
pod: An Optimal-Latency, Censorship-Free,
and Accountable Generalized Consensus Layer
Orestis Alpos
Common Prefix, Athens, Greece

Bernardo David
IT University of Copenhagen (ITU), Denmark
Common Prefix, Athens, Greece

Jakov Mitrovski
Technical University of Munich, Germany
Common Prefix, Athens, Greece

Odysseas Sofikitis
Common Prefix, Athens, Greece
pod network, Athens, Greece

Dionysis Zindros
Common Prefix, Athens, Greece
pod network, Athens, Greece

Abstract
This work addresses the inherent issues of high latency in blockchains and low scalability in traditional
consensus protocols. We present pod, a novel notion of consensus whose first priority is to achieve the
physically-optimal latency of 2δ, or one round-trip, i.e., requiring only one network trip (duration δ)
for writing a transaction and one for reading it.

To accomplish this, we first eliminate inter-replica communication. Instead, clients send transac-
tions directly to all replicas, which independently process transactions and append them to local
logs. Replicas assign a timestamp and a sequence number to each transaction in their logs, allowing
clients to extract valuable metadata about the transactions and the system state. Later on, clients
retrieve these logs and extract transactions (and associated metadata) from them.

Necessarily, this construction achieves weaker properties than a total-order broadcast protocol,
due to existing lower bounds. Our work models the primitive of pod and defines its security properties.
We then show pod-core, a protocol that satisfies properties such as transaction confirmation within
2δ, censorship resistance against Byzantine replicas, and accountability for safety violations. We
show that single-shot auctions can be realized using the pod notion and observe that it is also
sufficient for other popular applications.

2012 ACM Subject Classification Security and privacy → Distributed systems security; Computer
systems organization → Dependable and fault-tolerant systems and networks

Keywords and phrases consensus, censorship resistance, accountability, auctions

Digital Object Identifier 10.4230/LIPIcs.DISC.2025.4

Related Version Full Version: https://arxiv.org/abs/2501.14931 [2]

1 Introduction

Despite the widespread adoption of blockchains, a significant challenge remains unresolved:
they are inherently slow. The latency from the moment a client submits a transaction to when
it is confirmed in another client’s view of the blockchain can be prohibitively long for certain
applications. Notice that we define latency in terms of the blockchain liveness property,
referring to finalized, non-reversible outputs: once a transaction is received by a reader, it

© Orestis Alpos, Bernardo David, Jakov Mitrovski, Odysseas Sofikitis, and Dionysis Zindros;
licensed under Creative Commons License CC-BY 4.0

39th International Symposium on Distributed Computing (DISC 2025).
Editor: Dariusz R. Kowalski; Article No. 4; pp. 4:1–4:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-5477-3736
https://orcid.org/0000-0002-1872-7799
https://orcid.org/0009-0002-2154-0957
https://orcid.org/0000-0002-1978-594X
https://doi.org/10.4230/LIPIcs.DISC.2025.4
https://arxiv.org/abs/2501.14931
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de


4:2 pod: Optimal-Latency, Censorship-Free, Accountable Generalized Consensus

remains in the protocol’s output permanently. Moreover, we do not assume “optimistic” or
“happy path” scenarios, where transactions might finalize faster under favorable conditions
(such as having honest leaders or optimal network conditions).

Indeed, Nakamoto-style blockchain protocols require a large number of rounds in order
to achieve consensus on a new block, even when considering the best known bounds [15]. On
the other hand, it is known that permissioned protocols for n parties (out of which t are
corrupted) realizing traditional notions of broadcast and Byzantine agreement require at least
t + 1 rounds in the synchronous case [1] and at least 2n/(n− t) rounds in the asynchronous
case [14], even when allowing for digital signatures and probabilistic termination.

In a model where replicas maintain the network, writers submit transactions, and readers
read the network, the minimum latency is one network round trip, or 2δ, letting δ denote
the actual network delay, as the information must travel from the writers to the replicas and
then to the readers. More importantly, we want that any transaction from an honest writer
appears in the output of honest readers within 2δ time, regardless of the current value of δ

and corrupted parties’ actions. In this context, we are motivated by the following question:

Can we realize tasks that blockchains are commonly used for with optimal latency?

We give a positive answer to this question with a protocol realizing pod, a new notion of
consensus that trades off traditional agreement properties for optimal latency, while retaining
sufficient security guarantees to realize important tasks (e.g., decentralized auctions).

1.1 Our Contributions
In order to motivate the notion of pod, we first introduce the architecture of our protocol,
pod-core, which realizes this notion. To achieve the single-round-trip latency, our first key
design decision is to eliminate inter-replica communication entirely. Instead, writers send
their transactions directly to all replicas. Each replica maintains its own replica log, processes
incoming transactions independently, and transmits its log to readers on request. Readers
then process these replica logs to extract transactions and relevant associated information.
See Figure 1 for a summary of the pod-core architecture.

client

client

1 2 3 4 5

replicas

w
rite

transaction

read log

Figure 1 pod-core’s simple architecture. A writing client (top) sends a transaction to all replicas
(middle). Each replica appends it to its own log and transmits it to the reading client (bottom).

This design raises two important questions. First, what meaningful information can
readers derive from replica logs when replicas operate in isolation? Second, given that in two
rounds even randomized authenticated broadcast is proven impossible [14], what capabilities
can this – necessarily weaker – primitive offer? We demonstrate that, by incorporating simple
mechanisms, such as assigning timestamps and sequence numbers to transactions, replicas



O. Alpos, B. David, J. Mitrovski, O. Sofikitis, and D. Zindros 4:3

can enable readers to extract valuable information beyond mere low-latency guarantees.
Furthermore, we show how the properties of pod can enable various applications, including
auctions (as shown in Section 6). Specifically, a secure pod delivers the following guarantees
(formally defined in Section 3):

Transaction confirmation within 2δ, with each transaction assigned a confirmed round:
we say that the transaction becomes confirmed at the time indicated by the confirmed
round.
Censorship resistance when facing up to β Byzantine and γ omission-faulty replicas,
ensuring all confirmed transactions appear in every honest reader’s output.
A past-perfect round can be computed by readers, such that the reader is guaranteed
to have received all transactions that are or will be confirmed prior to this round, even
though not all transactions are strictly ordered.
Accountability for all safety violations, i.e., if any safety property is violated, at least
β + 1 replicas can be identified as misbehaving.

In particular, our Protocol pod-core, presented in Section 4, realizes the notion of pod with
the properties above, supporting a continuum of two adversarial models: up to β Byzantine
replicas and up to γ omission-faulty replicas, out of a total of n > 5β + 3γ replicas. Protocol
pod-core requires no expensive cryptographic primitives or setup beyond digital signatures
and a PKI registering replicas’ public keys. We showcase pod-core’s efficiency by means
of experiments with a prototype implementation presented in Section 5. Our experiments
show that even with 1000 replicas distributed around the world, the latency achieved by our
protocol is just under double (resp. about 5 times) the round-trip time between writer and
reader clients with security against omission-faulty (resp. Byzantine) replicas.

1.2 Technical Overview
We consider that time proceeds in rounds, and that parties (replicas and clients) know
the current round, so we can express timestamps in terms of rounds. The output of pod
associates each transaction tx with timestamp values rmin ≥ 0 (minimum round), rmax ≤ ∞
(maximum round) and rconf (confirmed round). We call these values the trace of tx, and they
evolve over time. Initially we have rconf =⊥ but later we get rconf ̸=⊥, when a transaction is
confirmed. The protocol guarantees confirmation within u rounds, meaning that, at most
u rounds after tx was written, every party who reads the pod will see tx as confirmed with
some rconf ̸=⊥. The protocol also guarantees that rmin ≤ rconf ≤ rmax, a property we call
confirmation bounds: while each party reads different values rmin, rmax, rconf for the same tx,
pod guarantees that values read by different parties stay within these limits.

When clients read the pod, they obtain a pod data structure D = (T, rperf), where T is
the set of transactions and their traces and rperf is a past-perfect round. The past-perfection
safety property guarantees that T contains all transactions that every other honest party will
ever read with a confirmed round smaller than rperf. A pod also guarantees past-perfection
within w, meaning that rperf is at most w rounds in the past.

In summary, pod provides past-perfection and confirmation bounds as safety properties,
ensuring parties cannot be blindsided by transactions suddenly appearing as confirmed too
far in the past, and that the different (and continuously changing) transaction timestamps
stay in a certain range. The liveness properties of confirmation within u and past-perfection
within w ensure that new transactions get confirmed within a bounded delay, and that each
party’s past-perfect round must be constantly progressing.

DISC 2025



4:4 pod: Optimal-Latency, Censorship-Free, Accountable Generalized Consensus

Besides introducing the notion of pod, we present protocol pod-core, which realizes this
notion while requiring minimal interaction among parties and achieving optimal latency, i.e.,
optimal parameters u = 2δ and w = δ, where δ is the current network delay (not a delay
upper bound, which we assume to be unknown). The only communication is between each
client and the replicas. Writing a transaction tx to pod-core only requires clients to send tx to
the replicas, who each assign a timestamp ts (their current time) and a sequence number sn
to tx and return a signature on (tx, ts, sn). When reading the pod, the client simply requests
each replica’s log of transactions, validates the responses, and determines rmin, rmax, and rconf
from the received timestamps. Protocol pod-core supports a continuum of mixed adversarial
models, tolerating up to β Byzantine and at the same time up to γ additional omission-faulty
replicas.

1.3 Related work
Many previous works have lowered the latency of ordering transactions. HotStuff [27] uses
three rounds of all-to-leader and leader-to-all communication pattern, which results in a
latency (measuring from the moment a client submits a transaction until in appears in the
output of honest replicas) of 8δ in the happy path. Jolteon [16], Ditto [16], and HotStuff-2 [19]
are two-round versions of HotStuff with end-to-end latency of 5δ. MoonShot [10] allows
leaders to send a new proposal every δ time, before receiving enough votes for the previous
one, but still achieves an end-to-end latency of 5δ. In the “DAG-based” line of word, Tusk [8]
achieves and end-to-end latency of 7δ, the partially-synchronous version of BullShark [23] an
end-to-end latency of 5δ, and Mysticeti [3] an end-to-end latency of 4δ. All these protocols
aim at total-order properties and have their lower latency is inherently restricted by lower
bounds, whereas pod starts from the single-round-trip latency requirement and explores the
properties that can be achieved.

The redundancy of consensus for implementing payment systems has been recognized by
previous works [18, 22, 7, 5]. The insight is that total transaction order is not required in
the case that each account is controlled by one client. Instead, a partial order is sufficient,
ensuring that, if transactions tx1 and tx2 are created by the same client, then every party
outputs them in the same order. This requirement was first formalized by Guerraoui et al. [18]
as the source-order property. The constructions of Guerraoui et al. [18] and FastPay [5]
require clients to maintain sequence numbers. ABC [22] requires clients to reference all
previous transaction in a DAG (including its own last transaction). Cheating clients might
lose liveness [5, 18, 22], but equivocating is not possible. To the best of our knowledge,
previous work in the consensusless literature has not considered or achieved a property like
our past-perfection, which we show sufficient for implementing auctions.

2 Preliminaries

Notation. We denote by N the set of natural numbers including 0. Letting L be a bounded
sequence, we denote by L[i] the ith element (starting from 0), and by |L| its length. Negative
indices address elements from the end, so L[−i] is the ith element from the end, and L[−1]
in particular is the last. The notation L[i:] means the subarray of L from i onwards, while
L[:j] means the subsequence of L up to (but not including) j. We denote an empty sequence
by [ ]. We denote the concatenation of sequences L1 and L2 by L1 ∥L2.

Pseudocode notation. Command “require P ” causes a function to terminate immediately
and return false if P evaluates to false. Notation “upon e” causes a block of code to be
executed when event e occurs. Notations “⟨MSG ⟩ ← p” and “⟨MSG ⟩ → p” denote receiving



O. Alpos, B. David, J. Mitrovski, O. Sofikitis, and D. Zindros 4:5

and sending a message MSG from and to party p, respectively. Finally, x : a ∈ A→ b ∈ B

denotes that variable x is a map from elements of type A to elements of type B. When
obvious from the context, we do not explicitly write the types A or B. For a map x, the
operations x.keys() and x.values() return all keys and all values in x, respectively. With ∅
we denote an empty map.

Parties. We consider n replicas R = {R1, . . . , Rn} and an unknown number of clients.
Parties are stateful, i.e., store state between executions of different algorithms. We assume
that replicas are known to all parties and register their public keys (for which they have
corresponding secret keys) in a Public Key Infrastructure (PKI). Clients do not register keys
in the PKI.

Adversarial model. We call a party (replica or client) honest, if it follows the protocol,
and malicious otherwise. We assume static corruptions, i.e., the set of malicious replicas is
decided before the execution starts and remains constant. This work uses a combination of
two adversarial models, the Byzantine and the omission models. In the Byzantine model,
corrupted replicas are malicious and may deviate arbitrarily from the protocol. The adversary
has access to the internal state and secret keys of all corrupted parties. We denote by β ∈ N
the number of Byzantine replicas in an execution. The Byzantine adversary is modelled
as a probabilistic polynomial time overarching entity that is invoked in the stead of every
corrupted party. That is, whenever the turn of a corrupted party comes to be invoked by the
environment, the adversary is invoked instead. In the omission model, corrupted replicas
may only deviate from the protocol by dropping messages that they were supposed to send,
but follow the protocol otherwise. Observe that this includes crash faults, where replicas
crash (i.e. stop execution) and remain crashed until the end of the execution of an algorithm.
We denote by γ ∈ N the number of omission-faulty replicas in an execution.

Modeling time. We assume that time proceeds in discrete rounds, and parties have clocks
allowing them to determine the current round. For simplicity, our analysis will assume
synchronized clocks. Notice that although we assume synchronized clocks as a setup, clock
synchronization can be achieved in partially synchronous networks [11] using existing tech-
niques [21], also in the case where replicas gradually join the network [26]. By timestamp we
refer to a round number assigned to some event.

Modeling network. We denote by δ ∈ N the actual delay (measured in number of rounds) it
takes to deliver a message between two honest parties, a number which is finite but unknown
to all parties. We denote by ∆ ∈ N an upper bound on this delay, i.e., δ ≤ ∆, which is also
finite. In the synchronous model, ∆ is known to all parties. In the partially synchronous
model [11], ∆ is unknown but still finite, i.e., all messages are eventually delivered. A
protocol is called responsive if it does not rely on knowledge of ∆ and its liveness guarantees
depend only on the actual network delay δ.

Digital signatures

We assume that replicas (and auctioneers in bidset-core) authenticate their messages with
digital signatures. A digital signature scheme consists of the following three algorithms,
satisfying the EUF-CMA security [17]: (1) KeyGen(1κ): The key generation algorithm
takes as input a security parameter κ and outputs a secret key sk and a public key pk.
(2) Sign(sk, m)→ σ: The signing algorithm takes as input a private key sk and a message

DISC 2025



4:6 pod: Optimal-Latency, Censorship-Free, Accountable Generalized Consensus

m ∈ {0, 1}∗ and returns a signature σ. (3)Verify(pk, m, σ) → b ∈ {0, 1}: The verification
algorithm takes as input a public key pk, a message m, and a signature σ, and outputs a bit
b ∈ {0, 1}. We say σ is a valid signature on m with respect to pk if Verify(pk, m, σ) = 1.

Accountable safety

Taking a similar approach as Neu, Tas, and Tse [20, Def. 4], we define accountable safety
through an identification function.

▶ Definition 1 (Transcript and partial transcript). We define as transcript the set of all
network messages sent by all parties in an execution of a protocol. A partial transcript is a
subset of a transcript.

▶ Definition 2 (β-Accountable safety). A protocol satisfies accountable safety with resilience
β if its interface contains a function identify(T )→ R̃, which takes as input a partial transcript
T and outputs a set of replicas R̃ ⊂ R, such that the following conditions hold except with
negligible probability.
Correctness: If safety is violated, then there exists a partial transcript T , such that

identify(T )→ R̃ and |R̃| > β.
No-framing: For any partial transcript T produced during an execution of the protocol, the

output of identify(T ) does not contain honest replicas.

▶ Remark 3. For simplicity, we have defined the transcript based on messages sent by all
replicas. We can also define a local transcript as the set of messages observed by a single
party. As will become evident from the implementation of identify(), in practice, adversarial
behavior can be identified from the local transcripts of a single party or of a pair of parties.

3 Modeling pod

In this section, we introduce the notion of a pod, a distributed protocol where clients can
read and write transactions. We first define the basic data structures of a pod protocol.

▶ Definition 4 (Transaction trace and trace set). The transaction trace of a transaction
tx ∈ {0, 1}∗ is a tuple containing the values (tx, rmin, rmax, rconf), which change during the
execution of a pod protocol. We call rmin ∈ N the minimum round, rmax ∈ N ∪ {∞}
the maximum round, rconf ∈ N ∪ {⊥} the confirmed round. We denote by rmax = ∞ an
unbounded maximum round and by rconf = ⊥ an undefined confirmed round. We also denote
these values as tx.rmin, tx.rmax, and tx.rconf. A trace set T is a set of transaction traces
{(tx, rmin, rmax, rconf) | tx ∈ {0, 1}∗}.

▶ Definition 5 (Confirmed transaction). A transaction with confirmed round rconf is called
confirmed if rconf ̸= ⊥, and unconfirmed otherwise.

▶ Definition 6 (Pod data structure). A pod data structure D is a tuple (T, rperf), where T is
a trace set and rperf is a round number called the past-perfect round.

We denote the components of a pod data structure as D.T and D.rperf. We write tx ∈ D.T
if an entry (tx, ·, ·, ·) exists in D.T. We remark that transactions in T may be confirmed
on unconfirmed. Moreover, rperf will be used to define a completeness property on T (the
past-perfection property of pod).



O. Alpos, B. David, J. Mitrovski, O. Sofikitis, and D. Zindros 4:7

▶ Definition 7 (Auxiliary data). We associate with a pod data structure D some auxiliary
data C, which will be used to validate D. The exact implementation of C is irrelevant for
the definition of pod; however, it is helpful to mention that in pod-core it will be a tuple
C = (Cpp,Ctx), where Cpp will be a past-perfection certificate and Ctx a map from each
transaction tx in D.T to a transaction certificate Ctx for tx. Both contain digital signatures.

▶ Definition 8 (Interface of a pod). A pod protocol has the following interface.
write(tx): It writes a transaction tx to the pod.
read()→ (D, C): It outputs a pod data structure D = (T, rperf) and auxiliary data C.

We say that a client reads the pod when it calls read(). If tx appears in T, we say that the
client observes tx and, if tx.rconf ̸= ⊥, we say that the client observes tx as confirmed.

▶ Definition 9 (Validity function). Apart from its interface functions, a pod protocol also
specifies a computable, deterministic, and non-interactive function valid(D, C) that takes as
input a pod data structure D and auxiliary data C and outputs a boolean value. We say that
a pod data structure D is valid if valid(D, C) = true.

▶ Definition 10 (View of the pod). We call view of the pod and denote by Dc
r the data

structure returned by read(), where read() is invoked by client c and the output is produced
at round r. We remark that r denotes the round when read() outputs, as the client may have
invoked it at an earlier round.

We now introduce the basic definition of a secure pod protocol, as well as some additional
properties (timeliness and monotonicity) that it may satisfy.

▶ Definition 11 (Secure pod). A protocol is a secure pod if it implements the pod interface
of Definition 8 and specifies a validity function valid(), such that the following properties
hold.
(Liveness) Completeness: Honest clients always output a valid pod data structure. That is,

if read() returns (D, C) to an honest client, then valid(D, C) = true.
(Liveness) Confirmation within u: Transactions of honest clients become confirmed after at

most u rounds. Formally, if an honest client c writes a transaction tx at round r, then
for any honest client c′ (including c = c′) it holds that tx ∈ Dc′

r+u and tx.rconf ̸= ⊥.
(Liveness) Past-perfection within w: Rounds become past-perfect after at most w rounds.

Formally, for any honest client c and round r ≥ w, it holds that Dc
r .rperf ≥ r− w.

(Safety) Past-perfection: A valid pod D contains all transactions that may ever obtain a
confirmed round smaller than D.rperf. Formally, the adversary cannot output (D1, C1)
and (D2, C2) to the network, such that valid(D1, C1) ∧ valid(D2, C2) and there exists a
transaction tx such that (tx, r1

min, r1
max, r1

conf) ̸∈ D1.T and (tx, r2
min, r2

max, r2
conf) ∈ D2.T and

r2
conf ̸= ⊥ and r2

conf < D1.rperf.
(Safety) Confirmation bounds: The values rmin and rmax bound the confirmed round that a

transaction may ever obtain. Formally, the adversary cannot output (D1, C1) and (D2, C2)
to the network, such that valid(D1, C1) ∧ valid(D2, C2) and there exists a transaction tx
such that (tx, r1

min, r1
max, r1

conf) ∈ D1.T and (tx, r2
min, r2

max, r2
conf) ∈ D2.T and r1

min > r2
conf

or r1
max < r2

conf.

The confirmation bounds property gives r1
min ≤ r2

conf ≤ r1
max, for r1

min, r1
max, r2

conf computed
by honest clients, but it does not guarantee anything about the values of r1

min and r1
max

(for example, it could trivially be r1
min = 0 and r1

max = ∞). To this purpose we define an
additional property of pod, called timeliness. Previous work has observed a similar property
as orthogonal to safety and liveness [25].

DISC 2025



4:8 pod: Optimal-Latency, Censorship-Free, Accountable Generalized Consensus

▶ Definition 12 (pod θ-timeliness for honest transactions). A pod protocol is θ-timely if it is
a secure pod, as per Definition 11, and for any honest clients c1, c2, if c1 writes transaction
tx in round r and c2 has view Dc2

r′ in round r′, such that (tx, rmin, rmax, rconf) ∈ Dc2
r′ .T, then:

(1) rconf ∈ (r, r+θ]; (2) rmax ∈ (r, r+θ]; (3) rmax− rmin < θ, implying rmin ≠ 0 and rmax ̸=∞.

Moreover, a pod protocol allows rmin, rmax, rconf to change during an execution – for
example, clients in construction pod-core will update them when they receive votes from
replicas. In the full version of this paper [2, Appendix A] we define monotonicity properties
that impose restrictions on how these values evolve.

We conclude this section with some visual examples in Figures 2 and 3.

*c3

* *
c1 c2

rmin rmaxrconf

time

Figure 2 The same transaction in the view
of three different pod clients. Each client assigns
it a minimum round rmin and a maximum round
rmax. If it gets confirmed, the confirmation round
rconf will be between these two values. The rconf

that each client locally computes respects the
bounds of each other client.

*tx1 time
tx2

*tx3
* rperf

*

tx4 tx5

Figure 3 A possible view of a single pod cli-
ent. Transactions tx1, tx2, tx3 are confirmed, tx4

is not yet confirmed. A client also derives a past-
perfect round rperf. No transaction other than
tx1, tx2, tx3, tx4 may obtain rconf ≤ rperf. There
may exist tx5 for which the client has not received
votes, but tx5 cannot obtain rconf ≤ rperf.

4 Protocol pod-core

Before we present protocol pod-core, we define basic concepts and structures.

▶ Definition 13 (Vote). A vote is a tuple vote = (tx, ts, sn, σ, R), where tx is a transaction,
ts is a timestamp, sn is a sequence number, σ is a signature, and R is a replica. A vote is
valid if σ is a valid signature on message m = (tx, ts, sn) with respect to the public key pkR

of replica R.

▶ Remark 14 (Sequence numbers, session identifiers, streaming algorithm). Honest clients
process votes from each replica in the same order, namely in order of increasing timestamps.
For this, a replica maintains a sequence number which it increments and includes every
time it assigns a timestamp to a transaction. We also assume that all messages between
clients and replicas are concatenated with a session identifier (sid), which is unique for each
concurrent execution of the protocol and included in all messages signed by the replicas.
Finally, the client protocol we show in Protocol 1 is streaming, that is, clients maintain a
connection to the replicas, and stateful, that is, they persist their state (received transactions
and votes) across all invocations of write() and read().

Past-perfection and transaction certificates. In pod-core, clients store certain votes which
they output upon read() as part of the certificate C, which will be used to prove the validity
of the returned D and for accountability in case of safety violations. Specifically, C consists
of two parts, C = (Cpp,Ctx): the past-perfection certificate Cpp contains, for each replica,
the vote on the most recent timestamp received from that replica. It is implemented as a
map from replicas to votes, i.e., Cpp : R→ vote. The transaction certificate Ctx contains, for



O. Alpos, B. David, J. Mitrovski, O. Sofikitis, and D. Zindros 4:9

each transaction, all valid votes received for it. It is implemented as a map from transactions
to a map from replicas to votes, i.e., Ctx : tx → Ctx and Ctx : R → vote. We remark that
Cpp can be derived by taking the union of certificates Ctx for all transactions and keeping
the most recent vote for each replica, but we define Cpp explicitly for clarity and readability.

▶ Protocol 1 (pod-core). Protocol pod-core is executed by n replicas that follow the steps of
Algorithm 1 and an unknown number of clients that follow the steps of Algorithms 2 and 3
with parameters β, γ and α, where β denotes the number of Byzantine replicas and γ the
number of omission-faulty replicas (in addition to the Byzantine) and α = n− β − γ is the
number of honest replicas.

4.1 Replica code

Algorithm 1 Protocol pod-core: Code for a replica Ri, where sk denotes its secret signing key.

1: C ▷ The set of all connected clients
2: nextsn ▷ The next sequence number to assign to votes
3: replicaLog ▷ The transaction log or the replica

4: upon init() do ▷ Called once when the replica is initialized
5: C ← ∅; nextsn← 0; replicaLog← [ ]
6: end upon

7: upon ⟨CONNECT ⟩ ← c do ▷ Called when a new client c connects to the replica
8: C ← C ∪ {c}
9: for (tx, ts, sn, σ) ∈ replicaLog do

10: ⟨VOTE (tx, ts, sn, σ, Ri)⟩ → c
11: end for
12: end upon

13: upon ⟨WRITE tx⟩ ← c do ▷ Called when a client c writes a transaction tx
14: if replicaLog[tx] ̸= ⊥ then return ▷ Ignore duplicate transactions
15: doVote(tx)
16: end upon

17: function doVote(tx)
18: ts← round(); sn← nextsn; σ ← Sign(sk, (tx, ts, sn))
19: replicaLog← replicaLog ∥ (tx, ts, sn, σ)
20: for c ∈ C do ⟨VOTE (tx, ts, sn, σ, Ri)⟩ → c
21: nextsn← nextsn + 1
22: end function

23: upon end round do ▷ Executed at the end of each round
24: tx← heartBeat∥round()
25: doVote(tx)
26: end upon

We show the pseudocode for the replica code in Algorithm 1. The state of a replica (lines
1–3) contains replicaLog, a log implemented as a sequence of votes (tx, ts, sn, σ, Ri) created by
the replica, where ts is the timestamp assigned by the replica to tx, sn is a sequence number,
and σ its signature. When the replica receives ⟨CONNECT ⟩ from a client c, it appends c to
its set of connected clients and sends to c all entries in replicaLog (lines 7–12).

DISC 2025



4:10 pod: Optimal-Latency, Censorship-Free, Accountable Generalized Consensus

When it receives ⟨WRITE tx⟩, a replica first checks whether it has already seen tx, in
which case the message is ignored. Otherwise, it assigns tx a timestamp ts equal its local
round number and the next available sequence number sn, and signs the message (tx, ts, sn)
(line 18). Honest replicas use incremental sequence numbers for each transaction, implying
that a vote with a larger sequence number than a second vote will have a larger or equal
timestamp than the second. The replica appends (tx, ts, sn, σ) to replicaLog, and sends it via
a ⟨VOTE (tx, ts, sn, σ, Ri)⟩ message to all connected clients (line 20).

Heartbeat messages. Clients maintain a most-recent timestamp variable mrt[Rj ] for each
replica. This is updated every time they receive a vote and is crucial for computing the
past-perfect round rperf. To make sure that clients update mrt[Rj ] even when Rj does not
have any new transactions in a round, we have replicas send a vote on a dummy heartBeat
transaction the end of each round (lines 23–26). An obvious practical optimization is to
send heartBeat only for rounds when no other transactions were sent. When received by a
client, a heartBeat is handled as a vote (i.e., it triggers line 11). To avoid being considered
a duplicate vote by clients (see line 33 in Algorithm 2), replicas append the round number to
the heartBeat transaction.

4.2 Client code
The state of a client is shown in Algorithm 2 in lines 1–6. Variable tsps is a map from
transactions tx to a map from replicas R to timestamps ts. The state gets initialized in
lines 7–10. At initialization the client also sends a ⟨CONNECT ⟩ message to each replica,
which initiates a streaming connection from the replica to the client.

Receiving votes. A client maintains a connection to each replica and receives votes through
⟨VOTE (tx, ts, sn, σ, Rj)⟩ messages (lines 11–16). When a vote is received from replica Rj ,
the client first verifies the signature σ under Rj ’s public key (line 30). If invalid, the vote
is ignored. Then the client verifies that the vote contains the next sequence number it
expects to receive from replica Rj (line 31). If this is not the case, the vote is backlogged
and given again to the client at a later point (the backlogging functionality is not shown
in the pseudocode). The client then checks the vote against previous votes received from
Rj . First, ts must be greater or equal to mrt[Rj ], the most recent timestamp returned by
replica Rj . Second, the replica must have not previously sent a different timestamp for tx. If
both checks pass, the client updates mrt[Rj ] and tsps[tx][Rj ] with ts (line 34). The client
also updates Cpp and Ctx for each valid vote (lines 13–14).

If any of these checks fail, the client ignores the vote, since both of these cases constitute
accountable faults: In the first case, the client can use the message ⟨VOTE (tx, ts, sn, σ, Rj)⟩
and the vote it received when it updated mrt[Rj ] to prove that Rj has misbehaved. In the
second case, it can use ⟨VOTE (tx, ts, sn, σ, Rj)⟩ and the previous vote it has received for tx.
The identify() function we show in Algorithm 8 can detect such misbehavior

Writing to and reading from pod. Clients interact with a pod using the write(tx) and
read() functions. In order to write a transaction tx, a client sends ⟨WRITE tx⟩ to each replica
(lines 17–19). Since the construction is stateful and streaming, the client state contains at all
times the latest view the client has of the pod. Hence, read() operates on the local state
(lines 20–24). It returns all the transactions the client has received so far and their traces,
and the current past-perfect round rperf. We will show the details of computeTxSet() in
Algorithm 3. As per the pod interface, read() also returns auxiliary data C, which has two
parts: the past-perfection certificate Cpp and a list of transaction certificates Ctx (line 23).
Note that tsps.keys() on Algorithm 3 returns all entries in tsps.



O. Alpos, B. David, J. Mitrovski, O. Sofikitis, and D. Zindros 4:11

Algorithm 2 Protocol pod-core: Code for a client, part 1.

1: R = {R1, . . . , Rn}; {pk1, . . . , pkn} ▷ All replicas and their public keys
2: mrt : R→ ts ▷ The most recent timestamp returned by each replica
3: nextsn : R→ sn ▷ The next sequence number expected by each replica
4: tsps : tx→ (R→ ts) ▷ Timestamp received for each tx from each replica
5: Cpp : R→ vote ▷ Past-perfection certificate: most recent vote from each replica
6: Ctx : tx→ Ctx, where Ctx : R→ vote ▷ Transaction certificates

7: upon init() do ▷ Called once when the client is initialized
8: initState()
9: for Rj ∈ R do: ⟨CONNECT ⟩ → Rj

10: end upon

11: upon ⟨VOTE (tx, ts, sn, σ, Rj)⟩ ← Rj do ▷ Called when client receives a vote
12: if processVote(tx, ts, sn, σ, Rj) then
13: Cpp[Rj ]← (tx, ts, sn, σ, Rj) ▷ Keep most recent vote from Rj in Cpp
14: Ctx[tx][Rj ]← (tx, ts, sn, σ, Rj) ▷ Keep all votes for tx in Ctx
15: end if
16: end upon

17: function write(tx) ▷ Part of pod interface, used to write a new transaction
18: for Rj ∈ R do: ⟨WRITE tx⟩ → Rj

19: end function

20: function read() ▷ Part of pod interface, used to read all transactions
21: T← computeTxSet(tsps, mrt) ▷ Shown in Algorithm 3
22: rperf ← computePastPerfectRound(mrt) ▷ Shown in Algorithm 3
23: D ← (T, rperf) ; C ← (Cpp, Ctx) ; return(D, C)
24: end function

25: function initState()
26: tsps← ∅; Ctx ← ∅
27: for Rj ∈ R do: mrt[Rj ]← 0 ; Cpp[Rj ]← ⊥ ; nextsn[Rj ] = −1
28: end function

29: function processVote(tx, ts, sn, σ, Rj) ▷ Validate vote and update local state
30: require Verify(pkj , (tx, ts, sn), σ) ▷ Otherwise, vote is invalid
31: require sn = nextsn[Rj ] ▷ Otherwise, vote cannot be processed yet
32: require ts ≥ mrt[Rj ] ▷ Otherwise, Rj has sent old timestamp
33: require tsps[tx][Rj ] = ⊥ or tsps[tx][Rj ] = ts ▷ Otherwise, vote is duplicate
34: nextsn[Rj ]← nextsn[Rj ] + 1 ; mrt[Rj ]← ts ; tsps[tx][Rj ]← ts
35: end function

Computing the trace values and the past-perfect round. Function computeTxSet()
(Algorithm 3), computes the current transaction set from the timestamps received so far. A
transaction becomes confirmed when the client receives α votes for it, in which case rconf is
the median of all received timestamps (lines 6–8). The computation of rmin, rmax, and rperf is
done using the functions minPossibleTs(), maxPossibleTs(), and computePastPerfectRound(),
respectively. Function minPossibleTs() gets the timestamps timestamps from each replica on
tx and the most recent timestamps mrt. It fills a missing timestamp from replica Rj with

DISC 2025



4:12 pod: Optimal-Latency, Censorship-Free, Accountable Generalized Consensus

Algorithm 3 Protocol pod-core: Client code, part 2. Functions to compute trace values and
past-perfect round. The code is parametrized with β, the number of Byzantine replicas expected by
the client, and γ, the number of omission-faulty replicas, and α = n − β − γ for n replicas.

1: function computeTxSet(tsps, mrt)
2: T← ∅
3: for tx ∈ tsps.keys() do ▷ loop over all received transactions
4: rmin ← minPossibleTs(tsps[tx], mrt) ; rmax ← maxPossibleTs(tsps[tx])
5: rconf ← ⊥ ; timestamps← [ ]
6: if |tsps[tx].keys()| ≥ α then
7: for Rj ∈ tsps[tx].keys() do: timestamps← timestamps ∥ tsps[tx][Rj ]
8: rconf ← median(timestamps)
9: end if

10: T← T ∪ {(tx, rmin, rmax, rconf)}
11: end for
12: return T
13: end function

14: function minPossibleTs(timestamps, mrt)
15: for Rj ∈ R do
16: if timestamps[Rj ] = ⊥ then timestamps← timestamps ∥ [mrt[Rj ]]
17: end for
18: sort timestamps in increasing order of timestamps
19: timestamps← [0, β times. . . , 0] ∥ timestamps ▷ omitted altogether if β = 0
20: return median(timestamps[: α])
21: end function

22: function maxPossibleTs(timestamps)
23: for Rj ∈ R do
24: if timestamps[Rj ] = ⊥ then timestamps← timestamps ∥ [∞]
25: end for
26: sort timestamps in increasing order of timestamps
27: timestamps← timestamps ∥ [∞, β times. . . ,∞] ▷ omitted altogether if β = 0
28: return median(timestamps[−α :])
29: end function

30: function computePastPerfectRound(mrt)
31: sort mrt in increasing order
32: mrt← [0, β times. . . , 0] ∥mrt ▷ omitted altogether if β = 0
33: return median(mrt[: α])
34: end function

35: function median(Y) : return Y [⌊ |Y |/2 ⌋]

mrt[Rj ] (line 16), the minimum timestamp that can ever be accepted from Rj (see the check
in line 32 of Algorithm 2). It then prepends β times the 0 value, pessimistically assuming that
up to β replicas will try to bias tx by sending a timestamp 0 to other clients. It then returns
the median of the α smallest timestamps, which, again pessimistically, are the smallest
timestamps another client may use to confirm tx. Function maxPossibleTs() is analogous,
filling a missing vote with ∞ (line 24) and appending the ∞ value, the worst-case timestamp



O. Alpos, B. David, J. Mitrovski, O. Sofikitis, and D. Zindros 4:13

that Byzantine replicas may send to other clients. Finally, computePastPerfectRound() is
similar to minPossibleTs() but it operates on timestamps mrt. As honest clients will not
accept a timestamp smaller than mrt on any future transaction (line 32 of Algorithm 2), the
returned value bounds from below the confirmed round of any transaction not yet seen.

4.3 Validation function
The validation function valid() allows a pod client to verify that a given pod data structure
D satisfies the security properties of pod (Definition 11) without necessarily communicating
with pod replicas. The function valid() for pod-core is shown in Section A. The verifier
repeats the logic of an honest client: it is initialized in the same way as a pod client, goes
through the votes found in Ctx, and checks that the resulting values match the ones in D.

4.4 Analysis
▶ Theorem 15 (pod-core security). Assume that the network is partially synchronous with
actual network delay δ, that β is the number of Byzantine replicas, γ the number of omission-
faulty replicas, α = n − β − γ the confirmation threshold, and n ≥ 5β + 3γ + 1 the total
number of replicas. Protocol pod-core (Protocol 1), instantiated with a EUF-CMA secure
signature scheme, the valid() function shown in Algorithm 7, and the identify() function
described in Algorithm 8, is a responsive secure pod (Definition 11) with Confirmation within
u = 2δ, Past-perfection within w = δ and β-accountable safety (Definition 2), except with
negligible probability.

Proof. Shown in Appendix B. ◀

5 Evaluation

To validate our theoretical results regarding optimal latency in Protocol pod-core, we
implement1 a prototype pod-core in Rust 1.85. Our benchmarks measure the end-to-end
confirmation latency of a transaction from the moment it is written by client until it is
read as confirmed by another client in a different continent, both interacting with replicas
distributed around the world. Specifically, the latency is computed as the difference between
the timestamp recorded by the reading client upon receiving sufficiently many votes (quorum
size α) from different replicas and the initial timestamp recorded by the writing client. We
present the results in Figure 4.

The implementation follows a client-server architecture where each replica maintains two
TCP listening sockets: one for the reading client connection and one for the writing client
connection. Upon receiving a transaction payload from a writer, the replica creates a tuple
containing the payload, a sequence number, and the current local timestamp. The replica
then signs this tuple using a Schnorr signature2 on secp256k1 curve, appends it to its local
log, and forwards the signed tuple to the reading client. Replicas are deployed round-robin
across seven AWS regions: Frankfurt, London, N. Virginia, N. California, Canada, Mumbai,
and Seoul. Each replica is deployed on a t2.medium EC2 instance (2 vCPUs, 4GB RAM)
and is initialized with user data that contains the replica’s unique secret signing key.

1 Our prototype implementation is available at https://github.com/commonprefix/pod-experiments
2 https://crates.io/crates/secp256k1

DISC 2025

https://github.com/commonprefix/pod-experiments
https://crates.io/crates/secp256k1


4:14 pod: Optimal-Latency, Censorship-Free, Accountable Generalized Consensus

15 100 200 300 400 500 600 700 800 900 1000

Number of replicas (n)

0

50

100

150

200

250

300

350

400
L

at
en

cy
(m

s)

End-to-end confirmation latency vs number of replicas

β = 0, γ = b1
3
nc

β = b1
5
nc, γ = 0

RTT

Figure 4 End-to-end confirmation latency from a writing client to a reading client as a transaction
traverses across n = 15, . . . , 1000 replicas, for two reading clients: (1) a client that expects up to
γ = ⌊ 1

3 n⌋ omission faults (blue line, below), and (2) a client that expects up to β = ⌊ 1
5 n⌋ Byzantine

faults (orange line, above). The physical network round-trip time between the reading client and the
writing client is also shown (dashed red line, 76ms). A 95% confidence interval is shown (shaded).

We implement two types of clients. The writing client establishes connections to all
replicas, records the timestamp (in its local view) right before sending the transaction and
sends transaction payloads to each replica. The reading client maintains connections to
all replicas, validates incoming signed transactions, and records the timestamp (in its local
view) upon receiving a quorum of valid signatures for a particular transaction. We deploy
the reading client in London and the writing client in N. Virginia, both initialized with the
complete list of replica information (IP addresses, public keys).

We conduct experiments with two different values for the quorum size α = 1− β − γ: (1)
β = 0 and γ = ⌊ 1

3 n⌋, for a client that only expects omission faults, and (2) β = ⌊ 1
5 n⌋ and

γ = 0, for a client that expects Byzantine faults. We repeat the experiments for different
numbers of replicas (n = 15, . . . , 1000). We repeat each experiment five times and report the
mean latency and a 95% confidence interval.

As shown in Figure 4, our experimental results demonstrate that the latency remains
largely independent of the number of replicas. The reading client reports a transaction as
confirmed as soon as the fastest α replicas have responded, which gives rise to the happy
artifact that the 1 - α slowest replicas do not slow down confirmation. This also explains why
the omission-fault experiment exhibits lower latency than the Byzantine experiment. Even
with 1000 replicas the mean confirmation latency is 138ms for the omission-fault experiment
and 375ms for the Byzantine experiment. This approximates the physical network round-trip
time between the reading client and the writing client that stands at 76ms.



O. Alpos, B. David, J. Mitrovski, O. Sofikitis, and D. Zindros 4:15

6 Auctions on pod through the bidset protocol

In this section, we show how single-shot distributed auctions can be implemented on top
of pod. This is achieved through bidset, a primitive for collecting a set of bids. The idea is
as follows. A pre-appointed sequencer – which can be any party, even a pod replica – runs
the auction, but the bids are collected from pod using a bidset protocol. The past-perfection
property of pod renders the sequencer unable to censor bids: when it creates an output,
all timely and honestly-written bids must be in it, otherwise the sequencer has provably
misbehaved and can be held accountable.

▶ Definition 16 (bidset protocol). A bidset protocol has a starting time parameter t0 and
exposes the following interfaces to bidder and consumer parties:

function submitBid(b): It is called by a bidder at round t0 to submit a bid b.
event result(B, Cbid): It is an event generated by a consumer. It contains a bid-set B,
which is a set of bids, and auxiliary information Cbid.

A bidset protocol satisfies the following liveness and safety properties:
(Liveness) Termination within W : An honest consumer generates an event result(B, Cbid)

by round t0 + W .
(Safety) Censorship resistance: If an honest bidder calls submitBid(b) and an honest con-

sumer generates an event result(B, ·), then b ∈ B.
(Safety) Weak consistency: If two honest consumers generate result(B1, ·) and result(B2, ·)

events, such that B1 ̸= ∅ and B2 ̸= ∅, then B1 = B2.

▶ Protocol 2 (bidset-core). Construction bidset-core is parameterized by an integer ∆ (looking
ahead, we will prove security in synchrony, i.e., assuming the network delay δ is smaller than
∆) and assumes digital signatures and a pod with δ-timeliness, w = δ and u = 2δ. At time
t0, bidders execute Algorithm 4, the sequencer Algorithm 5, and the consumers Algorithm 6.

Algorithm 4 bidset-core: Code for a bidder. It runs a client for a pod-core instance pod.

1: function submitBid(b)
2: pod.write(b)
3: end function

Algorithm 5 bidset-core: Code for the sequencer. It runs a client for a pod-core instance pod,
and ska denotes the secret key of the sequencer.

1: function readBids()
2: ((T, rperf), (Cpp,Ctx))← pod.read()
3: while rperf ≤ t0 + ∆ do: ((T, rperf), (Cpp,Ctx))← pod.read()
4: B ← {tx | (tx, ·, ·, ·) ∈ T}; Cbid ← Cpp
5: σ ← Sign(ska, (B, Cbid))
6: tx← ⟨BIDS (B, Cbid, σ)⟩
7: pod.write(tx)
8: end function

A bidder (Algorithm 4) submits a bid by writing it on the pod at round t0. The sequencer
(Algorithm 5) waits until the pod returns a past-perfect round larger than t0 +∆ (Algorithm 5)
and then constructs the bid-set B from the set of transactions in T (Algorithm 5). The
sequencer concludes by signing B and Cbid (which can be used as evidence, in case of a safety
violation) and writing ⟨BIDS (B, Cbid, σ)⟩ on pod. The consumer (Algorithm 6) waits until

DISC 2025



4:16 pod: Optimal-Latency, Censorship-Free, Accountable Generalized Consensus

Algorithm 6 bidset-core: Code for a consumer. It runs a client for a pod-core instance pod.

1: function readResult()
2: loop
3: ((T, rperf), (Cpp,Ctx))← pod.read()
4: if ∃(tx, ·, ·, rconf, ·) ∈ T : tx = ⟨BIDS (B, Cbid, σ)⟩ and rconf ≤ t0 + 3∆ then
5: output event result(B, Cbid)
6: else if rperf > t0 + 3∆ then
7: output event result(∅, Cpp)
8: end if
9: end loop

10: end function

one of the following two conditions is met. First, a confirmed transaction ⟨BIDS (B, Cbid, σ)⟩
appears in T, for which rconf ≤ t0 + 3∆ (Algorithm 6), in which case it outputs bid-set B

as result. Second, a round higher than t0 + 3∆ becomes past-perfect in pod (Algorithm 6)
without a confirmed ⟨BIDS ⟩ transaction appearing, in which case it outputs B = ∅.

▶ Theorem 17 (Bidset security). Assuming a synchronous network where δ ≤ ∆, protocol
bidset-core (Construction 2) instantiated with a digital signature and a secure pod protocol
that satisfies the past-perfection within w = δ, confirmation within u = 2δ and δ-timeliness
properties, is a secure bidset protocol satisfying termination within W = 3∆ + δ. It satisfies
accountable safety with an identifySequencer() function that identifies a malicious sequencer.

Proof. Additional intuition, formal proofs, and identifySequencer() are shown in the full
version of this paper [2, Appendix D]. ◀

▶ Remark 18. Observe that bidset-core terminates within W = 3∆ + δ in the worst case, but,
if the sequencer is honest, then it terminates within W = ∆ + 3δ. Moreover, bidset-core is
not responsive because Algorithm 5 waits for a fixed ∆ interval. This step can be optimized
if the set of bidders is known (e.g., requiring them to pre-register), which allows for the
protocol to be made optimistically responsive (i.e., W = 4δ) when all parties are honest.
▶ Remark 19 (Implicit sub-session identifiers). We assume that each instance of the bidset-core
protocol is identified by a unique sub-session identifier (ssid). All messages written to the
underlying pod are concatenated with the ssid.

7 Conclusion

In this work we present pod, a novel consensus layer that finalizes transactions with the
optimal one-round-trip latency by eliminating communication among replicas. Instead, clients
read the system state by performing lightweight computation on logs retrieved from the
replicas. As no validator has a particular role in pod (as compared to leaders, block proposers,
miners, etc. in similar protocols), pod achieves censorship resistance by default, without any
extra mechanisms or additional cost. Furthermore, validator misbehavior, such as voting in
incompatible ways or censoring confirmed transactions, is accountable.

As an application, we present an efficient and censorship-resistant mechanism for single-
shot first-price and second-price open auctions, which leverages pod as a bulletin board. We
show how the accountability, offered by pod, is also inherited by applications built on it –
the auctioneer cannot censor confirmed bids without being detected. In the full version [2] of
this paper we discuss further applications, including payments in the style of Fastpay [5].



O. Alpos, B. David, J. Mitrovski, O. Sofikitis, and D. Zindros 4:17

We conjecture that single-shot sealed bid auction protocols, such as those of [12, 4, 9, 24,
6, 13], can also be instantiated on top of a bidset protocol. Intuitively, this holds because such
protocols first agree on a set of sealed bids and then determine the winner. A formal analysis
of sealed-bid auction protocols based on bidset is left as future work. The architecture of
pod also motivates the design of light clients, which would not have to connect to all replicas
or to download all transactions. This is achieved through cryptographic primitives such as
Merkle mountain ranges and segment trees. We leave the formal description as future work.

Finally, we remark that pod differs from standard notions of consensus because it does
not offer an agreement property, neither to validators nor to clients. A client reading the pod
obtains a past-perfect round rperf, and it is guaranteed to have received all transactions that
obtained a confirmed round rconf such that rconf ≤ rperf, or that may obtain such an rconf in the
future, even though the transaction presently appears to the client as unconfirmed. However,
the client cannot tell which unconfirmed transactions will become confirmed. Moreover, a
transaction might appear confirmed to one client and unconfirmed to another (in this case,
this is a transaction written by a malicious client).

References
1 Marcos Kawazoe Aguilera and Sam Toueg. A simple bivalency proof that t-resilient consensus

requires t + 1 rounds. Inf. Process. Lett., 71(3-4):155–158, 1999. doi:10.1016/S0020-0190(99)
00100-3.

2 Orestis Alpos, Bernardo David, and Dionysis Zindros. Pod: An optimal-latency, censorship-
free, and accountable generalized consensus layer. CoRR, abs/2501.14931, 2025. doi:10.
48550/arXiv.2501.14931.

3 Kushal Babel, Andrey Chursin, George Danezis, Lefteris Kokoris-Kogias, and Alberto Sonnino.
Mysticeti: Low-latency DAG consensus with fast commit path. CoRR, abs/2310.14821, 2023.
doi:10.48550/arXiv.2310.14821.

4 Samiran Bag, Feng Hao, Siamak F. Shahandashti, and Indranil Ghosh Ray. Seal: Sealed-bid
auction without auctioneers. IEEE Transactions on Information Forensics and Security,
15:2042–2052, 2020. doi:10.1109/TIFS.2019.2955793.

5 Mathieu Baudet, George Danezis, and Alberto Sonnino. Fastpay: High-performance byzantine
fault tolerant settlement. In AFT, pages 163–177. ACM, 2020. doi:10.1145/3419614.3423249.

6 Tarun Chitra, Matheus V. X. Ferreira, and Kshitij Kulkarni. Credible, Optimal Auctions via
Public Broadcast. In Rainer Böhme and Lucianna Kiffer, editors, 6th Conference on Advances
in Financial Technologies (AFT 2024), volume 316 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 19:1–19:16, Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik. doi:10.4230/LIPIcs.AFT.2024.19.

7 Daniel Collins, Rachid Guerraoui, Jovan Komatovic, Petr Kuznetsov, Matteo Monti, Matej
Pavlovic, Yvonne-Anne Pignolet, Dragos-Adrian Seredinschi, Andrei Tonkikh, and Athanasios
Xygkis. Online payments by merely broadcasting messages. In 50th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN 2020, Valencia, Spain,
June 29 - July 2, 2020, pages 26–38. IEEE, 2020. doi:10.1109/DSN48063.2020.00023.

8 George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander Spiegelman. Narwhal
and tusk: a dag-based mempool and efficient BFT consensus. In EuroSys, pages 34–50. ACM,
2022. doi:10.1145/3492321.3519594.

9 Bernardo David, Lorenzo Gentile, and Mohsen Pourpouneh. FAST: Fair auctions via secret
transactions. In Giuseppe Ateniese and Daniele Venturi, editors, ACNS 22International
Conference on Applied Cryptography and Network Security, volume 13269 of LNCS, pages
727–747. Springer, Cham, June 2022. doi:10.1007/978-3-031-09234-3_36.

DISC 2025

https://doi.org/10.1016/S0020-0190(99)00100-3
https://doi.org/10.1016/S0020-0190(99)00100-3
https://doi.org/10.48550/arXiv.2501.14931
https://doi.org/10.48550/arXiv.2501.14931
https://doi.org/10.48550/arXiv.2310.14821
https://doi.org/10.1109/TIFS.2019.2955793
https://doi.org/10.1145/3419614.3423249
https://doi.org/10.4230/LIPIcs.AFT.2024.19
https://doi.org/10.1109/DSN48063.2020.00023
https://doi.org/10.1145/3492321.3519594
https://doi.org/10.1007/978-3-031-09234-3_36


4:18 pod: Optimal-Latency, Censorship-Free, Accountable Generalized Consensus

10 Isaac Doidge, Raghavendra Ramesh, Nibesh Shrestha, and Joshua Tobkin. Moonshot: Optim-
izing chain-based rotating leader BFT via optimistic proposals. CoRR, abs/2401.01791, 2024.
doi:10.48550/arXiv.2401.01791.

11 Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony. J. ACM, 35(2):288–323, April 1988. doi:10.1145/42282.42283.

12 Hisham S. Galal and Amr M. Youssef. Trustee: Full privacy preserving vickrey auction on
top of ethereum. In Andrea Bracciali, Jeremy Clark, Federico Pintore, Peter B. Rønne, and
Massimiliano Sala, editors, Financial Cryptography and Data Security, pages 190–207, Cham,
2020. Springer International Publishing.

13 Chaya Ganesh, Shreyas Gupta, Bhavana Kanukurthi, and Girisha Shankar. Secure vickrey
auctions with rational parties. Cryptology ePrint Archive, Paper 2024/1011, 2024. To appear
at CCS 2024. doi:10.1145/3658644.3670311.

14 Juan A. Garay, Jonathan Katz, Chiu-Yuen Koo, and Rafail Ostrovsky. Round complexity of
authenticated broadcast with a dishonest majority. In FOCS, pages 658–668. IEEE Computer
Society, 2007. doi:10.1109/FOCS.2007.44.

15 Peter Gazi, Ling Ren, and Alexander Russell. Practical settlement bounds for longest-chain
consensus. In Helena Handschuh and Anna Lysyanskaya, editors, Advances in Cryptology -
CRYPTO 2023 - 43rd Annual International Cryptology Conference, CRYPTO 2023, Santa
Barbara, CA, USA, August 20-24, 2023, Proceedings, Part I, volume 14081 of Lecture Notes
in Computer Science, pages 107–138. Springer, 2023. doi:10.1007/978-3-031-38557-5_4.

16 Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander Spiegelman, and Zhuolun
Xiang. Jolteon and ditto: Network-adaptive efficient consensus with asynchronous fallback. In
Financial Cryptography, volume 13411 of Lecture Notes in Computer Science, pages 296–315.
Springer, 2022. doi:10.1007/978-3-031-18283-9_14.

17 Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308, 1988. doi:
10.1137/0217017.

18 Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovic, and Dragos-Adrian Sered-
inschi. The consensus number of a cryptocurrency. Distributed Comput., 35(1):1–15, 2022.
doi:10.1007/S00446-021-00399-2.

19 Dahlia Malkhi and Kartik Nayak. Extended abstract: Hotstuff-2: Optimal two-phase responsive
BFT. IACR Cryptol. ePrint Arch., page 397, 2023. URL: https://eprint.iacr.org/2023/
397.

20 Joachim Neu, Ertem Nusret Tas, and David Tse. The availability-accountability dilemma
and its resolution via accountability gadgets. In Ittay Eyal and Juan A. Garay, editors, FC
2022, volume 13411 of LNCS, pages 541–559. Springer, Cham, May 2022. doi:10.1007/
978-3-031-18283-9_27.

21 Barbara Simons. An overview of clock synchronization. In Barbara Simons and Alfred Spector,
editors, Fault-Tolerant Distributed Computing, pages 84–96, New York, NY, 1990. Springer
New York.

22 Jakub Sliwinski and Roger Wattenhofer. ABC: asynchronous blockchain without consensus.
CoRR, abs/1909.10926, 2019. arXiv:1909.10926.

23 Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lefteris Kokoris-Kogias. Bull-
shark: The partially synchronous version. CoRR, abs/2209.05633, 2022. doi:10.48550/arXiv.
2209.05633.

24 Nirvan Tyagi, Arasu Arun, Cody Freitag, Riad Wahby, Joseph Bonneau, and David Mazières.
Riggs: Decentralized sealed-bid auctions. In Weizhi Meng, Christian Damsgaard Jensen, Cas
Cremers, and Engin Kirda, editors, ACM CCS 2023, pages 1227–1241. ACM Press, November
2023. doi:10.1145/3576915.3623182.

25 Apostolos Tzinas, Srivatsan Sridhar, and Dionysis Zindros. On-chain timestamps are accurate.
Cryptology ePrint Archive, Report 2023/1648, 2023. URL: https://eprint.iacr.org/2023/
1648.

https://doi.org/10.48550/arXiv.2401.01791
https://doi.org/10.1145/42282.42283
https://doi.org/10.1145/3658644.3670311
https://doi.org/10.1109/FOCS.2007.44
https://doi.org/10.1007/978-3-031-38557-5_4
https://doi.org/10.1007/978-3-031-18283-9_14
https://doi.org/10.1137/0217017
https://doi.org/10.1137/0217017
https://doi.org/10.1007/S00446-021-00399-2
https://eprint.iacr.org/2023/397
https://eprint.iacr.org/2023/397
https://doi.org/10.1007/978-3-031-18283-9_27
https://doi.org/10.1007/978-3-031-18283-9_27
https://arxiv.org/abs/1909.10926
https://doi.org/10.48550/arXiv.2209.05633
https://doi.org/10.48550/arXiv.2209.05633
https://doi.org/10.1145/3576915.3623182
https://eprint.iacr.org/2023/1648
https://eprint.iacr.org/2023/1648


O. Alpos, B. David, J. Mitrovski, O. Sofikitis, and D. Zindros 4:19

26 Josef Widder. Booting clock synchronization in partially synchronous systems. In Faith Ellen
Fich, editor, Distributed Computing, pages 121–135, Berlin, Heidelberg, 2003. Springer Berlin
Heidelberg. doi:10.1007/978-3-540-39989-6_9.

27 Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta, and Ittai Abraham. Hotstuff:
BFT consensus with linearity and responsiveness. In PODC, pages 347–356. ACM, 2019.
doi:10.1145/3293611.3331591.

A Validation function for pod-core

In this section we present the function valid(), which allows a pod client, which is not
necessarily communicating with the pod replicas, to verify that a given pod data structure
D satisfies the security properties of pod (Definition 11).

Algorithm 7 Function valid(D, C) for pod-core. Code for a verifier, which can be a pod client
not communicating with the pod replicas.

1: State: Same as in Algorithm 2, includes {R1, . . . , Rn}, tsps, mrt.

2: function valid(D, C)
3: (Cpp,Ctx)← C ▷ Cpp : R→ vote, Ctx : tx→ Ctx, Ctx : R→ vote
4: initState() ▷ shown in Algorithm 2
5: allVotes←

⋃
tx∈Ctx

(Ctx[tx].values())
6: for (tx, ts, sn, σ, Rj) ∈ allVotes in increasing order of sn do
7: require processVote(tx, ts, sn, σ, Rj) ▷ shown in Algorithm 2, updates tsps, mrt
8: end for
9: require D.T = computeTxSet(tsps, mrt) ▷ shown in Algorithm 3

10: require D.rperf = computePastPerfectRound(mrt) ▷ shown in Algorithm 3
11: for (tx, ts, sn, σ, Rj) ∈ Cpp.values() do
12: require (tx, ts, sn, σ, Rj) ∈ allVotes
13: require sn = maxsn′((·, ·, sn′, ·, Rj) ∈ allVotes)
14: end for
15: end function

The function valid() for pod-core is shown in Algorithm 7. The idea is to have the
verifier repeat the logic of an honest client. The verifier is initialized in the same way as in
Algorithm 2 – importantly, it knows the identifiers and public keys of pod replicas. Function
valid() takes as input a pod data structure D and auxiliary data C, which contains two
parts, a past-perfection certificate Cpp and a collection of transaction certificates Ctx, one for
each transaction in D.T. Both contain vote messages, as constructed by a pod client in lines
13 and 14 of Algorithm 2. The verifier processes each vote in order of increasing sequence
number sn using function processVote(). If any vote is invalid, valid() returns false. Observe
that if the votes are valid the verifier will have updated its local tsps and mrt variables with
the same values as the pod client that constructed D. Finally, the verifier computes the
transaction set T and the past-perfect round rperf (using its local tsps and mrt variables) and
requires that the values match the ones in D (lines 9–10).

Finally, the verifier also verifies the past-perfection certificate. Given that the previous
checks have passed, we require that each vote in Cpp is contained in one of the transaction
certificates in Ctx and has the maximum sequence number received from the client that
sent the vote (lines 11–14). As we have remarked earlier, Cpp can be derived from Ctx by
taking the union of certificates Ctx for all transactions and keeping the most recent vote
for each replica, in which case the checks on lines 11–14 can be omitted. We maintain the
past-perfection certificate for readability and simplicity in the proofs.

DISC 2025

https://doi.org/10.1007/978-3-540-39989-6_9
https://doi.org/10.1145/3293611.3331591


4:20 pod: Optimal-Latency, Censorship-Free, Accountable Generalized Consensus

B Security of Protocol pod-core under a Continuum of Byzantine and
Omission faults

In order to prove Theorem 15 and establish the security of Protocol pod-core shown Con-
struction 1, we first prove some useful intermediate results. We remind that n = α + β + γ,
where n denotes the total number of replicas, β denotes the number of Byzantine replicas, γ

denotes the number of omission-faulty replicas in an execution, and α denotes the number of
replicas required to confirm a transaction.

▶ Lemma 20 (The values for minimum, maximum and confirmed rounds). Regarding Al-
gorithm 3, we have the following. Consider the list of all timestamps received by a client for
a particular transaction, replacing a missing vote from Rj with a special value (mrt[Rj ] for
computing rmin, ∞ for computing rmax), to get n values in total, sorted in increasing order.
Assume mrt is also sorted in increasing order of timestamps.
1. rmin is the timestamp at index ⌊α/2⌋ − β of this list.
2. rmax is the timestamp at index n− α + ⌊α/2⌋+ β of this list.
3. rperf is the timestamp at index ⌊α/2⌋ − β of mrt.

Proof. Functions minPossibleTs() and computePastPerfectRound() prepend β times the 0
value in the beginning of the list and return the median of the first α values, hence they
return the timestamp at index ⌊α/2⌋ − β. Function maxPossibleTs() appends β times the ∞
value at the end of the list and returns the median of the last α values of that list, that is, it
ignores the first n−α + β values and returns the timestamp at index n−α + β + ⌊α/2⌋. ◀

▶ Lemma 21 (rperf bounded by honest timestamp). Assuming n ≥ 5β + 3γ + 1 (equiv.,
α ≥ 4β + 2γ + 1), for a valid pod D with auxiliary data C = (Cpp,Ctx), there exists some
honest replica Rj , such that the most-recent timestamp mrt from Rj included in Cpp satisfies
mrt ≤ D.rperf.

Proof. Since valid(D, C) = true, the past-perfect round D.rperf is the value returned by
computePastPerfectRound() of Algorithm 3. From Lemma 20 we have that rperf is the
timestamp at index ⌊α/2⌋ − β of sorted mrt. The condition α ≥ 4β + 2γ + 1 implies that
β + γ ≤ ⌊α/2⌋ − β, hence the number of not honest replicas (β + γ) cannot fill all positions
between 0 and ⌊α/2⌋−β, hence at least one of the indexes between 0 and ⌊α/2⌋−β (inclusive)
will contain the timestamp created and sent by an honest replica. ◀

We now recall Theorem 15, which we prove through a series of lemmas.

▶ Theorem 15 (pod-core security). Assume that the network is partially synchronous with
actual network delay δ, that β is the number of Byzantine replicas, γ the number of omission-
faulty replicas, α = n − β − γ the confirmation threshold, and n ≥ 5β + 3γ + 1 the total
number of replicas. Protocol pod-core (Protocol 1), instantiated with a EUF-CMA secure
signature scheme, the valid() function shown in Algorithm 7, and the identify() function
described in Algorithm 8, is a responsive secure pod (Definition 11) with Confirmation within
u = 2δ, Past-perfection within w = δ and β-accountable safety (Definition 2), except with
negligible probability.

Proof. Follows from Lemmas 22–26, presented and proven in the remainder of this section. ◀

▶ Lemma 22 (Confirmation within u). For the conditions stated in Theorem 15, Protocol 1
satisfies the confirmation within u property (Definition 11) for u = 2δ.



O. Alpos, B. David, J. Mitrovski, O. Sofikitis, and D. Zindros 4:21

Proof. Assume an honest client c calls write(tx) at round r. It sends message ⟨WRITE tx⟩
to all replicas at round r (line 18). An honest replica receives this by round r + δ and sends a
⟨VOTE ⟩ message back to all connected clients (line 20). An honest client c′ receives the
vote by round r + 2δ. As are at least α honest replicas, c′ receives at least α such votes,
hence the condition in line 6 is satisfied and c′ observes tx as confirmed. ◀

▶ Lemma 23 (Past-perfection within w). For the conditions stated in Theorem 15, Protocol 1
satisfies the past-perfection within w property (Definition 11) for w = δ.

Proof. Assume an honest client c at round r has view Dc
r . From Lemma 21, there exists

some honest replica Rj , such that the most-recent timestamp mrt[Rj ] that Rj has sent to
c satisfies Dc

r .rperf ≥ mrt[Rj ]. The honest replica Rj sends at least one heartbeat or vote
message per round (line 25), which arrives within δ rounds, and an honest client updates
mrt[Rj ] when it receives the heartbeat or vote message. Hence, c will have mrt[Rj ] ≥ r− δ.
All together, Dc

r .rperf ≥ r− δ. ◀

▶ Lemma 24 (Past-perfection safety). For the conditions stated in Theorem 15, Protocol 1
satisfies the past-perfection safety property (Definition 11), except with negligible probability.

Proof. Assume the adversary outputs valid (D1, C1) and (D2, C2) that violate the
property, i.e., there exists a transaction tx such that (tx, r1

min, r1
max, r1

conf) ̸∈ D1.T and
(tx, r2

min, r2
max, r2

conf) ∈ D2.T and r2
conf ̸= ⊥ and r2

conf < D1.rperf. Let C1 = (C1
pp,C1

tx) and
C2 = (C2

pp,C2
tx).

Let R1 be the set of replicas Ri for which C1
pp contains a vote with timestamp mrti ≥

D1.rperf. From Lemma 20 (rperf is computed as the timestamp at index ⌊α/2⌋ − β of
sorted mrt), and since D1 is valid, there exist at least n − ⌊a/2⌋ + β such replicas, hence
|R1| ≥ n−⌊a/2⌋+β. For each Ri ∈ R1, the transaction certificates C1

tx contain the whole log
of Ri with timestamps up to mrti (line 31 of Algorithm 2 does not allow gaps in the sequence
number of the received votes). That is, for each Ri ∈ R1 the certificates C1

tx contains votes

(txi,1, tsi,1, 1, σi,1, Ri), (txi,2, tsi,2, 2, σi,2, Ri), . . . , (txi,ki
, tsi,ki

, ki, σi,ki
, Ri), (1)

where ki is the smallest sequence number for which tsi,ki
≥ D1.rperf, and txi,j are transactions.

Since tx is confirmed in D2 and r2
conf < D1.rperf, the transaction certificate C2

tx[tx] must
contain votes on tx with timestamp tsi, such that tsi < D1.rperf, from at least ⌊α/2⌋ + 1
replicas. Let R2 be the set of these replicas, with |R2| ≥ ⌊α/2⌋ + 1. For each Ri ∈ R2,
certificate C2

tx[tx] contains a vote

(tx, tsi, sni, σi, Ri), (2)

such that tsi < D1.rperf. We will show that, if at most β replicas are Byzantine, this leads
to a contradiction. Observe from the cardinality of R1 and R2 that at least β + 1 replicas
must be in both sets, hence at least one honest replica must be in both sets (except if the
adversary forges a signature under the public key of an honest replica, which happens with
negligible probability). For that replica, the vote in (2) must be one of the votes in (1) since
tsi < D1.rperf and tsi,mi ≥ D1.rperf. Hence, one of the txi,j in (1) is tx, and tx must appear
in D1.T, a contradiction. ◀

▶ Lemma 25 (Confirmation bounds). For the conditions stated in Theorem 15, Protocol 1
satisfies the confirmation bounds property (Definition 11), except with negligible probability.

DISC 2025



4:22 pod: Optimal-Latency, Censorship-Free, Accountable Generalized Consensus

Algorithm 8 The identify() function for Protocol pod-core (Protocol 1).

1: function identify(T )
2: R̃← ∅
3: for ⟨VOTE (tx1, ts1, sn1, σ1, R1)⟩ ∈ T do
4: if not Verify(pk1, (tx1, ts1, sn1), σ1) then continue
5: for ⟨VOTE (tx2, ts2, sn2, σ2, R2)⟩ ∈ T do
6: if not Verify(pk2, (tx2, ts2, sn2), σ2) then continue
7: if R1 = R2 and sn1 = sn2 and (tx1 ̸= tx2 or ts1 ̸= ts2) then
8: R̃← R̃ ∪ {R1}
9: end if

10: end for
11: end for
12: end function

Proof. Assume the adversary outputs (D1, C1) and (D2, C2), such that valid(D1, C1) ∧
valid(D2, C2) and there exists a transaction tx such that (tx, r1

min, r1
max, r1

conf) ∈ D1.T and
(tx, r2

min, r2
max, r2

conf) ∈ D2.T. Let C1 = (C1
pp,C1

tx) and C2 = (C2
pp,C2

tx), and C1
tx = C1

tx[tx]
and C2

tx = C2
tx[tx].

First assume r1
min > r2

conf. From Lemma 20, C1
tx can include at most ⌊α/2⌋−β votes with

a timestamp for tx smaller than r1
min. Allowing up to β replicas to equivocate, the adversary

can obtain at most ⌊α/2⌋ votes on tx with a timestamp smaller than r1
min, except if it forges

a digital signature from an honest replica, which happens with negligible probability. In
order to compute r2

conf < r1
min for tx, the adversary must include in C2

tx timestamps smaller
than r1

min from at least ⌊α/2⌋+ 1 replicas.
Now assume r1

max < r2
conf. Using Lemma 20, C1

tx can include at most α− ⌊α/2⌋ − β − 1
votes with a timestamp larger than rmax, hence the number of honest replicas, from which a
vote with timestamp larger than rmax can be included in C2

tx is at most α− ⌊α/2⌋ − 1 (since
β are malicious). If α is odd, this upper bound becomes α − ⌊α/2⌋ − 1 = ⌊α/2⌋, while at
least ⌊α/2⌋+ 1 votes larger that rmax are required to compute a median larger than rmax,
and if α is even, then α− ⌊α/2⌋ − 1 = ⌊α/2⌋ − 1, while at least ⌊α/2⌋ votes larger that rmax
are required to compute a median larger than rmax. (We remind that Algorithm 3 returns as
median the value at position ⌊α/2⌋). In either case, we get a contradiction, except for the
negligible probability that the adversary forges a digital signature from an honest replica. ◀

▶ Lemma 26 (β-Accountable safety). For the conditions stated in Theorem 15, Protocol 1
satisfies accountable safety (Definition 2) with resilience β, except with negligible probability.

Proof. We show that identify() (Algorithm 8) satisfies the correctness and no-framing prop-
erties required by Definition 2, in three steps.
1. If the past-perfection safety property (Definition 11) is violated, there exists a partial
transcript T , such that identify() on input T returns at least β replicas.
Proof: We resume the proof of Lemma 24. There, we constructed sets R1,R2, such that
R1 ∩R2 ≥ β + 1. We saw that, for each Ri ∈ R1 ∩R2, certificates C1

tx contain the replica
log shown in (1), containing all votes with timestamp up to tsi,ki

≥ rperf. In a similar logic,
certificates C2

tx contains the following k′
i votes from Ri (possibly more, but we care for the

votes up to transaction tx)

(tx′
i,1, ts′

i,1, 1, σ′
i,1, Ri), (tx′

i,2, ts′
i,2, 2, σ′

i,2, Ri), . . . , (tx′
i,k′

i
, ts′

i,k′
i
, k′

i, σ′
i,k′

i
, Ri), (3)



O. Alpos, B. David, J. Mitrovski, O. Sofikitis, and D. Zindros 4:23

with tx′
i,k′

i
= tx and ts′

i,k′
i

< rperf. Obviously, for an honest Ri, the replica logs of (1) and (3)
must be identical, i.e., txi,j = tx′

i,j and tsi,j = ts′
i,j , for j ∈ [1, min(ki, k′

i)]. We will show that
they differ in at least one sequence number. If ki > k′

i, then the replica logs differ at sequence
number k′

i, because the transaction txi,ki
in (1) cannot be tx, as D1.T does not contain tx,

and tx′
i,k′

i
= tx. If ki ≤ k′

i, the log of (1) should be identical with the first ki positions of
the log of (3), which would imply that tsi,ki

= ts′
i,ki

and, since a valid pod only accepts
non-decreasing timestamps, ts′

i,ki
≤ ts′

i,k′
i
, and all together tsi,ki

≤ ts′
i,k′

i
. This is impossible,

because tsi,ki > rperf and ts′
i,k′

i
< rperf. Hence, the two logs will contain a different timestamp

for some sequence number in [1, k′
i].

Summarizing, we have shown for at least β + 1 replicas Ri ∈ R1 ∩ R2, certificate C1
and C2 contain votes (tx1, ts1, sn1, σ1, Ri) and (tx2, ts2, sn2, σ2, Ri), such that sn1 = sn2 but
tx1 ̸= tx2 or ts1 ̸= ts2. On input a set T that contains these votes, function identify(T )
returns R1 ∩R2.
2. If the confirmation-bounds property (Definition 11) is violated, there exists a partial
transcript T , such that Algorithm 8 on input T returns at least β replicas.
Proof: As in the proof of Lemma 25, assume the adversary outputs (D1, C1) and
(D2, C2), such that valid(D1, C1) ∧ valid(D2, C2) and there exists a transaction tx such
that (tx, r1

min, r1
max, r1

conf) ∈ D1.T, (tx, r2
min, r2

max, r2
conf) ∈ D2.T, and r1

min > r2
conf ∨ r1

max < r2
conf

Let C1 = (C1
pp,C1

tx) and C2 = (C2
pp,C2

tx), and C1
tx = C1

tx[tx] and C2
tx = C2

tx[tx].
Let’s take the case r1

min > r2
conf first. From Lemma 20 (timestamps contains at least

n−⌊α/2⌋+β timestamps ts such that ts ≥ rmin), there is a set R1 with at least n−⌊α/2⌋+β

replicas Ri, from each of which C1
tx contains votes

(txi,1, tsi,1, 1, σi,1, Ri), (txi,2, tsi,2, 2, σi,2, Ri), . . . , (txi,mi , tsi,mi , mi, σi,mi , Ri), (4)

up to some sequence number mi, such that tsi,mi
≥ rmin and either txi,mi

= tx (i.e., a
vote from Ri on tx is included in C1

tx, and we only consider the votes up to this one), or
txi,j ̸= tx,∀j ≤ mi (i.e., a vote from Ri on tx is not included in C1

tx, in which case timestamps
contains the timestamp Ri has sent on txi,mi ̸= tx).

Now, for a valid D2 to output r2
conf < r1

min, certificate C2
tx must contain timestamps

smaller than rmin from at least ⌊α/2⌋ + 1 replicas. Call this set R2. From each of these
replicas, certificates C2

tx must contain votes

(tx′
i,1, ts′

i,1, 1, σ′
i,1, Ri), (tx′

i,2, ts′
i,2, 2, σ′

i,2, Ri), . . . , (tx, ts′
i,m′

i
, m′

i, σ′
i,m′

i
, Ri), (5)

considering only votes up to tx, for which ts′
i,m′

i
< rmin.

By counting arguments there are at least β +1 replicas in R1∩R2. For each one, we make
the following argument. Since tsi,mi ≥ rmin and ts′

i,m′
i

< rmin, we get ts′
i,m′

i
< tsi,mi , and it

must be the case that m′
i < mi (otherwise, the two logs will differ at a smaller sequence

number, similar to the previous case). But in this case the two logs differ at sequence number
m′

i, i.e., txi,m′
i
̸= tx′

i,m′
i

= tx. This is because the log of (4) either does not contain tx, or
contains it at sequence number mi > m′

i, in which case it must contain a different transaction
at sequence number m′

i. On input a set T that contains all votes for replicas in R1 and R2
votes, function identify(T ) returns R1 ∩R2.

For the case r1
max < r2

conf, similar arguments apply. In order to compute r2
conf > r1

max,
certificate C2

tx must contain at least ⌊α/2⌋ or ⌊α/2⌋+ 1 (depending on the parity of α) votes
on tx with timestamp larger than rmax. On the other hand, from Lemma 20 certificate C1

tx
contains at least n− α + ⌊α/2⌋+ β votes on tx with a timestamp smaller or equal than rmax.
As before, the replicas in the intersection of these two sets have sent conflicting votes for
some sequence numbers.

DISC 2025



4:24 pod: Optimal-Latency, Censorship-Free, Accountable Generalized Consensus

3. The identify() function never outputs honest replicas.
Proof: The function only adds a replica to R̃ if given as input two vote messages from
that replica, where the same sequence number is assigned to two different votes (line 7 on
Algorithm 8). An honest replica always increments nextsn after each vote it inserts to its log
(line 21 on Algorithm 1), hence, the adversary can only construct valid votes by forging a
signature under the public key of an honest replica, which happens with negl. probability. ◀


	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview
	1.3 Related work

	2 Preliminaries
	3 Modeling pod
	4 Protocol pod-core
	4.1 Replica code
	4.2 Client code
	4.3 Validation function
	4.4 Analysis

	5 Evaluation
	6 Auctions on pod through the bidset protocol
	7 Conclusion
	A Validation function for pod-core
	B Security of Protocol pod-core under a Continuum of Byzantine and Omission faults

