluster in parallel.

1.3 Related work
Distributed graph coloring is one of the most extensively studied problems in the field of
distributed computing. Many foundational results are covered in the excellent book by
Barenboim and Elkin [8]. In this section, we survey both, results for greedy and non-greedy
edge coloring, highlighting a range of deterministic and randomized algorithms.

Greedy distributed edge coloring
Deterministic algorithms. In a seminal paper from 1987, Linial showed that any determinis-
tic 3-coloring algorithm on the n-cycle takes at least 1/2 · log∗ n rounds in the LOCAL model
[54]. Naor later extended this lower bound to apply to randomized algorithms as well [59]. On
the upper bound side, Linial also presented an O(log∗ n)-round O(∆2)-coloring algorithm [54].
Combined with the classical one-color-per-round reduction this directly yields a (2∆−1)-edge
coloring algorithm in O(∆2 + log∗ n) rounds. With some clever tricks, subsequent works
[6, 9, 10, 60, 53, 33, 57] have improved on this simple color reduction scheme, culminating
in the current state-of-the-art for (2∆− 1)-edge coloring using O(log12 ∆ + log∗ n) rounds
[4]. Another line of research focuses on the complexity of graph coloring as a function of n,
independent of ∆. Early works by Panconesi & Srinivasan [61, 63] show that using network
decompositions, one can find a (2∆ − 1)-edge coloring in exp(O(

√
logn)) rounds. A long

standing open question in the field asked for (2∆−1)-edge coloring algorithm in polylogarith-
mic time. Barenboim and Elkin made progress by showing that the ∆1+ε-coloring problem
can be solved in O(log2 n) rounds [7]. Ghaffari & Su later gave a poly(logn) algorithm
for (2∆ − 1)(1 + o(1))-edge coloring [45], which in turn was improved by [42]. Fischer,
Ghaffari, and Kuhn [31] fully resolved the question with a breakthrough O(log9 n)-round
algorithm based on a novel hypergraph maximal matching procedure. Since then, the field
has picked up the pace with a lot of new algorithms being developed in the last decade, e.g.
[4, 29, 36, 37, 39, 43, 48, 49]. The fastest algorithm for general graphs currently comes from
the MIS algorithm in [37] and runs in Õ(log5/3 n) rounds.

Randomized algorithms. The first randomized algorithm for greedy edge coloring follows
from the seminal O(logn)-round MIS algorithm independently developed by Luby [56] and
Alon, Babai and Itai [1]. This upper bound stood for almost three decades until it was

M. Jakob, Y. Maus, and F. Schager 37:7

surpassed by the O(log ∆) + 2O(
√

log log n)-round algorithm introduced in [11], pioneering the
now ubiquitous shattering framework for randomized algorithms. This algorithm was later
improved to O(log∗ ∆)+T det

deg+1(poly logn) by Chang, Li, and Pettie [20]. Here, T det
deg+1(n′) is

the deterministic complexity of the (deg + 1)-list coloring problem on instances of size n′ [21].
A major breakthrough came with the first polylogarithmic network decomposition algorithm
[65], reducing the complexity of the second term in both results and enabling (2∆− 1)-edge
coloring in poly(log logn) rounds. Subsequent works [29, 36, 37, 38, 64] continued to refine
the runtime with the current state-of-the-art standing at Õ(log5/3 logn) rounds [37].

Non-greedy distributed edge coloring
Despite the more challenging nature of the problem, there has also been a lot of progress
in the non-greedy regime of coloring with k < 2∆− 1 colors. On the lower bound side, the
authors of [17] established that coloring the edges of a graph with at most 2∆−2 colors takes
at least Ω(log∆ n) rounds deterministically and Ω(log∆ logn) rounds randomized. While
most of the algorithms breaking the greedy color barrier were only developed in the last
decade, there are two remarkable results before the turn of the millennium.

∆-vertex coloring algorithms. In 1992, Panconesi & Srinivasan [61, 62] presented the first
distributed ∆-coloring algorithm running in exp(O(

√
logn)) rounds. This deterministic result

also implies the first distributed (2∆− 2)-edge coloring algorithm. After two decades without
improvements, the authors of [40] finally decreased the upper bound for the randomized
complexity of ∆-coloring to O(log ∆) + 2O(

√
log log n). Combining these seminal results with

the new polylogarithmic algorithms for network decomposition [65, 38, 36, 29, 64, 37] yields
runtimes of poly(logn) and O(log ∆) + poly(log logn), respectively. Recently, Bourreau,
Brandt and Nolin [14] showed that ∆-coloring can be solved in O(log4 ∆+log2 ∆ · logn log∗ n)
deterministic time and Õ(log8/3 logn) randomized time. The randomized version of this result
is also the current state-of-the-art for (2∆− 2)-edge coloring. Moreover, for ∆ = ω(log21 n)
the randomized complexity of ∆-coloring collapses to O(log∗ n) due to [32]. Finally, a very
recent result [50] gives an optimal ∆-coloring algorithm for a restricted graph class. However,
since line graphs are not included in this class, it does not yield any new edge coloring results.

Randomized algorithms via the distributed Lovász Local Lemma. In 1998, Dubhashi,
Grable & Panconesi [27] presented an (1 + ε)∆-edge coloring algorithm using the Rödl nibble
method, which runs in O(logn) rounds, assuming ∆ > (logn)1+γ . After the turn of the
millennium, there has been no progress on the problem, until Elkin, Pettie & Su [28] improved
upon [27] in 2015. Their randomized (1 + ε)∆-edge coloring algorithm reduces the problem
to the distributed Lovász Local Lemma and runs in O(log∗ ∆ + log n

∆1−o(1)) rounds. In both
cases, ε need not be constant, but it is not clear how small it can be made as a function of ∆.
Focusing on palette size over speed, the authors of [17] give a randomized (∆ + Θ̃(

√
∆))-edge

coloring algorithm that runs in poly(logn) rounds – nearly matching the natural threshold
∆ + Θ(

√
∆), the smallest palette size for which there still is a constant probability of being

able to color any edge given a random feasible coloring of its neighborhood. Recently,
new advances in variants of the distributed Lovász Local Lemma [47, 26] have reduced the
complexity of (1 + ε)∆-edge coloring further to poly(log logn).

Deterministic algorithms. In a 2018 paper [44], the authors present a O(∆9 · poly(logn))-
time algorithm for (3∆/2)-edge coloring based on maximum matchings in bipartite graphs.
Their result has since seen a series of improvements. First, Harris [49] presented improved

DISC 2025

37:8 Towards Optimal Distributed Edge Coloring with Fewer Colors

algorithms for hypergraph maximal matchings, reducing the runtime to Õ(∆4 · log6 n) rounds.
Next, a novel algorithm for hypergraph sinkless orientation [15] further reduced the complexity
to O(∆2 · logn) rounds. Using a splitting technique from [42, 41] this algorithm can also be
adapted to a (3/2+ε)∆-edge coloring algorithm with runtime Õ(ε−2 · log2 ∆ · logn). Notably,
this implies a O(log3 n)-round algorithm for (2∆− 2)-edge coloring in general graphs.

Vizing chain algorithms. A Vizing chain is an alternating path used to swap colors and
resolve conflicts when trying to assign a new color to an edge in a graph that cannot be
colored greedily. Vizing chains form a central role in Vizing’s celebrated result stating that
every graph is (∆ + 1)-edge colorable [69]. Recent years have brought significant progress
on distributed versions of Vizing’s theorem. In [68], the authors give the first poly(∆, logn)
algorithms for randomized (∆+2)-edge coloring and deterministic ∆+O(logn/ log logn) edge
coloring. Further, Bernshteyn and Dhawan [12, 13] recently gave a deterministic (∆+1)-edge
coloring algorithm in Õ(∆84 · log5 n) rounds, together with a faster randomized version
running in O(poly(∆) · log2 n) rounds. While the exponent in ∆ in the runtime is certainly
not yet optimized, there is a fundamental barrier to this approach. The authors of [17] have
shown that it requires recoloring subgraphs of diameter Ω(∆ · logn) in the worst case.

1.4 Organization of the paper
In Section 3 we present our main technical contribution: a sufficient condition under which
partial (2∆ − 2)-edge colorings can be extended. Building on this, we introduce our new
algorithms in Section 4. We start by presenting our reduction from (2∆− 2)-edge coloring
to MIS. Later on, in Section A, we replace the MIS and maximal matching subroutines to
achieve a reduction to just (2∆−1)-edge coloring. Then, in Section B we adapt the reduction
to obtain a faster randomized algorithm. For convenience, we collect all subroutines from the
literature that we use in our algorithms in the appendix, to serve as a point of reference. The
full version of our paper [51] also contains a table giving an overview of existing algorithms,
the number of colors they use, and their runtime.

2 Preliminaries

We will use the notation [k] := {1, . . . , k}. Let G = (V,E) be an undirected graph. The
neighborhood of a vertex v ∈ V in G is NG(v) = {w ∈ V : vw ∈ E} and the edge-neighborhood
of v is NE(v) = {e ∈ E : |e ∩ {v}| = 1}. Further, for a subset of vertices W ⊆ V we write
NE(W) = {e ∈ E : |e ∩W | = 1}. The distance between two vertices u, v ∈ V is defined as
the number of edges on a shortest path connecting u and v in G and is denoted by dist(u, v).
We define the distance between an edge e = uv ∈ E and a vertex w ∈ V as

dist(e, w) := min(dist(u,w),dist(v, w)).

For any positive integer k > 0 we define the power graph Gk = (V,Ek) by adding an edge
for every pair of vertices u, v ∈ V with dist(u, v) ≤ k to Ek. For any positive integer k > 0
and any vertex v ∈ V we define the k-hop neighborhood of v to be Nk(v) = NGk (v). For a
subset of edges F ⊆ E we write G− F to denote the graph obtained by removing all edges
in F from G. Further, for a subset V ′ ⊆ V , we denote by G[V ′] = (V ′, E′) the subgraph of
G induced by V ′. The edge set E′ is given by the subset of edges with both endpoints in V ′.
Similarly, for a subset of edges E′ ⊆ E we define the edge-induced subgraph G[E′] = (V ′, E′),
where V ′ is given by the subset of vertices that are incident to at least one edge in E′. We

M. Jakob, Y. Maus, and F. Schager 37:9

define the degree deg(e) of an edge e ∈ E as the number of edges adjacent to e. A hypergraph
is a generalization of a graph in which each edge can contain more than two vertices. The
rank of a hyperedge e is the number of vertices contained in e. A proper c-edge coloring is a
function φ : E → [c] that assigns different colors to adjacent edges. In this paper we will
work a lot with partial edge colorings that assign colors only to a subset of edges.

▶ Definition 7. Let G = (V,E) be a graph, F ⊆ E and φ : E \ F → [2∆ − 2] a partial
edge coloring of G. Then we call φ⋆ an extension of φ to F if φ⋆ is a proper (2∆− 2)-edge
coloring of G and φ⋆(e) = φ(e) for all e ∈ E \ F . Further, we say a color c is available for
an edge e ∈ F , if no adjacent edge already has color c.

▶ Definition 8 ((α, β)-ruling set). For two integers α, β ≥ 1, an (α, β)-ruling set for a subset
W ⊆ V is a set of nodes S ⊆ V such that the distance between any two nodes in S is at least
α and any node w ∈W has a distance of at most β to the closest node in S. If V = W , we
call S an (α, β)-ruling set.

Ruling sets generalize maximal independent sets, which are (2, 1)-ruling sets. In our
algorithm we will use ruling sets as a tool to partition the vertex sets into clusters with some
specific properties. Most importantly, we will need that for each cluster C there is a central
vertex r ∈ C such that the whole k-hop neighborhood around r is contained in C, for some
parameter k > 0. This ensures that each cluster has sufficiently many vertices, which will
become important when we try to assign two exclusive matching edges to each cluster.

▶ Definition 9 ((α, β)-clustering). Let G = (V,E) be a graph and R ⊆ V a subset of vertices.
Then, we call a partition

⋃
r∈R C(r) = V of the vertex set into pairwise disjoint subsets a

(α, β)-clustering with respect to R if Nα(r) ⊆ C(r) and diam(C(r)) ≤ β for all r ∈ R.

▶ Remark 10. Computing a (2, β)-ruling set on the power graph Gk and letting each vertex
join the cluster of one of its closest ruling set nodes leads to a (⌊k

2 ⌋, k · β)-clustering.
In the third step of our algorithm, our goal is to assign two exclusive edges to each cluster,

such that the set of all such edges forms a matching in G. Starting with a maximal matching,
we construct an auxiliary hypergraph H that lets us modify the matching in order to satisfy
this property. This can be seen as an instance of the hypergraph sinkless orientation problem,
which is a natural generalization of the fundamental sinkless orientation problem.

▶ Definition 11 (Hypergraph sinkless orientation (HSO)). Let H = (V,E) be a hypergraph.
The objective of the hypergraph sinkless orientation problem is to orient the hyperedges of
H such that every vertex v ∈ V has at least one outgoing hyperedge. We define an oriented
hyperedge to be outgoing for exactly one of its incident vertices and incoming for all others.

If the minimum degree δ = minv∈V deg(v) and the maximum rank r = maxe∈E rank(e)
of H satisfy δ > r, then this problem can be solved efficiently using the algorithms in
Theorems 34 and 35. We follow the standard assumption that each vertex in the LOCAL
model knows the number of nodes n = |V | of the graph, as well as the maximum degree ∆.

3 Under which condition can we extend partial (2∆ − 2)-colorings?

The goal of this section is to establish conditions under which we can extend φ to a proper
(2∆− 2)-edge coloring of the entire graph G. As a first step, we examine the case where the
subgraph induced by the uncolored edges is a simple star. In this setting, the only forbidden
configuration occurs when all the leaves of the star graph share the same set of ∆−1 incident
colors, which can be seen in Figure 2b.

DISC 2025

37:10 Towards Optimal Distributed Edge Coloring with Fewer Colors

1

2

1 1

1

11

2 2

22

3

(a) The edges with different colors palettes
available are dashed.

1

2

1 1

1

11

2 2

22

3

3 4

4

3 4

2

(b) The coloring can be extended while using at
least three colors for the newly colored edges.

Figure 4 Extending the coloring to a tree.

▶ Lemma 12 (Reaching for the stars). Let G = (V,E) be a graph and let φ be a partial
(2∆ − 2)-edge coloring of G that only leaves the edges of a star graph T = (VT , ET) ⊆ G

uncolored. If |φ(NE(VT))| ≥ ∆, then there is an extension φ⋆ of φ to ET .

To prove this lemma we invoke the following classical combinatorial result.

▶ Theorem 13 (Hall’s theorem [46]). Let G = (V ∪̇U,E) be a bipartite graph. For any subset
S ⊆ U , let N(S) denote the neighborhood of S in G. Then G has a U -saturating matching,
if and only if |N(S)| ≥ |S| for all S ⊆ U .

Proof of Lemma 12. We construct the auxiliary bipartite graph B = (ET ∪ [2∆− 2], F) as
follows: For every edge e ∈ ET and every color c ∈ [2∆ − 2] we add the edge (e, c) to F

if and only if c is available for e under φ. Observe that any ET -saturating matching in B

corresponds to an extension of φ to ET . By Theorem 13 such a matching exists if and only
if for any subset S ⊆ ET it holds that |NB(S)| ≥ |S|. Since any edge in T has at least ∆− 1
colors available and |ET | ≤ ∆, the only set left to check is S = ET . For contradiction sake,
assume that |NB(ET)| = ∆− 1 and let r ∈ VT be the center of the star. This implies that
for every e = rv ∈ ET all colors in C := [2∆ − 2] \ NB(ET) are already occupied. Since
|C| = ∆ − 1 ≥ |NE(v) ∩ NE(VT)|, this is only possible if φ(NE(v) ∩ NE(VT)) = C for all
e ∈ ET and therefore φ(NE(VT)) = C. But |φ(NE(VT))| ≥ ∆, a contradiction! ◀

As the next step we show that this condition generalizes to trees as well. More precisely,
we will show that if φ assigns at least ∆ distinct colors to the edges adjacent to at least one
vertex at distance k from the root, then there is always an extension of φ that assigns at
least ∆ distinct colors to the edges adjacent to any vertex at distance k − 1 from the root.

▶ Lemma 14 (Colorful leaves make any tree happy). Let G = (V,E) be a ∆-regular graph,
T = (VT , ET) ⊆ G a tree, r ∈ VT and φ : E \ET → [2∆− 2] a partial edge coloring of G. Let

Vk := {v ∈ VT : distT (v, r) = k} and Ek = {e ∈ ET : distT (e, r) = k}.

If there is a k ∈ N such that |φ(NE(Vk))| ≥ ∆, then there exists an extension φ⋆ of φ to ET .

Proof. Let ℓ ∈ N such that |φ(NE(Vℓ))| ≥ ∆. First we observe that for every k > 0, each
edge e ∈ Ek has exactly one neighboring edge in Ek−1. Therefore, we can always find at
least one available color for every such edge, as long as the set Ek−1 remains uncolored.
Using this observation we can assign arbitrary available colors to all edges in

⋃
k≥ℓ Ek by

processing these edge sets in sequence, starting with the set with highest index and going

M. Jakob, Y. Maus, and F. Schager 37:11

through each of these sets in an arbitrary order. However, after we finish coloring Eℓ we
need to start being more deliberate with our color choices. For any k < ℓ we need to ensure
that |φ(NE(Vk))| ≥ ∆ holds after we colored all edges of Ek. This is due to the fact that we
need |φ(NE(V1))| ≥ ∆ in order to apply Lemma 12, which guarantees that we can complete
the coloring on the final layer of edges E0 connected to the root. Now we show that given
|φ(NE(Vk+1))| ≥ ∆ we can color the edges in Ek in such a way that |φ(NE(Vk))| ≥ ∆ for
any 1 ≤ k < ℓ. For each e ∈ Ek let N+(e) := NE(e) ∩NE(Vk+1). Since |N+(e)| = ∆− 1 we
can always find two edges e, e′ ∈ Ek such that φ(N+(e)) ̸= φ(N+(e′)). We first assign colors
to all edges in Ek that are not adjacent to e or e′. Since we assume ∆ to be sufficiently
large, there always exists a vertex v ∈ Vk that is not incident to either e or e′. Thus, after
coloring all ∆− 1 edges in NE(v) \Ek−1 incident at v we already have |φ(NE(Vk))| ≥ ∆− 1.
If |φ(NE(Vk))| ≥ ∆, we are already done. Otherwise, if |φ(NE(Vk))| = ∆− 1, then the set
φ(NE(Vk) ∪ (N+(e) ∩ N+(e′))) contains at most 2∆ − 3 colors. Therefore, either e or e′

must have a color available in [2∆− 2] \ φ(NE(Vk)). We pick that color for e or e′, which
ensures that |φ(NE(Vk))| ≥ ∆. The remaining edges in Ek can then be assigned arbitrary
available colors again. For an illustration of this procedure we refer to Figure 4. Finally, to
color the last layer E0 containing the edges incident to the root, we can apply Lemma 12,
since the number of distinct adjacent colors is at least ∆. ◀

The proofs of the next two lemmata argue in a similar way to previous work on ∆-vertex
coloring and are therefore deferred to the appendix. First, we show that as soon as a cluster
C contains a cycle of even length or a vertex of degree less than ∆, then we can extend any
partial (2∆− 2)-edge coloring without modifications to E(C).

▶ Lemma 15. Let G = (V,E) and φ : E → [2∆−2]∪{⊥} be a partial (2∆−2)-edge coloring
of G. Assume that the subgraph H ⊆ G induced by the uncolored edges is connected and
contains either a cycle of even length or a vertex of degree less than ∆. Then there exists an
extension φ⋆ of φ, which is a proper (2∆− 2)-edge coloring of the entire graph G.

On the other hand, if a cluster does not contain a cycle of even length, we need to ensure
that it can satisfy the colorful condition from Lemma 14. To this end, it is crucial that the
cluster contains a sufficient number of leaves. We apply a similar argument to the one used in
the analysis of the ∆-vertex coloring algorithm in [40] to show that a connected component
that does not contain an even cycle must be expanding exponentially.

▶ Lemma 16. Let G = (V,E) be a ∆-regular graph, k > 0, v ∈ V and C ⊆ G be a connected
subgraph of G such that Nk(v) ⊆ C. Further assume that C does not contain an cycle of
even length. Then, any BFS-tree T of C rooted at v contains at least (∆− 2)k leaves.

4 Deterministic (2∆ − 2)-edge coloring algorithm

We first present the simpler version of our algorithm, which reduces the (2∆−2)-edge coloring
problem deterministically to MIS in O(log∆ n) rounds of the LOCAL model.

4.1 High level overview of our reduction to MIS
Recall that HSO (Theorem 34) aims to orient the hyperedges of a hypergraph such that
each vertex has at least one outgoing hyperedge. In Phase 2 of Algorithm 1, it is used to
rearrange the existing matching, ensuring that each cluster is assigned two exclusive edges.

DISC 2025

37:12 Towards Optimal Distributed Edge Coloring with Fewer Colors

Algorithm 1 Reduction from (2∆ − 2)-edge coloring to MIS (high level overview).

Input: a graph G = (V,E)
Output: (2∆− 2)-edge coloring φ of G.

Phase 1: Partition vertices into clusters (Section 4.2)
1: Compute an MIS I ⊆ V on the power graph G8 ▷ Theorem 36
2: C, ET ← Cluster(G, I) ▷ Algorithm 2
3: Compute a (2∆− 3)-edge coloring φ of G− ET ▷ Lemma 18
Phase 2: Assign two exclusive edges to each cluster (Section 4.3)
4: Compute a maximal matching M of G− ET ▷ Lemma 19
5: Set up auxiliary hypergraph H = (C,M) ▷ Definition 21
6: Assign two matching edges to each cluster via HSO on H ▷ Theorem 34
7: Move the assigned edges into the neighborhood of the respective clusters ▷ Lemma 24
Phase 3: Switch colors in order to complete the coloring (Section 4.4)
8: for each cluster in parallel do
9: Change the colors of the assigned edges to fulfil the colorful condition ▷ Lemma 25

10: end for
11: Extend φ to a (2∆− 2)-edge coloring φ⋆ of G ▷ Lemma 14

Phase 1: Partition vertices into clusters (Section 4.2). We start by computing a maximal
independent set I on the power graph G8. Next we partition the vertex set into disjoint
clusters. Each vertex joins the cluster of one of its closest MIS-nodes, breaking ties arbitrarily,
but consistently, which leads to a (4, 8)-clustering C. In addition, we store the BFS-tree
(V,ET) which arises naturally from this clustering. Computing the MIS on G8 ensures that
the individual clusters all contain sufficiently many vertices, which will become important
later. Next, we remove the union of all BFS-trees from G to obtain a subgraph G−ET ⊆ G
of maximum degree at most ∆ − 1. Hence, it suffices to invoke a greedy (2∆ − 1)-edge
coloring on G− ET in order to get a (2∆− 3)-edge coloring φ of G− ET .

Phase 2: Assign two exclusive edges to each cluster (Section 4.3). Finally we need to
modify φ such that the colorful condition from Lemma 14 is satisfied for every cluster. We
will show that this can be achieved by giving each cluster control over the colors of two
edges adjacent to the cluster. However, in order for the clusters to switch the colors of their
respective assigned edges, the union of all those edge sets needs to be independent. Therefore
we initially compute a maximal matching M of G − ET to use as a starting point. Note
that the maximality of the matching does not guarantee that any fixed cluster receives any
adjacent matching edges, but only that there are sufficiently many matching edges in the
2-hop neighborhood around that cluster. Hence, we then let each cluster propose to matching
edges in its 2-hop neighborhood. This process naturally defines a hypergraph, where each
matching edges collects the clusters which sent a proposal to it as vertices in a hyperedge.
Then, the problem of assigning matching edges to clusters can be modeled as an instance
of hypergraph sinkless orientation. In order to be able to solve HSO efficiently we need to
ensure that the number of votes each matching edge receives is dominated by the number of
votes each cluster casts in total. Here we require that each cluster contains enough vertices.

Phase 3: Switch colors in order to complete the coloring (Section 4.4). Finally, we show
that each cluster can flip the colors of their assigned matching edges in parallel in order to
fulfil the colorful condition from Lemma 14. Thus, this new coloring can now be extended to
the remaining uncolored edges by iteratively coloring the layers of each BFS-tree in parallel.
Since each cluster has diameter of at most 8 this last step can be executed in constant time.

M. Jakob, Y. Maus, and F. Schager 37:13

▶ Theorem 2. There is a deterministic LOCAL algorithm computing a (2∆−2)-edge coloring
in any n-vertex graph with maximum degree ∆ in O(log∆ n) + TMIS(∆2 · n, poly(∆)) rounds.

4.2 Phase 1: Partition vertices into clusters

Algorithm 2 Cluster(G, I).

Input: a graph G = (V,E) and an independent set I ⊆ V
Output: a (4, 8)-clustering C = {C−1(r) : r ∈ I} and a forest T = (V,ET)

1: ET ← ∅
2: for each v ∈ V in parallel do
3: C(v)← ⊥
4: if v ∈ I then
5: C(v)← v

6: end if
7: while C(v) = ⊥ do
8: receive messages from neighbors
9: if ∃u ∈ N(v) : C(u) ̸= ⊥ then

10: C(v)← C(u)
11: ET ← ET ∪ {uv} ▷ break ties arbitrarily
12: send message C(v) to neighbors
13: end if
14: end while
15: end for

▶ Lemma 17 (Clustering algorithm). The set C = {C−1(r) : r ∈ I} computed by Algorithm 2
is a (4, 8)-clustering with respect to I.

Proof. First we show that N4(r) ⊆ C−1(r) for all r ∈ I. Let r ∈ I, v ∈ N4(r) and assume
for contradiction sake that C(v) = r′ ̸= r. Then, dist(v, r′) ≤ dist(v, r) ≤ 4 and therefore
dist(r, r′) ≤ 8, contradicting the fact that r and r′ are independent in G8. For the second
property assume that there exist r ∈ I and v ∈ C−1(r) such that dist(v, r) > 8. This implies
that dist(v, r′) ≥ dist(v, r) > 8 for all r′ ∈ I, because otherwise v would have joined the
cluster of r′ instead of r. But then v would be independent of all r′ ∈ I on G8, which
contradicts the maximality of I. ◀

For each r ∈ I, let T (r) = T [C−1(r)] denote the BFS-tree of the cluster C−1(r) rooted at r.

▶ Lemma 18. The subgraph G − ET has maximum degree of at most ∆ − 1 and can be
(2∆− 3)-edge colored in TMIS(∆2 · n, 4∆) rounds of the LOCAL model.

Proof. We observe that the edge set ET returned by Algorithm 2 satisfies ET =
⋃

r∈I E(T (r)).
For every vertex v ∈ V there is an r ∈ R such that v ∈ C−1(r). Since T (r) is a spanning tree
of C−1(r), we get that v is incident to at least one edge in E(T (r)). Thus, the maximum
degree of G− ET is at most ∆− 1. Using the standard reduction from vertex coloring to
MIS [56] we can compute a (2∆− 3)-edge coloring of G−ET in TMIS(∆2 ·n, 4∆) rounds. ◀

▶ Lemma 19. We can compute a maximal matching M of the edges in G − ET ⊆ G

deterministically in TMIS(∆ · n, 2∆− 2) rounds of the LOCAL model.

Proof. A maximal matching of G− ET is simply an MIS on the line graph L(G− ET). ◀

DISC 2025

37:14 Towards Optimal Distributed Edge Coloring with Fewer Colors

4.3 Phase 2: Assign two exclusive edges to each cluster
In this phase, we rearrange the edges in the maximal matching M in order to assign two
exclusive edges to each cluster, while preserving the matching property. These exclusive edges
are essential for adjusting the coloring of the intercluster edges, as laid out in Lemma 25.
This step relies on the HSO subroutine from Theorem 34, and we now detail the specific
instance used in our algorithm. The high level idea is that each cluster sends proposals to
nearby edges in the matching M . Each edge accepts exactly one proposal and we swap the
edge towards the cluster that won it. This process can be modeled as an HSO instance where
each matching edge in M represents an hyperedge that contains as vertices all clusters that
sent a proposal to that edge. Since a directed hyperedge e is outgoing for exactly one of its
vertices v ∈ e, we will say that v won the proposal for e.

However, the hypergraph sinkless orientation problem only guarantees at least one
outgoing hyperedge for each vertex. Therefore, in order to achieve two exclusive hyperedges
for each cluster, we simply split each cluster into two virtual nodes and let both participate in
the HSO independently. In the following we formalize this idea and prove that this provides
the desired properties as well as a deterministic runtime of O(logn) rounds. First, we let
each cluster C−1(r) ∈ C that is not already edge-degree choosable select a subset of vertices
S ⊆ V (C−1(r)) to send proposals to a matching edges in their neighborhood. Let C′ denote
the set of clusters, which are not already edge-degree choosable. Crucially, in order to satisfy
the colorful condition from Lemma 14 we require that the vertices in S are all leaves in the
spanning tree T (r) ⊆ C−1(r) at the same distance from the root r.

▶ Lemma 20. For each cluster C−1(r) ∈ C′, there exists an integer k > 0 and a subset
S ⊆ V (C−1(r)) of size at least 4 ·∆3 such that every vertex v ∈ S is a leaf in the tree T (r)
that satisfies dist(r, v) = k.

Proof. Since C is a (4, 8)-clustering we have that C−1(r) necessarily contains all vertices in
N4(r). Thus, according to Lemma 16 the corresponding BFS-tree contains at least (∆− 2)4

leaves. Therefore, by the pigeonhole principle there exists a layer Vk for k = 1, . . . , 8 such
that Vk contains at least (∆− 2)4/8 > 4 ·∆3 leaves for ∆ sufficiently large. ◀

For each cluster we select an arbitrary set S of at least 4 ·∆3 leaves which are all at the
same distance from the center. The subset S is the subset of leaves that send requests. Each
vertex in v ∈ S sends exactly one proposal. If v is incident to a matching edge e ∈M , then
it proposes to e. Otherwise, v sends a proposal to an arbitrary matching edge that is one
hop away from e. Such an edge must exist, due to the maximality of M .

▶ Definition 21 (Auxiliary hypergraph). We define the auxiliary hypergraph H = (VH , EH):
For each cluster C ∈ C′ we add a vertex vC to VH .
For each matching edge e ∈M we add a hyperedge eH to EH that contains all vertices
vC for which there exists at least one vertex v ∈ V (C) that proposed to e.

▶ Lemma 22. The minimum degree δH and the maximum rank rH of H satisfy δH > ∆ · rH .

Proof. First we observe that a single matching edge e = uv can get proposals only from
u, v and vertices that are exactly one hop away from either u or v. Hence, there may be
two proposals coming from u and v plus 2 · (∆− 1) proposals coming from neighbors of u
or v. Thus, the maximum rank of H is at most rH = 2∆. Next, each cluster contains at
least 4 ·∆3 vertices sending proposals. Since each vertex sends exactly one proposal and
each edge receives at most 2∆ proposals the vertices of each cluster must propose to at least
2∆2 edges in total. Hence, the minimum degree of H can be lower bounded by δ = 2∆2. ◀

M. Jakob, Y. Maus, and F. Schager 37:15

▶ Lemma 23. We can compute an orientation of EH such that each vertex in VH has at
least two outgoing hyperedges in O(log∆ n) rounds deterministically and O(log∆ logn) rounds
randomized.

Proof. To compute an orientation with two outgoing edges per cluster we simply split each
vertex into two virtual nodes with half the degree each. Thus, the minimum degree of the
resulting hypergraph H ′ is still at least ∆2. Therefore, we can solve HSO in O(logδ/r n) =
O(log∆ n) rounds deterministically and in O(logδ/r δ + logδ/r logn) = O(log∆ logn) rounds
randomized using the algorithms from Theorem 34 and Theorem 35. ◀

The orientation of H yields an assignment of matching edges to clusters such that each
cluster receives exclusive access to two matching edges. However, the matching edges are not
necessarily adjacent to their respective clusters yet. Therefore we modify the matching M
by moving each edge closer to the vertex which won the proposal for it.

▶ Lemma 24. There is a matching M ′ = χ(M) such that for all e ∈M it holds that χ(e) is
adjacent to the vertex that won the proposal for e.

Proof. For each e ∈M , let v be the vertex (in the original graph G), which sent the winning
proposal to e. If v is incident to e, then we simply set χ(e) = e. Otherwise, let u be the
endpoint of e which is adjacent to v and set χ(e) = uv. With this procedure, we ensure that
each cluster is adjacent to at least two edges in M ′ since each of the two partitions of the
cluster receives at least one edge based on the HSO property. If a cluster is assigned more
than two edges in M ′, it discards any edges beyond the required two. In order to show that
the edge set M ′ is still a proper matching, we recall that every vertex v ∈ S ⊆ V sends out
exactly one proposal. Hence, there is no vertex that wins more than one edge in M . Assume
that v won the proposal for the edge e = uw. If v is incident to e there is no change from
M to M ′. Otherwise, let u be adjacent to v. In this case, the edge uw ∈ M is flipped to
vw ∈ M ′. Hence, v is the only vertex that gains an incident edge in M ′ compared to M .
Since e is one of the closest edges to v in M there cannot be an edge e′ ∈M that is already
incident to v. Therefore every vertex that wins its only proposal is incident to exactly one
edge in M ′. On the other hand, every vertex that does not win its proposal cannot gain any
additional adjacent edges in M ′. Therefore M ′ is still a matching. ◀

4.4 Phase 3: Switch colors in order to complete the coloring
Now that each cluster has been assigned two exclusive edges located at the same distance from
its central vertex, we show how to modify their colors to ensure that the colorful condition
from Lemma 14 is satisfied for every cluster. To prove that this procedure can be applied to
all clusters in parallel, we argue that the colorful condition can still be fulfilled even if the
colors of all edges not adjacent to the two exclusive edges are modified adversarially.

▶ Lemma 25 (Color switching). Let G = (V,E) be a ∆-regular graph, T = (VT , ET) ⊆ G

a tree, r ∈ VT and φ : E \ ET → [2∆− 3] a partial edge coloring of G. Then, for any two
independent edges uv, u′v′ ∈ Ek, where u and u′ are leaves in T , there exists a coloring
φ′ : E \ ET → [2∆− 2] such that |φ′(NE(Vk))| ≥ ∆ and φ(e) = φ′(e) for all e ̸∈ {uv, u′v′}.

Proof. Recall that Vk := {v ∈ VT : distT (v, r) = k}. Since u and u′ are leaves in T , they are
incident to exactly ∆− 1 edges in E \ET . Hence, φ(NE(Vk)) already contains at least ∆− 1
distinct colors. If |φ(NE(Vk))| ≥ ∆ we simply set φ′ = φ. Otherwise, if |φ(NE(Vk))| = ∆−1,
we set φ′(uv) = 2∆ − 2. Since φ(e) < 2∆ − 2 for all e ∈ Ek we only need to argue that

DISC 2025

37:16 Towards Optimal Distributed Edge Coloring with Fewer Colors

r1

2

1

2

2

(a) Before switching colors: φ(NE(V1)) = {1, 2}.

r1

4

1

4

2

(b) After switching colors: φ(NE(V1)) = {1, 2, 4}.

Figure 5 A simplified example for the color switching procedure, where ∆ = 3. The edges in
the BFS-tree Tr are represented by solid lines, while edges outside of Tr are dashed. The assigned
matching edges e1, e2 are marked orange.

the color φ(uv) still remains in φ′(Ek). Consider the sets N := {uw : uw ∈ E \ ET }
and N ′ := {u′w : u′w ∈ E \ ET }. Since u, u′ are both leaves in T , both N and N ′ have
cardinality ∆ − 1. Moreover, since |φ(Ek)| = ∆ − 1 and any two edges in N (or N ′)
are adjacent, we have that φ(N) = φ(N ′). Hence, there exists an edge u′v′′ such that
φ(uv) = φ(u′v′′) = φ′(u′v′′) ∈ φ′(Ek). Thus, we have φ′(Ek) = ∆. Note that this argument
holds even if the colors of the edges not adjacent to u or v are modified adversarially. ◀

4.5 Proof of Theorem 2
▶ Theorem 2. There is a deterministic LOCAL algorithm computing a (2∆−2)-edge coloring
in any n-vertex graph with maximum degree ∆ in O(log∆ n) + TMIS(∆2 · n, poly(∆)) rounds.

Proof. For ∆ = O(1) we apply the (3∆/2)-edge coloring algorithm from Theorem 39 to get
a (2∆−2)-edge coloring in O(logn) rounds. Hence, for the remainder of the proof we assume
∆ ≥ ∆0 for a sufficiently large constant ∆0. Since the power graph G8 has n vertices and
maximum degree polynomial in ∆, an MIS can be computed on it in time TMIS(n, poly(∆)).
Next, the clustering is possible in a constant number of rounds, since the radius of each
cluster is at most 8. Also, both computing the (2∆ − 3)-edge coloring φ of G − ET and
finding a maximal matching in ET can be reduced to MIS, and thus can be solved in time
TMIS(∆2 · n, poly(∆)). Then, according to Section 4.3 we can modify the matching in a way
that each cluster receives two exclusive edges. The rearrangement can be modeled as an
instance of HSO with minimum degree ∆3

4 and maximum rank ∆2. Since each cluster has
constant diameter, simulating this hypergraph incurs just a constant overhead factor. Thus,
the deterministic HSO algorithm from Theorem 34 runs in O(log∆ n) rounds. Next, we apply
Lemma 25 to ensure that for each cluster there is a k ≤ 8 such that |φ(NE(Vk))| ≥ ∆. By
Lemma 14 we can extend φ to a proper (2∆− 2)-edge coloring of G. ◀

References
1 Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel algorithm

for the maximal independent set problem. J. Algorithms, 7(4):567–583, 1986. doi:10.1016/
0196-6774(86)90019-2.

2 Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis Olivetti, Mikaël Rabie, and Jukka
Suomela. Lower bounds for maximal matchings and maximal independent sets. In David
Zuckerman, editor, 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 481–497. IEEE Computer
Society, 2019. doi:10.1109/FOCS.2019.00037.

https://doi.org/10.1016/0196-6774(86)90019-2
https://doi.org/10.1016/0196-6774(86)90019-2
https://doi.org/10.1109/FOCS.2019.00037

M. Jakob, Y. Maus, and F. Schager 37:17

3 Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis Olivetti, Mikaël Rabie, and Jukka
Suomela. Lower bounds for maximal matchings and maximal independent sets. J. ACM,
68(5):39:1–39:30, 2021. doi:10.1145/3461458.

4 Alkida Balliu, Sebastian Brandt, Fabian Kuhn, and Dennis Olivetti. Distributed edge coloring
in time polylogarithmic in ∆. In Alessia Milani and Philipp Woelfel, editors, PODC ’22: ACM
Symposium on Principles of Distributed Computing, Salerno, Italy, July 25 - 29, 2022, pages
15–25. ACM, 2022. doi:10.1145/3519270.3538440.

5 Amotz Bar-Noy, Rajeev Motwani, and Joseph Naor. The greedy algorithm is optimal for on-line
edge coloring. Inf. Process. Lett., 44(5):251–253, 1992. doi:10.1016/0020-0190(92)90209-E.

6 Leonid Barenboim. Deterministic (∆ + 1)-coloring in sublinear (in ∆) time in static, dynamic,
and faulty networks. J. ACM, 63(5):47:1–47:22, 2016. doi:10.1145/2979675.

7 Leonid Barenboim and Michael Elkin. Distributed deterministic edge coloring using bounded
neighborhood independence. Distributed Comput., 26(5-6):273–287, 2013. doi:10.1007/
S00446-012-0167-7.

8 Leonid Barenboim and Michael Elkin. Distributed Graph Coloring: Fundamentals
and Recent Developments. Morgan & Claypool Publishers, 2013. doi:10.2200/
S00520ED1V01Y201307DCT011.

9 Leonid Barenboim, Michael Elkin, and Uri Goldenberg. Locally-iterative distributed (∆ +
1)-coloring and applications. J. ACM, 69(1):5:1–5:26, 2022. doi:10.1145/3486625.

10 Leonid Barenboim, Michael Elkin, and Fabian Kuhn. Distributed (delta+1)-coloring in linear
(in delta) time. SIAM J. Comput., 43(1):72–95, 2014. doi:10.1137/12088848X.

11 Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The locality of
distributed symmetry breaking. In 53rd Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 321–330. IEEE
Computer Society, 2012. doi:10.1109/FOCS.2012.60.

12 Anton Bernshteyn. A fast distributed algorithm for (∆ + 1)-edge-coloring. J. Comb. Theory
B, 152:319–352, 2022. doi:10.1016/J.JCTB.2021.10.004.

13 Anton Bernshteyn and Abhishek Dhawan. Fast algorithms for vizing’s theorem on bounded
degree graphs. CoRR, abs/2303.05408, 2023. doi:10.48550/arXiv.2303.05408.

14 Yann Bourreau, Sebastian Brandt, and Alexandre Nolin. Faster distributed ∆-coloring via
ruling subgraphs. arXiv preprint arXiv:2503.04320, 2025. doi:10.48550/arXiv.2503.04320.

15 Sebastian Brandt, Yannic Maus, Ananth Narayanan, Florian Schager, and Jara Uitto. On the
locality of hall’s theorem. In Yossi Azar and Debmalya Panigrahi, editors, Proceedings of the
2025 Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2025, New Orleans, LA,
USA, January 12-15, 2025, pages 4198–4226. SIAM, 2025. doi:10.1137/1.9781611978322.
143.

16 Sebastian Brandt and Ananth Narayanan. Towards optimal deterministic local algorithms on
trees, 2025. doi:10.48550/arXiv.2505.01410.

17 Yi-Jun Chang, Qizheng He, Wenzheng Li, Seth Pettie, and Jara Uitto. The complexity of
distributed edge coloring with small palettes. In Artur Czumaj, editor, Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New
Orleans, LA, USA, January 7-10, 2018, pages 2633–2652. SIAM, 2018. doi:10.1137/1.
9781611975031.168.

18 Yi-Jun Chang, Qizheng He, Wenzheng Li, Seth Pettie, and Jara Uitto. Distributed edge
coloring and a special case of the constructive lovász local lemma. ACM Trans. Algorithms,
16(1), November 2019. doi:10.1145/3365004.

19 Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. An exponential separation between random-
ized and deterministic complexity in the LOCAL model. SIAM J. Comput., 48(1):122–143,
2019. doi:10.1137/17M1117537.

20 Yi-Jun Chang, Wenzheng Li, and Seth Pettie. An optimal distributed (∆+1)-coloring
algorithm? In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, Proceedings of

DISC 2025

https://doi.org/10.1145/3461458
https://doi.org/10.1145/3519270.3538440
https://doi.org/10.1016/0020-0190(92)90209-E
https://doi.org/10.1145/2979675
https://doi.org/10.1007/S00446-012-0167-7
https://doi.org/10.1007/S00446-012-0167-7
https://doi.org/10.2200/S00520ED1V01Y201307DCT011
https://doi.org/10.2200/S00520ED1V01Y201307DCT011
https://doi.org/10.1145/3486625
https://doi.org/10.1137/12088848X
https://doi.org/10.1109/FOCS.2012.60
https://doi.org/10.1016/J.JCTB.2021.10.004
https://doi.org/10.48550/arXiv.2303.05408
https://doi.org/10.48550/arXiv.2503.04320
https://doi.org/10.1137/1.9781611978322.143
https://doi.org/10.1137/1.9781611978322.143
https://doi.org/10.48550/arXiv.2505.01410
https://doi.org/10.1137/1.9781611975031.168
https://doi.org/10.1137/1.9781611975031.168
https://doi.org/10.1145/3365004
https://doi.org/10.1137/17M1117537

37:18 Towards Optimal Distributed Edge Coloring with Fewer Colors

the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles,
CA, USA, June 25-29, 2018, pages 445–456. ACM, 2018. doi:10.1145/3188745.3188964.

21 Yi-Jun Chang, Wenzheng Li, and Seth Pettie. Distributed (∆ + 1)-coloring via ultrafast graph
shattering. SIAM Journal of Computing, 49(3):497–539, 2020. doi:10.1137/19M1249527.

22 Yi-Jun Chang and Seth Pettie. A time hierarchy theorem for the LOCAL model. SIAM J.
Comput., 48(1):33–69, 2019. doi:10.1137/17M1157957.

23 Ilan Reuven Cohen, Binghui Peng, and David Wajc. Tight bounds for online edge coloring. In
David Zuckerman, editor, 60th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 1–25. IEEE Computer
Society, 2019. doi:10.1109/FOCS.2019.00010.

24 Richard Cole and Uzi Vishkin. Deterministic coin tossing with applications to optimal parallel
list ranking. Inf. Control., 70(1):32–53, 1986. doi:10.1016/S0019-9958(86)80023-7.

25 Andrzej Czygrinow, Michal Hanckowiak, and Michal Karonski. Distributed o(delta log(n))-
edge-coloring algorithm. In Friedhelm Meyer auf der Heide, editor, Algorithms - ESA 2001,
9th Annual European Symposium, Aarhus, Denmark, August 28-31, 2001, Proceedings, volume
2161 of Lecture Notes in Computer Science, pages 345–355. Springer, 2001. doi:10.1007/
3-540-44676-1_29.

26 Peter Davies. Improved distributed algorithms for the lovász local lemma and edge coloring.
In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages
4273–4295. SIAM, 2023. doi:10.1137/1.9781611977554.CH163.

27 Devdatt P. Dubhashi, David A. Grable, and Alessandro Panconesi. Near-optimal, distributed
edge colouring via the nibble method. Theor. Comput. Sci., 203(2):225–251, 1998. doi:
10.1016/S0304-3975(98)00022-X.

28 Michael Elkin, Seth Pettie, and Hsin-Hao Su. (2∆ - l)-edge-coloring is much easier than
maximal matching in the distributed setting. In Piotr Indyk, editor, Proceedings of the Twenty-
Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA,
USA, January 4-6, 2015, pages 355–370. SIAM, 2015. doi:10.1137/1.9781611973730.26.

29 Salwa Faour, Mohsen Ghaffari, Christoph Grunau, Fabian Kuhn, and Václav Rozhon. Local
distributed rounding: Generalized to mis, matching, set cover, and beyond. In Nikhil Bansal
and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 4409–4447. SIAM, 2023.
doi:10.1137/1.9781611977554.CH168.

30 Manuela Fischer and Mohsen Ghaffari. Sublogarithmic distributed algorithms for lovász
local lemma, and the complexity hierarchy. In Andréa W. Richa, editor, 31st International
Symposium on Distributed Computing, DISC 2017, October 16-20, 2017, Vienna, Austria,
volume 91 of LIPIcs, pages 18:1–18:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2017. doi:10.4230/LIPICS.DISC.2017.18.

31 Manuela Fischer, Mohsen Ghaffari, and Fabian Kuhn. Deterministic distributed edge-coloring
via hypergraph maximal matching. In Chris Umans, editor, 58th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017,
pages 180–191. IEEE Computer Society, 2017. doi:10.1109/FOCS.2017.25.

32 Manuela Fischer, Magnús M. Halldórsson, and Yannic Maus. Fast distributed brooks’ theorem.
In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages
2567–2588. SIAM, 2023. doi:10.1137/1.9781611977554.CH98.

33 Pierre Fraigniaud, Marc Heinrich, and Adrian Kosowski. Local conflict coloring. In Irit Dinur,
editor, IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016,
9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 625–634. IEEE
Computer Society, 2016. doi:10.1109/FOCS.2016.73.

34 Beat Gfeller and Elias Vicari. A randomized distributed algorithm for the maximal inde-
pendent set problem in growth-bounded graphs. In Indranil Gupta and Roger Wattenhofer,

https://doi.org/10.1145/3188745.3188964
https://doi.org/10.1137/19M1249527
https://doi.org/10.1137/17M1157957
https://doi.org/10.1109/FOCS.2019.00010
https://doi.org/10.1016/S0019-9958(86)80023-7
https://doi.org/10.1007/3-540-44676-1_29
https://doi.org/10.1007/3-540-44676-1_29
https://doi.org/10.1137/1.9781611977554.CH163
https://doi.org/10.1016/S0304-3975(98)00022-X
https://doi.org/10.1016/S0304-3975(98)00022-X
https://doi.org/10.1137/1.9781611973730.26
https://doi.org/10.1137/1.9781611977554.CH168
https://doi.org/10.4230/LIPICS.DISC.2017.18
https://doi.org/10.1109/FOCS.2017.25
https://doi.org/10.1137/1.9781611977554.CH98
https://doi.org/10.1109/FOCS.2016.73

M. Jakob, Y. Maus, and F. Schager 37:19

editors, Proceedings of the Twenty-Sixth Annual ACM Symposium on Principles of Distributed
Computing, PODC 2007, Portland, Oregon, USA, August 12-15, 2007, pages 53–60. ACM,
2007. doi:10.1145/1281100.1281111.

35 Mohsen Ghaffari. An improved distributed algorithm for maximal independent set. In Robert
Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 270–277.
SIAM, 2016. doi:10.1137/1.9781611974331.CH20.

36 Mohsen Ghaffari and Christoph Grunau. Faster deterministic distributed MIS and approximate
matching. In Barna Saha and Rocco A. Servedio, editors, Proceedings of the 55th Annual
ACM Symposium on Theory of Computing, STOC 2023, Orlando, FL, USA, June 20-23, 2023,
pages 1777–1790. ACM, 2023. doi:10.1145/3564246.3585243.

37 Mohsen Ghaffari and Christoph Grunau. Near-optimal deterministic network decomposition
and ruling set, and improved MIS. In 65th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2024, Chicago, IL, USA, October 27-30, 2024, pages 2148–2179.
IEEE, 2024. doi:10.1109/FOCS61266.2024.00007.

38 Mohsen Ghaffari, Christoph Grunau, and Václav Rozhon. Improved deterministic network
decomposition. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 2904–2923.
SIAM, 2021. doi:10.1137/1.9781611976465.173.

39 Mohsen Ghaffari, David G. Harris, and Fabian Kuhn. On derandomizing local distributed
algorithms. In Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 662–673. IEEE
Computer Society, 2018. doi:10.1109/FOCS.2018.00069.

40 Mohsen Ghaffari, Juho Hirvonen, Fabian Kuhn, and Yannic Maus. Improved distributed delta-
coloring. In Calvin Newport and Idit Keidar, editors, Proceedings of the 2018 ACM Symposium
on Principles of Distributed Computing, PODC 2018, Egham, United Kingdom, July 23-27,
2018, pages 427–436. ACM, 2018. URL: https://dl.acm.org/citation.cfm?id=3212764.

41 Mohsen Ghaffari, Juho Hirvonen, Fabian Kuhn, Yannic Maus, Jukka Suomela, and Jara
Uitto. Improved distributed degree splitting and edge coloring. In Andréa W. Richa, editor,
31st International Symposium on Distributed Computing, DISC 2017, October 16-20, 2017,
Vienna, Austria, volume 91 of LIPIcs, pages 19:1–19:15. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2017. doi:10.4230/LIPICS.DISC.2017.19.

42 Mohsen Ghaffari, Juho Hirvonen, Fabian Kuhn, Yannic Maus, Jukka Suomela, and Jara Uitto.
Improved distributed degree splitting and edge coloring. Distributed Comput., 33(3-4):293–310,
2020. doi:10.1007/S00446-018-00346-8.

43 Mohsen Ghaffari and Fabian Kuhn. Deterministic distributed vertex coloring: Simpler, faster,
and without network decomposition. In 62nd IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 1009–1020.
IEEE, 2021. doi:10.1109/FOCS52979.2021.00101.

44 Mohsen Ghaffari, Fabian Kuhn, Yannic Maus, and Jara Uitto. Deterministic distributed
edge-coloring with fewer colors. In Ilias Diakonikolas, David Kempe, and Monika Henzinger,
editors, Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 418–430. ACM, 2018. doi:
10.1145/3188745.3188906.

45 Mohsen Ghaffari and Hsin-Hao Su. Distributed degree splitting, edge coloring, and orientations.
In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19,
pages 2505–2523. SIAM, 2017. doi:10.1137/1.9781611974782.166.

46 Philip Hall. On representatives of subsets. Classic Papers in Combinatorics, pages 58–62,
1987.

47 Magnús M. Halldórsson, Yannic Maus, and Alexandre Nolin. Fast distributed vertex splitting
with applications. In Christian Scheideler, editor, 36th International Symposium on Distributed

DISC 2025

https://doi.org/10.1145/1281100.1281111
https://doi.org/10.1137/1.9781611974331.CH20
https://doi.org/10.1145/3564246.3585243
https://doi.org/10.1109/FOCS61266.2024.00007
https://doi.org/10.1137/1.9781611976465.173
https://doi.org/10.1109/FOCS.2018.00069
https://dl.acm.org/citation.cfm?id=3212764
https://doi.org/10.4230/LIPICS.DISC.2017.19
https://doi.org/10.1007/S00446-018-00346-8
https://doi.org/10.1109/FOCS52979.2021.00101
https://doi.org/10.1145/3188745.3188906
https://doi.org/10.1145/3188745.3188906
https://doi.org/10.1137/1.9781611974782.166

37:20 Towards Optimal Distributed Edge Coloring with Fewer Colors

Computing, DISC 2022, October 25-27, 2022, Augusta, Georgia, USA, volume 246 of LIPIcs,
pages 26:1–26:24. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/
LIPICS.DISC.2022.26.

48 David G. Harris. Distributed local approximation algorithms for maximum matching in graphs
and hypergraphs. In David Zuckerman, editor, 60th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages
700–724. IEEE Computer Society, 2019. doi:10.1109/FOCS.2019.00048.

49 David G. Harris. Distributed local approximation algorithms for maximum matching in graphs
and hypergraphs. SIAM J. Comput., 49(4):711–746, 2020. doi:10.1137/19M1279241.

50 Manuel Jakob and Yannic Maus. Towards optimal distributed delta coloring. CoRR,
abs/2504.03080, 2025. doi:10.48550/arXiv.2504.03080.

51 Manuel Jakob, Yannic Maus, and Florian Schager. Towards optimal distributed edge coloring
with fewer colors, 2025. arXiv:2504.13003.

52 Fabian Kuhn, Yannic Maus, and Simon Weidner. Deterministic distributed ruling sets of line
graphs. In Zvi Lotker and Boaz Patt-Shamir, editors, Structural Information and Commu-
nication Complexity - 25th International Colloquium, SIROCCO 2018, Ma’ale HaHamisha,
Israel, June 18-21, 2018, Revised Selected Papers, volume 11085 of Lecture Notes in Computer
Science, pages 193–208. Springer, 2018. doi:10.1007/978-3-030-01325-7_19.

53 Fabian Kuhn and Roger Wattenhofer. On the complexity of distributed graph coloring. In Eric
Ruppert and Dahlia Malkhi, editors, Proceedings of the Twenty-Fifth Annual ACM Symposium
on Principles of Distributed Computing, PODC 2006, Denver, CO, USA, July 23-26, 2006,
pages 7–15. ACM, 2006. doi:10.1145/1146381.1146387.

54 Nathan Linial. Distributive graph algorithms-global solutions from local data. In 28th Annual
Symposium on Foundations of Computer Science, Los Angeles, California, USA, 27-29 October
1987, pages 331–335. IEEE Computer Society, 1987. doi:10.1109/SFCS.1987.20.

55 Nathan Linial. Locality in distributed graph algorithms. SIAM J. Comput., 21(1):193–201,
1992. doi:10.1137/0221015.

56 Michael Luby. A simple parallel algorithm for the maximal independent set problem. In
Robert Sedgewick, editor, Proceedings of the 17th Annual ACM Symposium on Theory of
Computing, May 6-8, 1985, Providence, Rhode Island, USA, pages 1–10. ACM, 1985. doi:
10.1145/22145.22146.

57 Yannic Maus and Tigran Tonoyan. Local conflict coloring revisited: Linial for lists. In Hagit
Attiya, editor, 34th International Symposium on Distributed Computing, DISC 2020, October
12-16, 2020, Virtual Conference, volume 179 of LIPIcs, pages 16:1–16:18. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPICS.DISC.2020.16.

58 Yannic Maus and Jara Uitto. Efficient CONGEST algorithms for the lovász local lemma. In
Seth Gilbert, editor, 35th International Symposium on Distributed Computing, DISC 2021,
October 4-8, 2021, Freiburg, Germany (Virtual Conference), volume 209 of LIPIcs, pages
31:1–31:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.
DISC.2021.31.

59 Moni Naor. A lower bound on probabilistic algorithms for distributive ring coloring. SIAM J.
Discret. Math., 4(3):409–412, 1991. doi:10.1137/0404036.

60 Alessandro Panconesi and Romeo Rizzi. Some simple distributed algorithms for sparse networks.
Distributed Comput., 14(2):97–100, 2001. doi:10.1007/PL00008932.

61 Alessandro Panconesi and Aravind Srinivasan. Improved distributed algorithms for coloring
and network decomposition problems. In S. Rao Kosaraju, Mike Fellows, Avi Wigderson,
and John A. Ellis, editors, Proceedings of the 24th Annual ACM Symposium on Theory of
Computing, May 4-6, 1992, Victoria, British Columbia, Canada, pages 581–592. ACM, 1992.
doi:10.1145/129712.129769.

62 Alessandro Panconesi and Aravind Srinivasan. The local nature of delta-coloring and its
algorithmic applications. Comb., 15(2):255–280, 1995. doi:10.1007/BF01200759.

https://doi.org/10.4230/LIPICS.DISC.2022.26
https://doi.org/10.4230/LIPICS.DISC.2022.26
https://doi.org/10.1109/FOCS.2019.00048
https://doi.org/10.1137/19M1279241
https://doi.org/10.48550/arXiv.2504.03080
https://arxiv.org/abs/2504.13003
https://doi.org/10.1007/978-3-030-01325-7_19
https://doi.org/10.1145/1146381.1146387
https://doi.org/10.1109/SFCS.1987.20
https://doi.org/10.1137/0221015
https://doi.org/10.1145/22145.22146
https://doi.org/10.1145/22145.22146
https://doi.org/10.4230/LIPICS.DISC.2020.16
https://doi.org/10.4230/LIPICS.DISC.2021.31
https://doi.org/10.4230/LIPICS.DISC.2021.31
https://doi.org/10.1137/0404036
https://doi.org/10.1007/PL00008932
https://doi.org/10.1145/129712.129769
https://doi.org/10.1007/BF01200759

M. Jakob, Y. Maus, and F. Schager 37:21

63 Alessandro Panconesi and Aravind Srinivasan. On the complexity of distributed network
decomposition. J. Algorithms, 20(2):356–374, 1996. doi:10.1006/JAGM.1996.0017.

64 Václav Rozhon, Michael Elkin, Christoph Grunau, and Bernhard Haeupler. Deterministic
low-diameter decompositions for weighted graphs and distributed and parallel applications. In
63rd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO,
USA, October 31 - November 3, 2022, pages 1114–1121. IEEE, 2022. doi:10.1109/FOCS54457.
2022.00107.

65 Václav Rozhon and Mohsen Ghaffari. Polylogarithmic-time deterministic network decomposi-
tion and distributed derandomization. In Konstantin Makarychev, Yury Makarychev, Madhur
Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, Proceedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26,
2020, pages 350–363. ACM, 2020. doi:10.1145/3357713.3384298.

66 Amin Saberi and David Wajc. The greedy algorithm is not optimal for on-line edge coloring. In
Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on
Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland
(Virtual Conference), volume 198 of LIPIcs, pages 109:1–109:18. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2021. doi:10.4230/LIPICS.ICALP.2021.109.

67 Johannes Schneider, Michael Elkin, and Roger Wattenhofer. Symmetry breaking depending
on the chromatic number or the neighborhood growth. Theor. Comput. Sci., 509:40–50, 2013.
doi:10.1016/J.TCS.2012.09.004.

68 Hsin-Hao Su and Hoa T. Vu. Towards the locality of vizing’s theorem. In Moses Charikar and
Edith Cohen, editors, Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 355–364. ACM, 2019.
doi:10.1145/3313276.3316393.

69 Vadim G Vizing. On an estimate of the chromatic class of a p-graph. Diskret analiz, 3:25–30,
1964.

A Replacing MIS and maximal matching (Proof of Theorem 1)

In this subsection we show that computing an MIS is not strictly necessary for our reduction.
Indeed, using a (2, k)-ruling set changes only the diameter of our clusters. Since increasing the
cluster diameter increases the overhead for simulating the auxiliary hypergraph, this induces
a tradeoff between k and the runtime of computing a (2, k)-ruling set. Setting k = O(log ∆)
turns out to be the best choice for our purposes. Secondly, we show how to substitute the
maximal matching by a 2-edge ruling set. This change is technically more involved, as it
requires us to generalize the definition of our auxiliary hypergraph. The necessary changes
to Algorithm 1 are also highlighted red in Algorithm 3.

Algorithm 3 Reduction from (2∆−2)-edge coloring to (2∆−1)-edge coloring (high level overview).

1: Compute a (2,O(log ∆))-ruling set R on G8 ▷ Corollary 31
2: C, ET ← Cluster(G,R) ▷ Algorithm 2
3: Compute a (2∆− 3)-edge coloring φ of G− ET ▷ Lemma 18
4: Compute a 2-edge ruling set ER of T ▷ Theorem 33
5: Compute 2-HSO ψ : C → ER in H = (C, ER) ▷ Theorem 34
6: Rearrange the matching edges via χ : ER → E′

R ▷ Lemma 24
7: for each cluster C ∈ C in parallel do
8: Change the colors of the edges in χ(ψ(C)) if necessary ▷ Lemma 25
9: end for

10: Extend φ to a (2∆− 2)-edge coloring φ⋆ of G ▷ Lemma 14

DISC 2025

https://doi.org/10.1006/JAGM.1996.0017
https://doi.org/10.1109/FOCS54457.2022.00107
https://doi.org/10.1109/FOCS54457.2022.00107
https://doi.org/10.1145/3357713.3384298
https://doi.org/10.4230/LIPICS.ICALP.2021.109
https://doi.org/10.1016/J.TCS.2012.09.004
https://doi.org/10.1145/3313276.3316393

37:22 Towards Optimal Distributed Edge Coloring with Fewer Colors

Secondly, we show that we can replace the maximal matching M by a cheaper 2-edge
ruling set ER of G− ET . In this case, every leaf-vertex of a cluster sees at least one ruling
set edge in its 3-hop neighborhood. Here we need to be a little bit more careful in how we
set up our hypergraph. Firstly, each vertex may only send one proposal to one of its closest
ruling set edges. Secondly, each vertex may only propose to a ruling set edge e ∈ ER, if all
the vertices on a shortest path towards this have proposed to e as well. For an illustration
we refer to Figure 6.

(a) Each vertex proposes to one of the nearest match-
ing edges (orange) within its two-hop neighborhood.
Note that vertices lying on the shortest path to a
matching edge will propose to the same edge. These
proposals are represented by dashed arrows. Accord-
ing to the HSO result, each orange matching edge
accepts exactly one proposal, which is indicated by
a blue arrow.

(b) Based on the HSO result (blue arrows), the
matching is shifted toward the vertices that won the
matching edge. The first edge along the shortest
path to these vertices (orange) becomes the new
matching edge.

Figure 6 Illustration of a simplified example showing how the HSO is modeled as a proposal
instance for assigning clusters two exclusive edges.

For each cluster C ∈ C we select an arbitrary set S(C) ⊆ V (C) of at least 4 ·∆3 leaves
which are all at the same distance from the center.

▶ Definition 26 (Proposal scheme). Each cluster C ∈ C sends proposals to matching edges
according to the following rules:

Each vertex v ∈ S(C) proposes to exactly one matching edge e ∈ ER.
If v proposes to e, there may not be an edge e′ ∈ ER that is closer to v than e.
If v proposes to e, every vertex on the shortest path from v to e must also propose to e.

▶ Definition 27. Let e ∈ ER and v ∈ V be the vertex which sent the winning proposal to e.
If v is incident to e, then we simply add e to M ′.
If v is one hop away from e, let u be the endpoint of e which is adjacent to v and add the
edge uv to M ′.
If v is two hops away from e, let u be the next vertex on a shortest path from v to e and
add the edge uv to M ′.

Now we prove an analogous result to Lemma 24.

▶ Lemma 28. The edge set M ′ is a proper matching in G−ET and every edge e ∈M ′ is
adjacent to the vertex that won the proposal for e.

Proof. Recall that every vertex v ∈ V sends out at most one proposal. Hence, there is no
vertex that wins more than one edge in ER. Assume that v won the proposal for the edge
e = uw ∈ ER. If v is incident to e there is no change between ER and M ′. If v is one hop
away from e, then v is the only vertex that gains an incident edge in M ′ compared to ER.
Since e is one of the closest edges to v in ER there cannot be an edge e′ ∈ ER that is already

M. Jakob, Y. Maus, and F. Schager 37:23

incident to v. In the final case that v is two hops away from e, both v and the next vertex u
on a shortest path from v to e gain an incident edge in ER. Note that every vertex is at most
two hops away from its closest edge in ER, since ER is a 2-edge ruling set. By our proposal
scheme, u must also have proposed to v. Therefore u cannot have won its proposal and u

cannot be incident to an edge in ER. Hence, both v and u are incident to only one edge in
M ′. Now assume that there is another vertex v′ = v that adds the edge v′u to M ′. This
means that v′ must have proposed to the same edge as u. But v already won the proposal for
this edge, a contradiction! Therefore every vertex is incident to at most one edge in M ′. ◀

▶ Theorem 1. There is a deterministic LOCAL algorithm computing a (2∆−2)-edge coloring
in any n-vertex graph with maximum degree ∆ in O(logn) + T2∆−1(n,∆− 1) rounds.

Proof. The (2,O(log ∆))-ruling set can be computed in O(log ∆ + log∗ n) rounds according
to Corollary 31. As an immediate consequence, the diameter of our clusters now increases to
O(log ∆). This implies that simulating the hypergraph now incurs a O(log ∆) factor overhead.
Therefore the complexity of computing a HSO increases to O(log∆ n · log ∆) = O(logn)
rounds. The (2∆ − 3)-edge coloring of G − ET remains unchanged. Further, we can also
relax the requirements for our matching M to 2-edge ruling set, which can be computed in
O(log∗ n) rounds. Therefore the total runtime of our reduction works out to be

O(log ∆+log∗ n)+O(log ∆)+T2∆−1(n)+O(log∗ n)+O(log ∆·logn) = O(logn)+T2∆−1(n).◀

▶ Corollary 3. There are deterministic LOCAL algorithms computing a (2∆−2)-edge coloring
in any n-vertex graph with maximum degree ∆ within either O(log12 ∆+logn) or Õ(log5/3 n)
rounds.

Proof. For the first claim we plug in theO(log12 ∆+log∗ n)-round algorithm from Theorem 38
into Theorem 1. For the latter we plug in the Õ(log5/3 n)-round MIS algorithm from
Theorem 36 into Theorem 2 instead. ◀

B Randomized (2∆ − 2)-edge coloring algorithm

In order to achieve a O(log logn)-round randomized reduction, we only need to replace the
ruling set algorithm by a faster randomized variant in Corollary 32 and the deterministic
HSO algorithm by its randomized counterpart in Theorem 35. The changes to the optimized
deterministic version are also highlighted red in Algorithm 4.

Algorithm 4 Randomized (2∆ − 2)-edge coloring (high level overview).

1: Compute a (2,O(log ∆) ∩ O(log logn))-ruling set R on G8 ▷ Corollary 32
2: C, ET ← Cluster(G,R) ▷ Algorithm 2
3: Compute a (2∆− 3)-edge coloring φ of G− ET ▷ Lemma 18
4: Compute a 2-edge ruling set ER of T ▷ Theorem 33
5: Compute 2-HSO ψ : C → ER in H = (C, ER) ▷ Theorem 35
6: Rearrange the matching edges via χ : ER → E′

R ▷ Lemma 24
7: for each cluster C ∈ C in parallel do
8: Change the colors of the edges in χ(ψ(C)) if necessary ▷ Lemma 25
9: end for

10: Extend φ to a (2∆− 2)-edge coloring of G ▷ Lemma 14

DISC 2025

37:24 Towards Optimal Distributed Edge Coloring with Fewer Colors

▶ Theorem 4. There is a randomized LOCAL algorithm computing a (2∆− 2)-edge coloring
in any n-vertex graph with maximum degree ∆ in O(log logn) + T2∆−1(n,∆− 1) rounds.

Proof. The (2,O(log ∆) ∩ O(log logn))-ruling set can be computed in O(log logn) rounds
according to Corollary 32. Hence, each cluster has diameter at most O(log logn) and can
be computed in O(log logn) rounds as well. For the 2-edge ruling set the deterministic
algorithm from Theorem 33 running in O(log∗ n) rounds is still fast enough for our purposes
here. According to Theorem 35 and Section 4.3 the hypergraph sinkless orientation can be
computed in O(log∆ logn) rounds on the cluster graph, where we incur a O(log ∆)-round
simulation overhead. Finally, the extension to the edges inside each cluster can be computed
in O(log logn) rounds. Hence, the total runtime works out to be

O(log logn) + T2∆−1(n) +O(log∗ n) +O(log ∆ · log∆ logn) = O(log logn) + T2∆−1(n).◀

▶ Corollary 5. There are randomized distributed algorithms computing a (2∆ − 2)-edge
coloring in any n-vertex graph with maximum degree ∆ within either O(log12 ∆ + log logn)
or Õ(log5/3 logn) rounds of the LOCAL model.

Proof. To prove the first claim we plug in the deterministic O(log12 ∆ + log∗ n)-round
algorithm from Theorem 38 into Theorem 4, while the second claim uses the randomized
Õ(log5/3 logn)-round (2∆− 1)-edge coloring algorithm from Corollary 37. ◀

Similar to the deterministic case we could also get a O(log∆ logn)-round reduction to
MIS via replacing the (2,O(log ∆) ∩ O(log logn))-ruling set by an MIS. However, applying
the shattering framework of [35] to the deterministic MIS algorithm from [37] still takes
O(log ∆) + Õ(log8/3 logn) rounds. Hence, the additional cost of computing an MIS currently
outweighs the time saved from the faster reduction.

C Deferred proofs

Proof of Lemma 15. Let C be a cycle of even length and assume that all edges in N(C)
have been colored already. Our task is now to find a proper edge-coloring of C, where every
edge has a list of available colors of size two. If all edges have the same two colors available,
then we can color the cycle alternately with these two colors. Otherwise, there exist two
adjacent edges e1, e2 with different sets of available colors. Color e1 with a color that is not
available for e2. Then we traverse the cycle starting at e1 and going in the opposite direction
of e2 and let each edge pick one of its available colors. Since e1 picked a color that is not
available at e2, there is also a color remaining for e2 at the end. Since H is connected, every
edge lies on a path towards an even cycle. Fix such an even cycle C and define

Ek = {e ∈ E(H) : dist(e, C) = k}.

Since every edge in Ek has at least one neighbor in Ek−1 for k > 1, we can greedily assign
colors to these edges, starting from the highest layer. Finally, every edge in C has a list of
two available colors and can therefore be properly colored as well. ◀

Proof of Lemma 16. For two nodes u, u′ ∈ V (C) let P (u, u′) denote the unique path in
T between u and u′. We claim that each node u ∈ V (C) is incident to at most one edge
that is not part of E(T) and thus the degree of all internal nodes of T is at least ∆ − 1.
First we observe that any edge in E(C) \E(T) can only connect vertices which are at most
one level apart in T . Any additional edge in E(C) \ E(T) from a vertex vℓ in layer ℓ to a

M. Jakob, Y. Maus, and F. Schager 37:25

vertex vℓ+1 in layer ℓ+ 1 in T immediately induces an even cycle. To wit, let u be the least
common ancestor of vℓ and vℓ+1 and observe that the cycle P (u, vℓ)∪ {vℓ, vℓ+1} ∪ P (u, vℓ+1)
has length 2 · |P (u, vℓ+1)|. Next, let u ∈ V (C) be a vertex in layer ℓ with two neighbors
w,w′ in the same layer ℓ. Then, P (v, w) ∪ {w, u} ∪ {u,w′} ∪ P (v, w′) is a cycle of length
2(ℓ + 1). Hence each vertex u ∈ V (C) is adjacent to at most one edge from E(C) \ E(T).
Since C contains the complete k-hop neighborhood of v this implies that there are at least
(∆− 2)k vertices in layer k of T . Every such vertex either has a leaf-descendant in T or is a
leaf itself. ◀

D Complementary subroutines

All subroutines from the existing literature used throughout our algorithms are stated here
explicitly.

D.1 Ruling sets
In this subsection we collect and combine various ruling set algorithms from the distributed
literature that we will use as subroutines for our edge coloring algorithm.

▶ Theorem 29 (ruling set algorithm [34, Theorem 8]). There is a randomized distributed
algorithm that computes a (1,O(log log ∆))-ruling set with induced degree at most O(log5 n)
in any n-vertex graph with maximum degree ∆ in O(log log ∆) rounds

▶ Theorem 30 (ruling set algorithm [67, Theorem 3]). Let G = (V,E) and W ⊆ V . Given a
d-coloring of G, there is a deterministic distributed algorithm that computes a (2, c)-ruling
set for W in time O(c · d1/c).

▶ Corollary 31. There is a deterministic distributed algorithm that computes a (2,O(log ∆))-
ruling set in any graph G in O(log ∆ + log∗ n) rounds of the LOCAL model.

Proof. We start by computing a O(∆2)-vertex coloring φ of G in O(log⋆ n) rounds using
Linial’s algorithm [54, 55]. Then, we apply Theorem 30 to φ for c = O(log ∆) to get a
(2,O(log ∆))-ruling set in time O(c · d1/c) = O(log ∆ ·∆2/ log ∆) = O(log ∆). ◀

▶ Corollary 32. There is a randomized distributed algorithm that computes a (2,O(log ∆) ∩
O(log logn))-ruling set in any graph G in O(log logn) rounds of the LOCAL model.

Proof. If ∆ = O(logn), we can simply use the deterministic algorithm from Corollary 31
to get an (2,O(log ∆))-ruling set (which is also a (2,O(log logn))-ruling set) in O(log ∆ +
log∗ n) = O(log logn) rounds. Otherwise, for ∆ = Ω(logn) we first apply Theorem 29 to get
a (1,O(log log ∆))-ruling set S0 with induced degree at most O(log5 n). Next we compute a
O(log10 n)-coloring χ of G[S0] using Linial’s algorithm [54, 55]. Finally using χ as the input
coloring and setting c = O(log logn), we get a (2,O(log logn)) ruling set S1 for S0 in

O(c · d1/c) = O(log logn · log10/ log log n n) = O(log logn).

randomized time. Since every vertex v ∈ V is at most O(log log ∆) = O(log logn) hops away
from a vertex in S0 and every vertex in S0 is at most O(log logn) = O(log ∆) hops away
from a vertex in S1, we get that S1 is both a (2,O(log ∆)) and a (2,O(log logn))-ruling set
for V . ◀

Another subroutine that we will use in the optimized version of our algorithm computes
a relaxation of a maximal matching.

DISC 2025

37:26 Towards Optimal Distributed Edge Coloring with Fewer Colors

▶ Theorem 33 (2-ruling edge set algorithm [52, Theorem 1.3]). There is a deterministic
distributed algorithm that computes a 2-ruling edge set of G in Θ(log⋆ n) rounds in the
CONGEST model.

D.2 Hypergraph sinkless orientation
▶ Theorem 34 (deterministic HSO [15, Theorem 1.4]). There is a deterministic distributed
algorithm for computing an HSO in any n-vertex multihypergraph H = (V,E) with maximum
rank r and minimum degree δ > r in O(logδ/r n) rounds.

▶ Theorem 35 (randomized HSO [15, Theorem 1.5]). There is a randomized distributed
algorithm that w.h.p. computes an HSO on any hypergraph with maximum rank r and
minimum degree δ ≥ 320r log r with runtime O(logδ/r δ + logδ/r logn).

D.3 Maximal Independent Set
▶ Theorem 36 (deterministic MIS [37, Theorem 1.3]). There is a deterministic distributed
algorithm that in any n-vertex graph G = (V,E) computes an MIS in Õ(log5/3 n) rounds of
the LOCAL model. This complexity also applies for maximal matching, (deg + 1)-list vertex
coloring, and (2 · deg − 1)-list edge coloring.

▶ Corollary 37 (randomized MIS [37, Theorem 1.3] & [20]). There is a randomized distributed
algorithm, in the LOCAL model, that computes a (∆ + 1)-vertex coloring in Õ(log5/3 logn)
rounds. The same holds also for the (2∆− 1)-edge coloring problem.

D.4 Edge coloring
▶ Theorem 38 (deterministic (2∆− 1)-edge coloring [4, Theorem D.4]). The (deg(e) + 1)-list
edge coloring problem can be solved in O(log7 C · log5 n+ log∗ n) deterministic rounds in the
LOCAL model, where C is the size of the color space.

▶ Theorem 39 (deterministic (3∆/2)-edge coloring [15, Theorem 1.2]). There is a deterministic
O(∆2 · logn)-round LOCAL algorithm that computes a (3∆/2)-edge coloring on any n-vertex
graph with maximum degree ∆.

	1 Introduction
	1.1 Our contributions
	1.2 Our technique in a nutshell
	1.3 Related work
	1.4 Organization of the paper

	2 Preliminaries
	3 Under which condition can we extend partial (2Δ-2)-colorings?
	4 Deterministic (2Δ-2)-edge coloring algorithm
	4.1 High level overview of our reduction to MIS
	4.2 Phase 1: Partition vertices into clusters
	4.3 Phase 2: Assign two exclusive edges to each cluster
	4.4 Phase 3: Switch colors in order to complete the coloring
	4.5 Proof of Theorem 2

	A Replacing MIS and maximal matching (Proof of Theorem 1)
	B Randomized (2Δ-2)-edge coloring algorithm
	C Deferred proofs
	D Complementary subroutines
	D.1 Ruling sets
	D.2 Hypergraph sinkless orientation
	D.3 Maximal Independent Set
	D.4 Edge coloring

