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Abstract
In this paper, we study the problem of compact routing schemes in weighted undirected and directed
graphs.

For weighted undirected graphs, more than a decade ago, Chechik [PODC’13] presented a ≈ 3.68k-
stretch compact routing scheme that uses Õ(n1/k log D) local storage, where D is the normalized
diameter, for every k > 1. We present a ≈ 2.64k-stretch compact routing scheme that uses Õ(n1/k)
local storage on average in each vertex. This is the first compact routing scheme that uses total
local storage of Õ(n1+1/k) while achieving a c · k stretch, for a constant c < 3.

In real-world network protocols, messages are usually transmitted as part of a communication
session between two parties. Therefore, more than two decades ago, Thorup and Zwick [SPAA’01]
considered compact routing schemes that establish a communication session using a handshake. In
their handshake-based compact routing scheme, the handshake is routed along a (4k − 5)-stretch
path, and the rest of the communication session is routed along an optimal (2k − 1)-stretch path. It
is straightforward to improve the (4k − 5)-stretch of the handshake to ≈ 3.68k-stretch using the
compact routing scheme of Chechik [PODC’13]. We improve the handshake stretch to the optimal
(2k − 1), by borrowing the concept of roundtrip routing from directed graphs to undirected graphs.

For weighted directed graphs, more than two decades ago, Roditty, Thorup, and Zwick [SODA’02
and TALG’08] presented a (4k + ε)-stretch compact roundtrip routing scheme that uses Õ(n1/k)
local storage for every k ≥ 3. For k = 3, this gives a (12 + ε)-roundtrip stretch using Õ(n1/3)
local storage. We improve the stretch by developing a 7-roundtrip stretch routing scheme with
Õ(n1/3) local storage. In addition, we consider graphs with bounded hop diameter and present an
optimal (2k − 1)-roundtrip stretch routing scheme that uses Õ(DHOP · n1/k), where DHOP is the
hop diameter of the graph.
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1 Introduction

Routing is a fundamental task in computer networks. A routing scheme is a mechanism
designed to deliver messages efficiently from a source vertex to a destination vertex within
the network. In this paper, we study both undirected and directed weighted graphs, aiming
to route along short paths.
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38:2 Compact Routing Schemes in Undirected and Directed Graphs

More specifically, a routing scheme is composed of a preprocessing phase and a routing
phase. In the preprocessing phase, the entire graph is accessible, allowing the preprocessing
algorithm to compute a routing table and a label for each vertex1, which is then stored in
the local storage of each vertex. In the routing phase, the routing algorithm at each vertex
on the routing path can only access the local storage of the vertex. The routing algorithm
gets as input a message, a destination label, and possibly a header, and decides which of
the vertex neighbors is the next vertex on the routing path. The routing continues until the
message reaches the destination.

A compact routing scheme is a routing scheme that uses o(n) space in the local storage
on average at each vertex, where n is the number of vertices in the graph. Let u be a source
vertex and let v be a destination vertex. We denote by d̂(u, v) the length of the path used by
the routing algorithm to route a message from u to v. The stretch of the routing scheme is
defined as maxu,v∈V ( d̂(u,v)

d(u,v) ), where d(u, v) is the distance from u to v. The roundtrip stretch

is defined as maxu,v∈V ( d̂(u,v)+d̂(v,u)
d(u,v)+d(v,u) ).

The design of efficient compact routing schemes in undirected graphs has been a well-
studied subject in the last few decades, see for example [19, 3, 4, 8, 11, 24, 22, 7]. In Table 1
we summarize the previous results.

From the Erdős girth conjecture, it follows that every routing scheme with stretch
< 2k + 1 must use a total storage of Ω(n1+1/k) bits. The approximate distance oracle data
structure of Thorup and Zwick [25], which is implemented in the centralized model, where
all the information is available upon a distance query to the data structure, has an optimal
(2k − 1)-stretch with Õ(n1+1/k) total storage. In light of the gap between routing schemes
and approximate distance oracles, the following problem is natural.

▶ Problem 1. For every k ≥ 2, given a weighted undirected graph, what is the best stretch of
a routing scheme that uses Õ(n1+1/k) total storage?

The ≈ 3.68k-stretch compact routing scheme of Chechik [7], from more than a decade ago, is
the current best stretch with Õ(n1/k) worst-case local storage. In this paper, we improve
the stretch to ≈ 2.64k by allowing an average local storage of Õ(n1/k), as presented in the
following theorem.

▶ Theorem 1. Let G = (V, E, w) be a weighted undirected graph. For every k ≥ 3, there is
an ≈ 2.64k-stretch compact routing scheme that uses local routing tables of an average size
of Õ(n1/k), vertex labels of size Õ(k) and packet headers of size Õ(k).

All the compact routing schemes mentioned so far solve the problem of sending a single
message from the source to the destination, while in most real-world network applications, two
parties communicate over the network for a session. A communication session is composed
of two phases. In the first phase, a connection is established between the source and the
destination, and in the second phase, a stream of messages is exchanged between the parties.
Many real-world protocols, such as TLS, QUIC, TCP, SSH, Wi-Fi, and Bluetooth, adhere to
this framework.

We consider the handshake mechanism for the establishment phase, as presented by
Thorup and Zwick [24]. The handshake is composed of two messages of size Õ(1), that are
exchanged between the parties to establish the connection. The first message is sent from the

1 In this paper, we study labeled routing schemes, where the preprocessing algorithm can assign labels to
the vertices. When the vertex labels are fixed and cannot be changed, the routing scheme is called an
name-independent routing scheme (see, for example, [1, 16, 17, 2, 13])
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Table 1 Compact routing schemes in undirected graphs.

Stretch Local storage Uses average
local storage? Ref. Comments

O(k) Õ(n1/k) yes [19] unweighted graphs
2k − 1 Õ(n1/k) yes [3]
O(k2) Õ(n1/k) no [4]
4k − 5 Õ(n1/k) no [24]

≈ 3.68k Õ(n1/k) no [7]
4k − 7 + ε Õ(n1/k) no [22]
≈ 2.64k Õ(n1/k) yes Theorem 1
2k − 1 Õ(n1/k) no Theorem 2 roundtrip stretch

source to the destination, and the second message is sent from the destination back to the
source. Since the handshake is composed of a message sent from the source to the destination
and back, the stretch of the handshake is the roundtrip stretch defined earlier.

Thorup and Zwick [24] presented a compact routing scheme that uses a handshake, in
which two messages are routed along a (4k− 5)-stretch path, to establish a connection. Then,
a stream of messages is routed along an optimal (2k − 1)-stretch path. While the compact
routing scheme of Chechik [7] achieves an ≈ 3.68k-roundtrip stretch for the handshake,
there is still a significant gap from the optimal (2k − 1)-stretch followed by the Erdős girth
conjecture. Therefore, the main open problem for routing in a communication session is to
reduce the stretch of the handshake phase and obtain a compact roundtrip routing scheme
with improved stretch.

▶ Problem 2. For every k ≥ 2, given a weighted undirected graph, what is the best roundtrip
stretch of a routing scheme that uses Õ(n1/k) local storage?

In this paper we solve Problem 2 by presenting an optimal (2k − 1)-roundtrip stretch
for the handshake phase, that matches the lower bound that follows from the Erdős girth
conjecture, as presented in the following theorem.

▶ Theorem 2. Let G = (V, E, w) be a weighted undirected graph. Let k ≥ 1 be an integer.
There is a (2k − 1)-stretch compact roundtrip routing scheme that uses local routing tables of
size Õ(n1/k), vertex labels of size Õ(k) and packet headers of size Õ(k).

Using this result with the handshake-based routing scheme of Thorup and Zwick [24], one
obtains an optimal (2k − 1)-stretch compact routing scheme for any communication session.
We summarize our new results for undirected graphs and compare them to the previous work
in Table 1.

Next, we turn our attention to weighted directed graphs. Since preserving the asymmetric
reachability structure of directed graphs requires Ω(n2) space2, no spanner, emulator, or
compact routing scheme can exist for directed graphs. Cowen and Wagner [9] circumvented
the Ω(n2) space lower bound by introducing roundtrip distances in directed graphs, defined
as d(u↔ v) = d(u, v) + d(v, u).

2 In a bipartite graph in which all the edges are from one side to the other, there are Θ(n2) edges and
removing each of them makes the destination not reachable from the source. Thus, storing reachability
requires Ω(n2) space.

DISC 2025
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In the last few decades, a few compact roundtrip routing schemes were presented, see
for example [9, 10, 21]. The state-of-the-art result was obtained by Roditty, Thorup, and
Zwick [21]. They presented a 3-stretch compact roundtrip routing scheme that uses Õ(n1/2)
local storage and also a (4k + ε)-stretch compact roundtrip routing scheme that uses Õ(n1/k)
local storage for every k ≥ 3.

From the Erdős girth conjecture, it follows that every compact roundtrip routing scheme
with stretch < 2k + 1 must use total storage of Ω(n1+1/k) bits. Closing the gap between the
upper and the lower bound is the main open problem regarding compact roundtrip routing
schemes.

▶ Problem 3. For every k ≥ 2, given a directed weighted graph, what is the best stretch of a
roundtrip routing scheme that uses Õ(n1/k) local storage?

In recent years, roundtrip distances have been extensively studied but only in the context
of roundtrip spanners and roundtrip emulators (see, for example [14, 6, 21, 23, 5, 18]). Despite
all the recent progress, no improvements were obtained for compact roundtrip routing schemes
since the (4k + ε)-stretch roundtrip routing scheme of [21] from more than two decades ago.

In this paper, we improve upon [21] for the case that k = 3. More specifically, using
Õ(n1/3) local storage, Roditty, Thorup, and Zwick [21] obtained a (12 + ε)-stretch roundtrip
routing scheme. We present a 7-stretch roundtrip routing scheme that uses Õ(n1/3) local
storage, as presented in the following theorem.

▶ Theorem 3. Let G = (V, E, w) be a weighted directed graph. There is a 7-stretch compact
roundtrip routing scheme that uses local routing tables of size Õ(n1/3), vertex labels of size
Õ(1) and packet headers of size Õ(1).

In addition, in the following theorem, we present an optimal3, up to polylogarithmic
factors, compact roundtrip routing scheme in graphs with Dhop = Õ(k), where Dhop is the
hop diameter of the graph.

▶ Theorem 4. Let G = (V, E, w) be a weighted directed graph. Let k ≥ 1 be an integer.
There is a (2k − 1)-stretch compact roundtrip routing scheme that uses local routing tables of
size Õ(Dhopn1/k), vertex labels of size Õ(Dhopk) and packet headers of size Õ(Dhop).

We summarize our new results for directed graphs and compare them to the previous work
in Table 2.

The rest of this paper is organized as follows. In Section 2 we present some necessary
preliminaries. In Section 3 we present an overview of our technical contributions and our new
compact routing schemes. In Section 4 we present our optimal compact roundtrip routing
scheme for weighted undirected graphs. In Section 5 we extend Section 4 to directed graphs
with small hop diameter. In Appendix A we present our 7-stretch compact roundtrip routing
scheme for weighted directed graphs. Finally, in Section 6 in the full version of this paper
[15], we present our single message compact routing scheme for weighted undirected graphs
that use average local storage.

3 Assuming the Erdős conjecture, it is easy to create a graph G with Ω(n1+1/k) edges such that the girth
of G is 2k + 2, and the diameter of G is at most 2k + 1. Given a graph with Ω(n1+1/k) edges and 2k + 2
girth, if there is a pair of vertices u, v ∈ V such that d(u, v) ≥ 2k + 2, we can add an edge between
u and v to the graph without reducing the girth. By repeating this process until there are no pairs
u, v ∈ V such that d(u, v) ≥ 2k + 2, we get that the diameter is at most 2k + 1.
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Table 2 Compact roundtrip routing results in directed weighted graphs.4

Stretch local storage Uses average
local storage? Ref. Comments

3 Õ(n1/2) yes [9]
3 Õ(n2/3) no [9]

2k − 1 Õ(n1/k) yes [10]
3 Õ(n1/2) no [21]

4k + ε Õ( 1
ε
n1/k) no [21] ε > 0

12 + ε Õ( 1
ε
n1/3) no [21] ε > 0

7 Õ(n1/3) no Theorem 3
2k − 1 Õ(Dhop · n1/k) no Theorem 4 Dhop is the hop diameter of G.

2 Preliminaries

Let G = (V, E, w) be a weighted graph with n vertices and m edges, where w : E → R+. We
consider both connected undirected graphs and strongly connected directed graphs5.

Let the distance dG(u, v) from u to v be the length of the shortest path from u to v in G,
where the length of a path is the sum of its edge weights, and let PG(u, v) be the shortest
path from u to v, G is omitted when it is clear from context. The roundtrip distance d(u↔ v)
is defined as d(u, v) + d(v, u). Throughout this paper, we assume that for any two vertices u

and v, there exists a unique shortest path between them. In the case of multiple shortest
paths of the same length, we break ties by selecting the path with the lexicographically
smallest sequence of vertex identifiers.

Let X ⊆ V . The distance d(u, X) from u to X is the distance between u and the closest
vertex to u from X, that is, d(u, X) = minx∈X(d(u, x)). Similarly, the roundtrip distance from
u to X is defined as d(u↔ X) = minx∈X(d(u↔ x)). Let p(u, X) = arg minx∈X(d(u↔ x))
(ties are broken in favor of the vertex with a smaller identifier).

Next, following the ideas of Thorup and Zwick [25], we define bunches and clusters.
Let u ∈ V and let X, Y ⊆ V . The bunch of u with respect to X and Y is defined as
B(u, X, Y ) = {v ∈ X | d(u↔ v) < d(u↔ Y )}. The ball of u with respect to Y is defined as
B(u, Y ) = {v ∈ V | d(u↔ v) < d(u↔ Y )} (notice that B(u, Y ) = B(u, V, Y )). The cluster
of u with respect to Y is defined as C(u, Y ) = {v ∈ V | d(u↔ v) < d(v ↔ Y )}.

The starting point in many algorithms, distance oracles, and compact routing schemes,
and in particular in Thorup and Zwick [24] routing scheme, is a hierarchy of vertex sets
A0, A1, . . . , Ak, where A0 = V , Ak = ∅, Ai+1 ⊆ Ai and |Ai| = n1−i/k for 0 ≤ i ≤ k − 1.

For every 0 ≤ i ≤ k − 1, the i-th pivot of u is defined as pi(u) = p(u, Ai), and hi(u) is
defined as d(u, Ai). The i-th bunch of u is defined as Bi(u) = B(u, Ai, Ai+1). The bunch of
u is defined as the union of its individual bunches, that is, B(u) =

⋃k−1
i=0 Bi(u). The cluster

of a vertex w ∈ Ai \Ai+1 is defined as the cluster of w with respect to the set Ai+1, that is,
C(w) = C(w, Ai+1). We denote by [k] the set {0, 1, 2, . . . , k − 1}.

In the following lemma, we provide an upper bound for the size of B(u), which is O(kn1/k),
as demonstrated by Thorup and Zwick [25].

4 poly-logarithmic factors are omitted.
5 If the graph is not connected (or not strongly connected), we add a dummy vertex and connect it with

bi-directional edges of weight ∞ to every vertex of the graph.

DISC 2025
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▶ Lemma 5 ([25, 20]). Given an integer parameter k ≥ 2, we can compute sets A1, . . . , Ak−1,
such that |Ai| = O(n1−i/k), for every 1 ≤ i ≤ k − 1. For every i ∈ [k] the size of Bi(u) is
Õ(n1/k).

In the following lemma, we provide an upper bound for the size of C(u), which is O(n1/k),
as demonstrated by Thorup and Zwick [24].

▶ Lemma 6 ([24]). Given a parameter p, we can compute a set A of size Õ(np) such that,
|C(w, A)| = O(1/p), for every vertex w ∈ V \A, and |B(v, V, A)| = O(1/p) for every v ∈ V .

Let S ⊆ V . We define Tout(u, S) as a tree containing the directed shortest paths from u

to all the vertices in S, and Tin(u, S) as a tree containing the directed shortest paths from
all the vertices in S to u. When u is clear from context, we omit it, for example, we use
T (C(u)) = T (u, C(u)), and T (B(u)) = T (u, B(u)). Note that it is possible for |Tout(u, S)| to
be bigger than |S| in cases where the shortest path from u to a vertex in S passes through
a vertex not in S. 6 Let T (u, X) = Tin(u, X) ∪ Tout(u, X), as defined in [21], when u is
clear from context we omit it and write T (X). Notice that in undirected graphs, since
Tin(u, X) = Tout(u, X), we have that T (u, X) = Tin(u, X) = Tout(u, X). Next, we show that
if S is a ball, i.e. S = B(u, X) = B(u, V, X) for some set X, then |Tout(u, S)| = |S| and
|Tin(u, S)| = |S|, and therefore |T (u, S)| ≤ 2|S|.

▶ Lemma 7 ([21]). |Tout(u, B(u, X))| = |B(u, X)| and |Tin(u, B(u, X))| = |B(u, X)|.

Proof. Let u ∈ V , v ∈ B(u, X), and let w ∈ P (u, v). We will show that w ∈ B(u, X). Since
all the vertices in Tout are on the shortest path from u to a vertex in B(u, X), we obtain that
|Tout(u, B(u, X))| ≤ |B(u, X)|, as required. The proof for the in-ball is identical for reversed
paths. From the triangle inequality, we know that

d(u↔ w) = d(u, w) + d(w, u)
△
≤ d(u, w) + d(w, v) + d(v, u) = d(u↔ v) < d(u↔ X),

where the last inequality follows from the fact that v ∈ B(u, X).7 Since d(u↔ w) < d(u↔ X)
we get that w ∈ B(u, X), as required. ◀

The following lemma was originally proven in [25] for any metric space and therefore
holds also for roundtrip distances. For completeness, we prove the lemma for roundtrip
distances.

▶ Lemma 8. Let u, v ∈ V and let 0 < i ≤ k− 1. If pj(u) /∈ B(v) and pj(v) /∈ B(u) for every
0 < j < i, then

d(u↔ pi(u)) ≤ i · d(u↔ v) and d(v ↔ pi(v)) ≤ i · d(u↔ v).

Proof. We prove the claim by induction for every 0 ≤ i ≤ ℓ. For i = 0, the lemma
holds since d(v ↔ v) = 0 and d(u ↔ u) = 0. Next, we prove the induction step. We
assume the correctness of the claim for i − 1 and show its correctness for i. Therefore,
d(v ↔ pi−1(v)) ≤ (i− 1) · d(u↔ v) and d(u↔ pi−1(u)) ≤ (i− 1) · d(u↔ v). Without loss
of generality, we show that d(u↔ pi(u)) ≤ i · d(u↔ v). The proof for v is identical.

6 We denote with |H| the number of edges in H, i.e. |H| = |E(H)|.
7

△
≤ denotes an inequality that follows from the triangle inequality.
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Since i ≤ ℓ, it follows that i − 1 < ℓ. Therefore, from the lemma’s assumptions, we
know that pi−1(v) /∈ B(u). From the definition of B(u), it follows that d(u ↔ pi(u)) ≤
d(u ↔ pi−1(v)). From the triangle inequality, it follows that d(u ↔ pi−1(v)) ≤ d(u ↔
v) + d(v ↔ pi−1(v)). Recall that from the induction assumption we know that d(v ↔
pi−1(v)) ≤ (i− 1) · d(u↔ v). Therefore, we get that:

d(u↔ pi(u)) ≤ d(u↔ pi−1(v)) ≤ d(u↔ v) + d(v ↔ pi−1(v))
≤ d(u↔ v) + (i− 1) · d(u↔ v) = i · d(u↔ v),

as required. ◀

Next, we show that if pi−1(v) /∈ B(u), then d(v ↔ pi(v)) ≤ d(v ↔ pi−1(v)) + 2 · d(u↔ v).

▶ Lemma 9. Let u, v ∈ V , if pi−1(v) /∈ B(u) then d(v ↔ pi(v)) ≤ d(v ↔ pi−1(v))+2d(u↔ v)

Proof. From the definition of pi(v), we know that it is the closest vertex to v in Ai, and
since pi(u) ∈ Ai we get that d(v ↔ pi(v)) ≤ d(v ↔ pi(u)). From the triangle inequality, it
follows that d(v ↔ pi(u)) ≤ d(v ↔ u) + d(u ↔ pi(u)). From the lemma assumption, we
know that pi−1(v) /∈ B(u). Therefore, d(u ↔ pi(u)) ≤ d(u ↔ pi−1(v)). From the triangle
inequality, it follows that d(u↔ pi−1(v)) ≤ d(u↔ v) + d(v ↔ pi−1(v)). Overall, we get that:

d(v ↔ pi(v)) ≤ d(v ↔ pi(u)) ≤ d(v ↔ u) + d(u↔ pi(u)) ≤ d(v ↔ u) + d(u↔ pi−1(v))
≤ d(v ↔ u) + d(u↔ v) + d(v ↔ pi−1(v)) = 2d(u↔ v) + d(v, pi−1(v)),

as required. ◀

The following lemma holds only for undirected graphs and is presented in [25].

▶ Lemma 10 ([25]). Let G = (V, E, w) be a weighted undirected graph. Let v ∈ Ai \ Ai+1,
let u ∈ C(v), and let w ∈ P (v, u) then w ∈ C(v).

Proof. For the sake of contradiction, assume that w /∈ C(v). From the definition of C(v),
we have that d(v ↔ w) ≥ d(w ↔ Ai+1).

By the triangle inequality, we have: d(u ↔ Ai+1) ≤ d(u ↔ w) + d(w ↔ Ai+1). Since
d(w ↔ Ai+1) ≤ d(v ↔ w), we get d(u ↔ Ai+1) ≤ d(u ↔ w) + d(w ↔ Ai+1) ≤ d(u ↔
w) + d(v ↔ w). Since w ∈ P (v, u), and the graph is undirected, it follows that d(u ↔
w) + d(v ↔ w) = d(v ↔ u). Thus, d(u↔ Ai+1) ≤ d(v ↔ u), a contradiction to the fact that
u ∈ C(v). ◀

2.1 General framework
A routing scheme comprises two phases: a preprocessing phase and a routing phase. In
the preprocessing phase, the entire graph is accessible to the algorithm. The preprocessing
algorithm computes for every u ∈ V a routing table RT(u) and a label L(u). Each vertex u

saves RT(u) and L(u) in its local storage. A routing scheme is considered compact if the size
of the routing tables is sub-linear in the number of vertices, i.e., |RT(u)| = o(n).

In the routing phase, the goal is to route a message from a source vertex u to a destination
vertex v. Specifically, the routing algorithm at the source vertex u gets as input the routing
table RT(u), and the labels L(u) and L(v). Based on this input, the routing algorithm
determines a neighboring vertex of u to which the message should be forwarded. The routing
algorithm can also attach a header to the message. When a vertex w receives a message, the
routing algorithm at w gets as input the routing table RT(w), and the labels L(w) and L(v)
(and possibly a header). Based on this input, the routing algorithm determines a neighboring

DISC 2025
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vertex of w to which the message should be forwarded. The message is routed from a vertex
to one of its neighbors until the message reaches its destination vertex v.

We denote by d̂(u, v) the distance that a message whose source vertex is u and whose
destination vertex is v traverses from u to v. The stretch of the routing scheme is defined as
maxu,v∈V ( d̂(u,v)

d(u,v) ).
Several variants of compact routing schemes exist. In a labeled routing scheme, the

preprocessing algorithm can assign labels to the vertices. In a fixed-port routing scheme, the
order of the neighbors of each vertex is fixed and cannot be changed by the preprocessing
algorithm. In this work, we focus on labeled, fixed-port compact routing schemes.

2.2 Routing in trees
An essential ingredient in our compact routing schemes for general graphs is the following
compact routing scheme for trees. Given a tree T , the preprocessing algorithm assigns a
label L(v, T ) to every vertex v in T . The routing algorithm then routes a message from a
source vertex u to a destination vertex v on the shortest path from u to v in T . Thorup and
Zwick [24] presented a tree routing scheme that uses only vertex labels of size (1 + o(1)) log n

and no routing tables. In the fixed-port model, however, the label size increases to O(log2 n).
A similar scheme was presented by Fraigniaud and Gavoille [12]. The following lemma
outlines the known results for tree compact routing schemes.

▶ Lemma 11 ([12, 24]). Let T = (V, E) be an undirected tree on n vertices with each edge
e ∈ E assigned a unique O(log n)-bit port number. Then, it is possible to efficiently assign
each vertex v ∈ V an O(log2 n/ log log n)-bit label, denoted label(v), such that if u, v ∈ V ,
then given label(u) and label(v), and nothing else, it is possible to find in constant time, the
port number assigned to the first edge on the path in T from u to v.

2.3 Routing in directed graphs
Roditty, Thorup, and Zwick [21] extended the compact routing scheme from trees to double
trees to handle directed graphs. In our work on directed graphs (Section 5 and Appendix A),
we employ this double-tree adaptation when routing within double-trees. Moreover, for
the routing in clusters to work in directed graphs, they adjusted the definition of cluster
adaptation using the following definition of roundtrip ordering.

▶ Definition 12. We assume that V = {1, . . . , n}. Let u1, u2, v ∈ V . We say that u1 ≺v u2
if one of the following holds:

d(v ↔ u1) < d(v ↔ u1)
d(v ↔ u1) = d(v ↔ u1) and d(u1 → v) < d(u1 → v)
d(v ↔ u1) = d(v ↔ u1) and d(u1 → v) = d(u1 → v) and u1 < u2

Using this definition, the cluster of u with respect to Y is defined as C(u, Y ) = {v ∈ V |
u ⊀v pY (u)}, where pY (u) satisfies that pY (u) ⪯v w for every w ∈ Y .

Using this definition, they proved the following lemma:

▶ Lemma 13 ([21]). If v ∈ C(u) and w ∈ P (u, v), then v ∈ C(w)

3 Overview

In this section, we present an overview of our new compact routing schemes and their main
technical contributions. Throughout the overview, let V = A0, . . . , Ak = ∅ be a hierarchy
such that, |Ai| = Õ(n1−i/k) and |B(u)| = Õ(n1/k), for every u ∈ V , created using Lemma 5.
We denote with x→ y routing from x to y on P (x, y).
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Roundtrip routing scheme in undirected graphs. Notice that any t-stretch compact routing
scheme is also a t-roundtrip stretch compact routing scheme. In undirected graphs, where
d(u, v) = d(v, u), we have d(u ↔ v) = d(u, v) + d(v, u) = 2d(u, v). This might lead one to
question the potential benefits of considering roundtrip routing in undirected graphs. In
other words, why might the problem of roundtrip routing be easier than the problem of
single message routing, even though d(u↔ v) = 2d(u, v)?

During the routing process, the information available to the routing algorithm at u may
differ from the information available at v. Therefore, the routing path from u to v may
differ from the routing path from v to u, which might lead to the case that d̂(u, v) ̸= d̂(v, u).
Consider for example the case that d̂(u, v) = 3d(u, v) and d̂(v, u) = 27d(u, v). In this
case, the roundtrip stretch is 15 while the single message stretch is 27, and even though
d(u↔ v) = 2d(u, v), the roundtrip stretch is much smaller than the single message stretch.

Next, we provide an overview of our optimal (2k − 1)-roundtrip stretch compact routing
scheme (for the complete description, see Section 4). The preprocessing algorithm sets
RT(u) = {L(u, T (C(v))) | v ∈ B(u)} and L(u) = {L(u, T (C(pi(u)))) | i ∈ [k]}, for every u ∈ V .
Let ℓ(x, y) = min{i | pi(y) ∈ B(x)}, and let b = ℓ(u, v), and let a = ℓ(v, u). The roundtrip
routing path is u→ pb(v)→ v → pa(u)→ u (see Figure 1).

Our main technical contribution is in Lemma 16, where we show that while the path
u → pb(v) → v might be of length at most (4k − 3)d(u, v), the entire path u → pb(v) →
v → pa(u)→ u is of length of at most (4k − 2)d(u, v) = (2k − 1)d(u↔ v), and therefore the
roundtrip stretch is the optimal (2k − 1)-stretch.

Next, we provide some intuition why d̂(u↔ v) ≤ (2k − 1)d(u↔ v). From the triangle
inequality, we have that d̂(u ↔ v) ≤ d(u ↔ v) + d(u ↔ pa(u)) + d(v ↔ pb(v)). From
the definition of a and b, for every 0 < i < a ≤ b ≤ k − 1 we have pi(u) /∈ B(v) and
pi(v) /∈ B(u), and for every a ≤ i < b we have pi(v) /∈ B(u). This allows us to prove that
d(u ↔ pa(u)) ≤ a · d(u ↔ v) and d(v ↔ pb(v)) ≤ a · d(u ↔ v) + (b − a) · 2d(v ↔ pb(v)).
Overall:

d(u↔ pa(u)) + d(v ↔ pb(v)) ≤ ad(u↔ v) + ad(u↔ v) + (b− a)2d(u↔ v)
= 2bd(u↔ v) ≤ 2(k − 1)d(u↔ v)

and therefore d̂(u↔ v) ≤ d(u↔ v) + d(u↔ pa(u)) + d(v ↔ pb(v)) ≤ (2k − 1)d(u↔ v).

Directed roundtrip routing schemes. One might wonder why the general compact roundtrip
routing scheme presented above for undirected graphs can not be extended to directed graphs.
The problem lies in the structure of clusters. In undirected graphs, if u ∈ C(w) then
P (u, w) ⊆ C(w) (see Lemma 10), and therefore we can route from u to every w, such
that u ∈ C(w). Unfortunately, in directed graphs, this nice property of clusters does not
necessarily hold. More specifically, it might be that P (u, w) ̸⊆ C(w) even when u ∈ C(w) and
as a result, we cannot route from u to w while using only the cluster C(w) as in undirected
graphs. A simple approach to overcome this problem is to store P (u, w), for every w ∈ B(u),
in RT(u). Using this approach, we can extend the roundtrip routing scheme from undirected
graphs to directed graphs with small hop diameter (see Theorem 4).

For routing tables of size Õ(n1/3), we overcome the problem that P (u, w) ̸⊆ C(w) using
a more sophisticated solution. For an hierarchy with k = 3 we have V = A0, A1, A2, A3 = ∅
and three bunches, B0(u), B1(u) and B2(u), for every u ∈ V . Let u, v ∈ V . To follow the
compact roundtrip of undirected graphs we need to be able to route from u to v, if v ∈ B0(u),
from u to p1(v), if p1(v) ∈ B1(u), and from u to p2(v), otherwise. Since B0(u) is a ball
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P (u, v) ⊆ B0(u), for every v ∈ B0(u) (see Lemma 7). Therefore, we can route from u to
every vertex in B0(u). Moreover, since C(p2(v)) = V , we can route from u to p2(v). This
leaves us with the challenge of routing from u to p1(v) when p1(v) ∈ B1(u).

To handle this challenge, we divide the routing from u to p1(v) into two cases. If
P (u, p1(v)) ⊆ C(p1(v)), we simply route on the path P (u, p1(v)). Otherwise, if P (u, p1(v)) ̸⊆
C(p1(v)), we let z ∈ P (u, p1(v)) be the first vertex such that z /∈ C(p1(v)). In this case, we
route along the path u → p2(z) → p1(v). Using the fact that z /∈ C(p1(v)) we show that
d(u, p2(z)) + d(p2(z), p1(v)) ≤ d(u, p1(v)) + d(u ↔ p1(v)), and that d̂(u ↔ v) ≤ 7d(u ↔ v)
(see Lemma 19).

Average single message routing schemes in undirected graphs. Recall that hi(u) =
d(u, Ai). In the preprocessing algorithm, we set RT(u) = {L(u, T (C(v))) | v ∈ B(u)} ∪
{L(v, T (C(u))) | v ∈ C(u)}, and L(u) = {⟨hi(u), L(u, T (C(pi(u))))⟩ | i ∈ [k]}, for every
u ∈ V .

For the sake of simplicity, we assume that when routing from the source vertex u to the
destination vertex v, the value d(u, v) is known to the routing algorithm. In this case, we
present an optimal (2k−1)-stretch routing scheme in Section 6 of the full version of this paper
[15]. The algorithm at the source u works as follows. For each 0 ≤ i ≤ k− 1, if pi(v) ∈ Bi(u),
it routes from u to v in T (C(pi(v))). Otherwise, if the inequality hi+1(v) > d(u, v) + hi(u)
holds, then we have that v ∈ C(pi(u)) and therefore the algorithm routes from u to v in
T (C(pi(u))). If neither condition is satisfied, the algorithm proceeds to the next iteration.
The (2k− 1)-stretch of the routing scheme follows by induction using standard tools (see the
full version[15] for the complete proof).

In Section 6 of the full version[15], we present a routing algorithm that routes from u to v

without knowing the value of d(u, v). To achieve this, we introduce an estimate δ̂ satisfying
δ̂ ≤ d(u, v), which serves as our current best lower bound for d(u, v). Note that since δ̂ is only
an estimate and may be strictly smaller than d(u, v), it is possible that h2i+1(v) > δ̂ + h2i(u)
and v /∈ C(p2i(u)).8 Therefore, we introduce a condition that, if satisfied, means that
δ̂ ≪ h2i+1(v) − h2i(u). If the condition is satisfied, the routing algorithm routes to p2i(u)
and checks in RT(p2i(u)) whether v ∈ C(p2i(u)). If v ∈ C(p2i(u)) the algorithm simply routes
from p2i(u) to v. Otherwise, if v /∈ C(p2i(u)), then we know that h2i+1(v)− h2i(u) ≤ d(u, v),
and we can safely update δ̂ to h2i+1(v)− h2i(u). We proceed by routing back from p2i(u) to
u and then continuing to the next iteration of the algorithm.

The routing algorithm is simple and works as follows. Let ℓ = min{i | pi(v) ∈ B(u)}, and
let δ̂ = max0≤i≤ℓ(hi+1(u)− hi(v)). For each 0 ≤ i ≤ ℓ/2, let 1 < ci < 2 be a constant:
1. If h2i+1(v) ≤ ci · δ̂ + h2i(u), then the algorithm continues to the next iteration.
2. Otherwise, if h2i+1(v) > ci · δ̂ + h2i(u), then the algorithm routes to p2i(u) and accesses

RT(p2i(u)):
a. If v ∈ C(p2i(u)) then the algorithm routes directly from p2i(u) to v in T (C(p2i(u))).
b. Otherwise, if v /∈ C(p2i(u)), the algorithm sets δ̂ to h2i+1(v)− h2i(u) and routes back

to u from p2i(u). The algorithm then continues to the next iteration.

In contrast to the simplicity of the routing algorithm, analyzing its stretch is rather
involved. For a complete proof, see Section 6 of the full version[15].

8 We alternate between bounding hi(u) and hi(v), but by the definition of δ̂, we have that hi+1(u) ≤
δ̂ + hi(v) for every i ≤ ℓ. Therefore, it suffices to only bound the h2i+1(v) − h2i(u) for 0 ≤ i ≤ a.
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4 Optimal roundtrip routing in undirected graphs

In this section, we consider roundtrip routing in weighted undirected graphs. In undirected
graphs d(u, v) = d(v, u), the roundtrip distance d(u↔ v) is simply d(u, v)+d(v, u) = 2d(u, v).

This observation naturally leads to the question: what are the potential advantages of
studying roundtrip routing in undirected graphs? In particular, why might roundtrip routing
be easier to approximate than single-message routing, despite the fact that the roundtrip
distance is always twice the one-way distance, i.e., d(u↔ v) = 2d(u, v)?

The key distinction lies in the asymmetry of available information during the routing
process. When routing from a source vertex u to a destination vertex v, the algorithm has
access only to the routing table RT(u) and the label L(v). However, routing from v to u is
based solely on RT(v) and L(u). Since these inputs may differ significantly, the resulting
routing paths may differ significantly, and we may have that d̂(u, v) ̸= d̂(v, u).

In single-message routing, the stretch must hold for the worst-case direction. Therefore,
max

(
d̂(u,v),d̂(v,u)

)
d(u,v) is bounded. However, roundtrip routing requires only that the average of

the two directions be bounded. Therefore, d̂(u↔v)
d(u↔v) = d̂(u,v)+d̂(v,u)

2d(u,v) is bounded.
This relaxation in the approximation requirement allows us to achieve an optimal stretch

compact roundtrip routing scheme, as presented in the following theorem.

▶ Reminder of Theorem 2. Let G = (V, E, w) be a weighted undirected graph. Let k ≥ 1
be an integer. There is a (2k − 1)-stretch compact roundtrip routing scheme that uses local
routing tables of size Õ(n1/k), vertex labels of size Õ(k) and packet headers of size Õ(k).

First, we describe the preprocessing algorithm, which computes the routing tables and
assigns vertex labels. The input to the algorithm is a graph G = (V, E, w) and an inte-
ger parameter k > 1. The algorithm uses Lemma 5 to build a hierarchy of vertex sets
A0, A1, . . . , Ak, where A0 = V , Ak = ∅, Ai+1 ⊆ Ai, |Ai| = n1−i/k and |Bi(u)| = Õ(n1/k), for
every 0 ≤ i ≤ k − 1. Next, for every u ∈ V , the preprocessing algorithm computes B(u) and
C(u). Then, for every u ∈ V , the algorithm sets the routing table RT(u) to:

RT(u) = {L(u, T (C(v))) | v ∈ B(u)},

and the label L(u) to:

L(u) = {L(u, T (C(pi(u)))) | i ∈ [k]}.

We now turn to bound the size of the routing tables and the vertex labels.

▶ Lemma 14. |RT(u)| = Õ(n1/k), and |L(u)| = Õ(k), for every u ∈ V .

Proof. From Lemma 5 it follows that |B(u)| = Õ(n1/k). From Lemma 11 it follows that for
every tree T it holds that |L(u, T )| = Õ(1). Therefore, |RT(u)| = |B(u)| · Õ(1) = Õ(n1/k),
as required. The label of each vertex is composed of k tree labels L(u, T (C(pi(u)))) for
every i ∈ [k]. From Lemma 11 we know that |L(u, T (C(pi(u))))| = Õ(1). Therefore,
|L(u)| = k · Õ(1) = Õ(k), as required. ◀

The routing algorithm routes a message from u to v as follows. Let ℓ(x, y) = min{i |
pi(y) ∈ B(x)} and let ℓ = ℓ(u, v). We route from u to v on the shortest path between u and
v in T (C(pℓ(v))). In figure 1 we show the roundtrip route between u and v according to this
routing algorithm.

Next, we show that for every w on the shortest path from u to v in T (C(pℓ(v))) we have
that L(w, T (C(pℓ(v)))) ∈ RT(w) and therefore w can route to v in T (C(pℓ(v))).
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u v

pb(v)

pa(u)

Figure 1 The roundtrip routing of Theorem 2. Let a = ℓ(v, u), b = ℓ(u, v), where ℓ(x, y) =
min{i | pi(y) ∈ B(x)}. (We assume wlog that b ≥ a.).

▶ Lemma 15. For every w ∈ P (u, pℓ(v))∪P (pℓ(v), v) it holds that L(w, T (C(pℓ(v)))) ∈ RT(w)

Proof. If w ∈ P (u, pℓ(v)), then by Lemma 10, we know that w ∈ C(pℓ(v)). Similarly, if
w ∈ P (pℓ(v), v), then from Lemma 10, we know that w ∈ C(pℓ(v)). Since w ∈ C(pℓ(v)) it
follows from the definition of C(pℓ(v)) that pℓ(v) ∈ B(w). By the definition of RT(w) since
pℓ(v) ∈ B(w) it follows that L(w, T (C(pℓ(v)))) ∈ RT(w), as required. ◀

We now turn to the main technical contribution of this section and prove that the stretch
of the compact roundtrip routing scheme is 2k − 1.

▶ Lemma 16. d̂(u↔ v) ≤ (2k − 1) · d(u↔ v)

Proof. Let u, v ∈ V , let b = ℓ(u, v) = min{i ∈ [k] | pi(v) ∈ B(u)}, and let a = ℓ(v, u) =
min{i ∈ [k] | pi(u) ∈ B(v)}. Assume, without loss of generality, that b ≥ a. See Figure 1 for
an illustration.

In the routing phase, we route from u to v on the shortest path between u and v in
T (C(pb(v))). Similarly, we route from v to u on the shortest path between v and u in
T (C(pa(u))). Therefore,

d̂(u, v) = dT (C(pb(v)))(u, v) ≤ d(u, pb(v)) + d(pb(v), v) and d̂(v, u)
= dT (C(pa(u)))(u, v) ≤ d(v, pa(u)) + d(pa(u), u).

From the triangle inequality, we have d(u, pb(v)) ≤ d(u, v) + d(v, pb(v)), therefore we get
that:

d̂(u, v) = d(u, pb(v))+d(pb(v), v) ≤ d(u, v)+d(v, pb(v))+d(pb(v), v) = d(u, v)+d(v ↔ pb(v))

By symmetry, we also get that d̂(v, u) ≤ d(v, u) + d(u↔ pa(u)). By definition d̂(u↔ v) =
d̂(u, v) + d̂(v, u). Therefore, we get:

d̂(u↔ v) = d̂(u, v) + d̂(v, u)
≤ d(u, v) + d(v ↔ pb(v)) + d(v, u) + d(u↔ pa(u))
= d(u↔ v) + d(v ↔ pb(v)) + d(u↔ pa(u)).

To get that d̂(u↔ v) ≤ (2k − 1)d(u↔ v), we show that d(v ↔ pb(v)) + d(u↔ pa(u)) ≤
2(k − 1)d(u↔ v) in the following claim.

▷ Claim 16.1. d(v ↔ pb(v)) + d(u↔ pa(u)) ≤ 2(k − 1)d(u↔ v)
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Proof. Let ∆v
i = d(v ↔ pi(v))− d(v ↔ pi−1(v)), for every 0 < i < k. Notice that for every

0 < j < k, it holds that:

j∑
i=1

∆v
i = d(v ↔ pj(v))− d(v ↔ pj−1(v)) + d(v ↔ pj−1(v))− · · ·+ d(v ↔ p1(v))− d(v ↔ p0(v))

= d(v ↔ pj(v)).

Since we assume (wlog) that b ≥ a, we have:

d(v ↔ pb(v)) =
b∑

i=1
∆v

i =
a∑

i=1
∆v

i +
b∑

i=a+1
∆v

i = d(v ↔ pa(v)) +
b∑

i=a+1
∆v

i . (1)

From the definition of b and a, for every 0 < i < a ≤ b, we have that both pi(u) /∈ B(v)
and pi(v) /∈ B(u). Therefore, by applying Lemma 8 we get:

d(u↔ pa(u)) ≤ a · d(u↔ v) and d(v ↔ pa(v)) ≤ a · d(u↔ v). (2)

For every a ≤ i < b, since pi(v) /∈ B(u), we can apply Lemma 9 to get that ∆v
i < 2d(u↔ v).

Therefore, we get:

b∑
i=a+1

∆v
i ≤

b∑
i=a+1

2d(u↔ v) = 2(b− a)d(u↔ v) (3)

Using the above three inequalities, we get:

d(u↔ pa(u)) + d(v ↔ pb(v)) (1)= d(u↔ pa(u)) + d(v ↔ pa(v)) +
b∑

i=a+1
∆v

i

(2)
≤ a · d(u↔ v) + a · d(u↔ v) +

b∑
i=a+1

∆v
i

(3)
≤ a · d(u↔ v) + a · d(u↔ v) + (b− a) · 2d(u↔ v)
= 2bd(u↔ v) ≤ 2(k − 1)d(u↔ v),

where the last inequality follows from the fact that b ≤ k − 1. ◁

Finally, since we know that d̂(u ↔ v) ≤ d(u ↔ v) + d(v ↔ pb(v)) + d(u ↔ pa(u)), and
from Claim 16.1 we have that d(v ↔ pb(v)) + d(u↔ pa(u)) ≤ 2(k − 1)d(u↔ v) we get:

d̂(u↔ v) ≤ d(u↔ v) + d(v ↔ pb(v)) + d(u↔ pa(u))
≤ d(u↔ v) + 2(k − 1)d(u↔ v) = (2k − 1)d(u↔ v),

As required. ◀

Theorem 2 follows from Lemma 14, Lemma 15 and Lemma 16.

5 Extending Section 4 to directed graphs

In this section, we consider roundtrip routing in weighted directed graphs. One might wonder
why the routing scheme of Theorem 2 does not apply to or cannot be adapted to directed
graphs. The key issue lies in the fact that Lemma 10 holds only for undirected graphs.
Without this lemma, the routing process fails in directed graphs. Specifically, in directed
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graphs, there exist cases where u ∈ C(v) and w ∈ P (u, v), but w /∈ C(v). Consequently, even
if we store the set {L(u, T (C(v))) | v ∈ B(u)}, for every vertex u, we may not be able to
route correctly from u to v when v ∈ B(u).

To overcome this issue, we consider bounded hop diameter graphs, where the hop diameter
is the maximum number of edges on a shortest path between any two vertices u, v in the
graph, i.e. Dhop = maxu,v∈V (|P (u, v)|). In such a case, we can achieve the following theorem.

▶ Reminder of Theorem 4. Let G = (V, E, w) be a weighted directed graph. Let k ≥ 1
be an integer. There is a (2k − 1)-stretch compact roundtrip routing scheme that uses local
routing tables of size Õ(Dhopn1/k), vertex labels of size Õ(Dhopk) and packet headers of size
Õ(Dhop).

Proof. The preprocessing algorithm is identical to that of Theorem 2, with one key modifi-
cation: instead of setting RT(u) = {L(u, T (C(v))) | v ∈ B(u)}, we store RT(u) = {P (u, v) |
v ∈ B(u)}, where P (u, v) is the entire path from u to v, and similarly instead of setting
L(u) = {pi(u) | i ∈ [k]} we store L(u) = {P (pi(u), u) | i ∈ [k]}.

In the routing algorithm at the source vertex u to a destination vertex v, after determining
ℓ = min{i | pi(v) ∈ B(u)}. The entire path P (u, pℓ(v))∪P (pℓ(v), v) is attached to the header
to ensure that intermediate vertices can route correctly. The remainder of the proof follows
the same steps as in Section 4. ◀
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A 7-stretch directed roundtrip routing with |RT(u)| = O(n1/3)

In this section, we consider roundtrip routing in general weighted directed graphs. Roditty
et. al [21] obtained a roundtrip routing scheme with (4k + ε)-stretch and routing tables of
size Õ( 1

ε n1/k log W ). If we set k = 3 we get a (12 + ε)-stretch roundtrip routing scheme
with routing tables of size Õ( 1

ε n1/3 log W ). In this section, we present a 7-stretch roundtrip
routing scheme with routing tables of size Õ(n1/3). We prove:

▶ Reminder of Theorem 3. Let G = (V, E, w) be a weighted directed graph. There is a
7-stretch compact roundtrip routing scheme that uses local routing tables of size Õ(n1/3),
vertex labels of size Õ(1) and packet headers of size Õ(1).

First, we describe the preprocessing algorithm, which computes the routing tables and
assigns vertex labels. The input to the algorithm is a graph G = (V, E, w). The algorithm
uses Lemma 6 and Lemma 5 to build a hierarchy of vertex sets V = A0 ⊇ A1 ⊇ A2 ⊇ A3 = ∅,
where |Ai| = n1−i/k. For every u ∈ V it holds that |C(u, A1)| = Õ(n1/3) and |Bi(u)| =
Õ(n1/k), where 0 ≤ i ≤ 3. Next, for every u ∈ V , the preprocessing algorithm computes
B(u) and C(u). Then, for every u ∈ V , the algorithm sets the routing table RT(u) to:

RT(u) =


L(w, T (B0(u))) for every w ∈ B0(u)
L(u, T (B0(w))) for every w s.t. u ∈ T (B0(w))
L(u, T (C(w))) for every w ∈ A2
L(u, T (C(w))) for every w ∈ B1(u), if P (u, w) ⊆ C(w)
L(w, T (C(p2(z)))) for every w ∈ B1(u), z = arg minx∈P (u,w),x/∈C(w){d(u, x)}

and the label L(u) to:

L(u) = {L(u, T (B0(u))), L(p1(u), T (B0(u))), L(u, T (C(p2(u))))}

We now bound the size of the routing tables and the vertex labels.

▶ Lemma 17. |RT(u)| = Õ(n1/3) and |L(u)| = Õ(1)

Proof. From Lemma 5 it follows that |Bi(u)| = Õ(n1/3), for every 1 ≤ i ≤ 2. In addition we
get that |A2| = Õ(n1/3). From Lemma 6 it follows that |B0(u)| = Õ(n1/3) and |C(u, A1)| =
Õ(n1/3). From Lemma 11 it follows that for every tree T it holds that |L(u, T )| = Õ(1).
Therefore, |RT(u)| ≤ Õ(1) · (|B0(u)|+ |C(u, A1)|+ |A2|+ |B1(u)|+ |B1(u)|) = Õ(n1/3), as
required.

The label of each vertex is composed of three tree labels. From Lemma 11 it follows that
each tree label is of size Õ(1). Therefore, |L(u)| = 3 · Õ(1) = Õ(1), as required. ◀
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Algorithm 1 Route(u, v).

1 if v ∈ B0(u) then Route from u to v on T (B0(u)) ;
2 if v ∈ C(u, A1) then Route from u to v on T (B0(v)) ;
3 if p1(v) ∈ B1(u) then
4 if P (u, p1(v)) ⊆ C(p1(v)) then
5 Route from u to p1(v) on T (C(p1(v))) and then route from p1(v) to v on

T (B0(v)).
6 else
7 z ← arg minx∈P (u,p1(v)),x/∈C(p1(v)){d(u, x)};
8 Route from u to p1(v) on T (C(p2(z))) and then route from p1(v) to v on

T (B0(v)).

9 else
10 Route from u to v on T (C(p2(v))).

The routing algorithm routes a message from u to v as follows. If v ∈ B0(u), then the
algorithm routes the message using the tree T (B0(u)). Otherwise, if v ∈ C(u, A1) then
the algorithm routes the message using the tree T (B0(v)). If v /∈ B0(u) and v /∈ C(u, A1),
then the algorithm checks if p1(v) ∈ B1(u). In this case, if P (u, p1(v)) ⊆ C(p1(v)) then
the algorithm routes on T (C(p1(v))) from u to p1(v), and then from p1(v) to v on the tree
T (B0(v)) (see Figure 2 (a)). Otherwise, if P (u, p1(v)) ̸⊆ C(p1(v)), then the algorithm routes
from u to p1(v) on the tree T (C(p2(z))), where z = arg minx∈P (u,p1(v)),x/∈C(p1(v)){d(u, x)},
and then the algorithm routes from p1(v) to v on the tree T (B0(v)) (see Figure 2 (b)).

Finally, if p1(v) /∈ B1(u), then the algorithm routes from u to v on the tree T (C(p2(v)))
(see Figure 2 (c)). A pseudo-code for the routing algorithm is given in Algorithm 1.

In the next lemma, we show that all intermediate vertices have the necessary information
to complete the routing process once the routing tree is determined.

▶ Lemma 18. The following properties hold:

1. If v ∈ B0(u), then for every w ∈ P (u, v), we have L(w, T (B0(u))) ∈ RT(w).
2. If v ∈ C(u, A1), then for every z ∈ P (u, v), we have L(z, T (B0(v))) ∈ RT(z).
3. If p1(v) ∈ B1(u) and P (u, p1(v)) ⊆ C(v), then for every z ∈ P (u, p1(v)), we have

L(z, T (C(p1(v)))) ∈ RT(z).
4. If w ∈ A2, then for every z ∈ P (u, w) ∪ P (w, v), we have L(z, T (C(w))) ∈ RT(z).
5. For every w ∈ P (p1(v), v), we have L(w, B0(v)) ∈ RT(w) ∪ L(v).

Proof. From Lemma 7, we know that for every v ∈ B(u, X) and w ∈ P (u, v), we have that
w ∈ B(u, X). Therefore, properties 1 and 2 hold.

For property 3, we have that the entire path P (u, p1(v)) is contained in C(p1(v)). Hence,
any sub-path of P (u, p1(v)) is also in C(p1(v)), and we have L(z, T (C(p1(v)))) ∈ RT(z) for
every z ∈ P (u, p1(v)).

For property 4, since w ∈ A2, we know that C(w) = V . Therefore, all vertices in the
graph (and specifically z) hold L(z, T (C(w)).

For property 5, for p1(v), we have L(p1(v), T (B0(v))) ∈ L(v). For every other w ∈
P (p1(v), v), we have from Lemma 13 that v ∈ C(w) and therefore w ∈ T (B(v)), and we have
L(w, T (B0(v))) in RT(w), as required. ◀

We now turn to prove that the stretch of the compact roundtrip routing scheme is 7.
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▶ Lemma 19. d̂(u↔ v) ≤ 7 · d(u↔ v)

Proof. First, consider the case that v ∈ B0(u). In this case, the routing algorithm routes
from u to v along P (u, v), so d̂(u, v) = d(u, v). Since v ∈ B0(u), by the definition of C(v, A1),
we know that u ∈ C(v, A1). Therefore, the routing algorithm from v to u follows P (v, u.
Thus,

d̂(u↔ v) = d̂(u, v) + d̂(v, u) = d(u, v) + d(v, u) = d(u↔ v),

as required. Similarly, if v ∈ C(u, A1), using symmetrical arguments, we get that d̂(u ↔
v) = d(u↔ v), as required.

Next, consider the case that v /∈ B0(u) and v /∈ C(u, A1). In the following claim, we show
that in this case, d̂(u, v) ≤ d(u, v) + 3d(u↔ v). Using this claim, we obtain:

d̂(u↔ v) = d̂(u, v) + d̂(v, u) ≤ d(u, v) + 3d(u↔ v) + d(v, u) + 3d(u↔ v) ≤ 7d(u↔ v),

as required.

▷ Claim 19.1. If v /∈ B0(u) and v /∈ C(u, A1), then:

d̂(u, v) ≤ d(u, v) + 3d(u↔ v).

Proof. Since v /∈ B0(u) and v /∈ C(u, A1), we know from the definitions of B0(u) and C(u, A1)
that:

d(u↔ p1(u)) ≤ d(u↔ v) and d(v ↔ p1(v)) ≤ d(u↔ v). (1)

We divide the proof into two cases: the case that p1(v) /∈ B(u) and the case that
p1(v) ∈ B(u). If p1(v) /∈ B(u) we can apply Lemma 9 and get:

d(v ↔ p2(v)) ≤ 2d(u↔ v) + d(v ↔ p1(v))
(1)
≤ 3d(u↔ v). (2)

Since p1(v) /∈ B(u), the routing algorithm routes from u to v on the tree T (C(p2(v)).
Therefore, we have:

d̂(u, v) = dT (C(p2(v)))(u, v) ≤ d(u, p2(v)) + d(p2(v), v)
△
≤ d(u, v) + d(v ↔ p2(v))

(2)
≤ d(u, v) + 3d(u↔ v),

as required.
Next, consider the case that p1(v) ∈ B1(u). If P (u, p1(v)) ⊆ C(p1(v)), then the routing

algorithm routes along the shortest path from u to p1(v). Therefore, we have:

d̂(u, v) ≤ d(u, p1(v)) + d(p1(v), v)
△
≤ d(u, v) + d(v ↔ p1(v))

(1)
≤ d(u, v) + d(u↔ v),

as required.
Otherwise, if P (u, p1(v)) ̸⊆ C(p1(v)), let z be the first vertex in P (u, p1(v)) such that

z /∈ C(p1(v)). From the definition of C(p1(v)), it follows that p1(v) /∈ B1(z. From the
definition of B1(z) we get that d(z ↔ p2(z)) ≤ d(z ↔ p1(v)). Since z ∈ P (u, p1(v)), it
follows that d(z ↔ p1(v)) ≤ d(u ↔ p1(v)). Combining these inequalities, we get that:
d(z ↔ p2(z)) ≤ d(u↔ p1(v)).
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u v

p1(v)

z

p2(z)

(b)
p1(v) ∈ B1(u)
z /∈ C(p1(v))
z ∈ P (u, p1(v))

u v

p2(v)

(c) p1(v) /∈ B1(u)

u v

p1(v)

(a) p1(v) ∈ B1(u)
P (u, p1(v)) ⊆ C(p1(v))

Figure 2 The routing of Theorem 3. v /∈ B0(u) ∪ C(u, A1).

In this case, the routing algorithm routes from u to p1(v) on the tree T (C(p2(z)), and
then from p1(v) to v. We get that:

d̂(u, v) = dT (C(p2(z)))(u, p1(v)) + d(p1(v), v)
≤ d(u, p2(z)) + d(p2(z), p1(v)) + d(p1(v), v)
△
≤ d(u, z) + d(z, p2(z)) + d(p2(z), z) + d(z, p1(v)) + d(p1(v), v)
= d(u, z) + d(z ↔ p2(z)) + d(z, p1(v)) + d(p1(v), v).

Since z ∈ P (u, p1(v)), we know that d(u, z) + d(z, p1(v)) = d(u, p1(v)). Recall that d(z ↔
p2(z)) ≤ d(u↔ p1(v)). Therefore:

d̂(u, v) ≤ d(u, z) + d(z, p1(v)) + d(p1(v), v) + d(z ↔ p2(z))
≤ d(u, p1(v)) + d(p1(v), v) + d(u↔ p1(v))
△
≤ d(u, v) + d(v ↔ p1(v)) + d(u↔ v) + d(v ↔ p1(v))
(1)
≤ d(u, v) + d(u↔ v) + d(u↔ v) + d(u↔ v) = d(u, v) + 3d(u↔ v),

as required. ◁

From Claim 19.1, we have that d̂(u, v) ≤ d(u, v)+3d(u↔ v) and d̂(v, u) ≤ d(u, v)+3d(u↔
v). Therefore:

d̂(u↔ v) = d̂(u, v) + d̂(v, u) ≤ d(u, v) + 3d(u↔ v) + d(v, u) + 3d(u↔ v) = 7d(u↔ v),

as required. ◀

Theorem 3 follows from Lemma 17, Lemma 18 and Lemma 19.
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