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Abstract
The main goal in distributed symmetry-breaking is to understand the locality of problems: the
radius of the neighborhood that a node must explore to determine its part of a global solution. In
this work, we study the locality of matching problems in the family of regular graphs, which is one of
the main benchmarks for establishing lower bounds on the locality of symmetry-breaking problems,
as well as for obtaining classification results. Our main results are summarized as follows:

1. Approximate matching: We develop randomized algorithms to show that (1 + ϵ)-approximate
matching in regular graphs is truly local, i.e., the locality depends only on ϵ and is independent
of all other graph parameters. Furthermore, as long as the degree ∆ is not very small (namely,
as long as ∆ ≥ poly(1/ϵ)), this dependence is only logarithmic in 1/ϵ. This stands in sharp
contrast to maximal matching in regular graphs which requires some dependence on the number
of nodes n or the degree ∆.

2. Maximal matching: Our techniques further allow us to establish a strong separation between
the node-averaged complexity and worst-case complexity of maximal matching in regular graphs,
by showing that the former is only O(1).
Central to our main technical contribution is a novel martingale-based analysis for the ≈ 40-

year-old algorithm by Luby. In particular, our analysis shows that applying one round of Luby’s
algorithm on the line graph of a ∆-regular graph results in an almost ∆/2-regular graph.
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1 Introduction

Matching problems, such as maximal or maximum matching, have garnered significant
attention across several computational models, including the classical sequential model [57,64,
77, 88, 89]; dynamic networks [10, 33, 34, 59, 62, 85]; streaming algorithms [12, 13, 41, 50, 78, 82];
online algorithms [40,61,67,68,79]; and distributed computing [1,2,27,32,38,45,46,48,55,56,
63,66,74,75].

In the classical LOCAL model of distributed computing, a network of n nodes collaborates
to solve a graph problem through a series of synchronized communication rounds. In each
round, a node can send an unbounded-size message to each of its neighbors. The primary
goal is to minimize the number of communication rounds required to solve the problem;
a measure known as the problem’s locality. Since each node can only interact with the
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40:2 On the Randomized Locality of Matching Problems in Regular Graphs

nodes in its r-hop neighborhood in r rounds, the problem’s locality reflects the radius of the
neighborhood that each node must explore to determine its part in the global solution (e.g.,
whether it is matched and if so to which neighbor).

Typically, the locality of matching problems depends on global graph parameters, such
as the number of nodes n or the maximum degree ∆. For instance, a simple algorithm by
Israeli and Itai [65] finds a maximal matching in O(log n) rounds in the LOCAL model,
which constitutes a 2-approximate maximum matching in unweighted graphs (or approximate
matching, for short). Later, Barenboim et al. [29] showed that this logarithmic dependence
on n can be substituted with a logarithmic dependence on ∆ by providing an O(log ∆ +
poly log log n)-round algorithm. This upper bound also applies to finding a (1+ϵ)-approximate
matching (while incurring a multiplicative poly(1/ϵ) factor in the number of rounds), as
shown by Harris [63].

All of the above results are for randomized algorithms that succeed with high probability.1
The landscape changes for other computational assumptions. For instance, if the matching
is only required to be large in expectation, then recent work has shown that it is possible
to shave a log log ∆ factor from the round complexity [27, 28, 50, 52]. For deterministic
algorithms, however, the primary question is whether the state-of-the-art randomized bounds
can be matched.2 For a more detailed discussion on deterministic algorithms, we refer the
reader to the excellent surveys by Suomela [87] and Rozhon [84].

Whether there exist o(log n)-round algorithms that succeed with high probability for
maximal or (1 + ϵ)-approximate matching in general graphs remains one of the main open
questions in the field. On the other hand, the best known lower bound as a function of n is
Ω(
√

log n/ log log n) rounds, which was shown by Kuhn, et al. [72], and it applies all the way
up to poly(log n)-approximation.

Regular Graphs. A graph is ∆-regular if all its nodes have degree ∆. The family of regular
graphs has received much attention as a natural benchmark for studying the complexity of
various fundamental problems (e.g., [4–9, 14–16, 42, 58, 70, 86, 90]). In the LOCAL model,
regular graphs serve as the standard benchmark for implementing the Round Elimination
technique for proving lower bounds [17,21–25,35,36,39], and also for obtaining classifications of
locality results (e.g., in paths and cycles [18,37], grids [37,43,60,81], and regular trees [19,20]).3

The locality of some problems in regular graphs depends on graph parameters such as the
number of nodes n or the degree ∆, while for others, it is independent of any such parameter.
Interestingly, as we discuss next, maximal matching falls into the former category, whereas
(1 + ϵ)-approximate matching is in the latter.

For maximal matching, the approximately 40-year-old O(log n) upper bound by Is-
raeli and Itai [65] remains the best known even for regular graphs. Moreover, Balliu
et al. [21] showed via the Round Elimination technique that maximal matching in reg-
ular graphs requires Ω(min{∆, log log n/ log log log n}) rounds for randomized algorithms
and Ω(min{∆, log n/ log log n}) rounds for deterministic ones. Even for low-degree regular
graphs (e.g. cycles), any randomized algorithm for maximal matching still requires Ω(log∗ n)
rounds [73,80].

1 Throughout the paper, we say that an algorithm succeeds with high probability if it succeeds with
probability 1 − 1/nc for some arbitrarily large constant c > 0.

2 The current state-of-the-art deterministic algorithms take Õ(log5/3 n) rounds for maximal matching [54],
and Õ(log4/3 n · poly(1/ϵ)) rounds for (1 + ϵ)-approximate matching [50,53], where Õ(x) hides poly log x
factors.

3 For more on classification of locality results, as well as ones in general graphs, we refer the reader to the
survey by Rozhon [84].
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In stark contrast, the story for (1 + ϵ) approximate matching in regular graphs is far less
clear. The hard instances for approximate matching developed by Kuhn et al. [72] are very
far from being regular. In fact, these instances are also hard for finding an approximate
fractional matching. On regular graphs, however, fractional matching admits a trivial zero-
round solution by simply setting the fractional value for each edge to be 1/∆. This fractional
matching can be rounded to an O(1)-approximate integral matching in one round by using a
simple sampling technique [52].

This raises the question: where does (1 + ϵ)-approximate matching fall on the spectrum of
locality in regular graphs? Is it closer to approximate fractional matching, or does it require
some dependence on n or ∆ similar to maximal matching?4

1.1 Our Results
Approximate Matching. In this work, our first result is a simple algorithm that finds a
(1+ϵ)-approximate matching in regular graphs without any dependence on graph parameters.5
For constant values of ϵ, the algorithm also works in the more restricted CONGEST model,
where the size of the messages is bounded by O(log n) bits.

▶ Theorem 1. Let n be a positive integer, and let ϵ ∈ (n−1/20, 1/2) be an accuracy parame-
ter. There is an O(ϵ−5 log(1/ϵ))-round LOCAL algorithm that finds a (1 + ϵ)-approximate
maximum matching in n-node regular graphs, with high probability. The algorithm works in
the CONGEST model for constant values of ϵ.

While Theorem 1 advances our understanding of (1 + ϵ)-approximate matching in regular
graphs, the polynomial dependence on 1/ϵ is far from desirable. Comparing with the
Õ(ϵ−3 log ∆ + polylog(1/ϵ, log log n)) round algorithm of Harris [63], the algorithm from
Theorem 1 is better only in the regime ϵ > 1/

√
log ∆. In our next result, we present an

exponentially faster algorithm as long as ϵ > 1/∆c′ for some constant c′ > 0. In other words,
we present an exponentially faster (1 + ϵ)-approximation algorithm for graphs that are not
extremely sparse, i.e., when ∆ > poly(1/ϵ). We note that the constant c in Theorem 2 has
not been optimized and can be improved substantially with a more careful analysis.

▶ Theorem 2 (Main Result I). Let c = 105 and let ϵ ∈ (0, 1) be an accuracy parameter. For
∆-regular graphs with ∆ > (1/ϵ)c, there is an O(log(1/ϵ))-round CONGEST algorithm that
finds a (1 + ϵ)-approximate maximum matching with high probability.

One may wonder whether the restriction in the theorem about the graph being dense
enough is a mere technicality. The following lower bound presented in Theorem 3 shows
that this is not the case, allowing us to establish a separation between dense and sparse
regular graphs in which dense ones are easier. Note that, for the same problem, the opposite
separation holds in general graphs (due to the Ω(min{log ∆/ log log ∆,

√
log n/ log log n})

lower bound by [72], and the upper bounds by [63]).

4 Note that the amplification technique of [50] cannot be used to amplify the constant-approximation
factor to (1 + ϵ) in regular graphs while using poly(1/ϵ) phases of amplification. This is because the
technique is designed for general graphs, and applying it to a regular graph can result in a non-regular
graph after the first step. Consequently, the amplification algorithm would need to use an algorithm for
constant-approximate matching in general graphs, which requires some dependence on n or ∆.

5 All our upper bounds apply also to almost regular graphs, where the degrees of all the nodes are within
a (1 ± o(1))-multiplicative factor from each other. Moreover, the case where ϵ ≤ n−1/20 can be handled
in poly(1/ϵ) rounds by transmitting the entire graph to all nodes.

DISC 2025
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▶ Theorem 3 (Informal version of hardness result; see full version for details). For any degree
∆ ≥ 2 and error ϵ = O(∆−1), any LOCAL algorithm that computes a (1 + ϵ)-approximate
maximum matching in bipartite ∆-regular graphs with at least n ≥ Ω(∆−1ϵ−1) nodes requires
Ω(∆−1ϵ−1) rounds.

One intuition behind this separation is that in ∆-regular graphs, the number of nearly
optimal solutions to maximum matching scales with ∆ (see for instance [11]). Intuitively,
this abundance of nearly optimal solutions makes it easier to rapidly identify one using
randomness.

At the heart of the proof of our first main result (Theorem 2) is a novel martingales-based
analysis of the classical algorithm by Luby [76]. In particular, we use this analysis to prove
our Regular-Graph Preservation Lemma (Lemma 6), which shows that running a single round
of Luby’s algorithm on the line graph of a sufficiently dense ∆-regular graph and removing
the matched nodes together with their incident edges yields an almost ≈ ∆/2-regular graph.
Interestingly, this analysis wilil also allow us to attain a good node-averaged complexity for
maximal matching.

Node-Averaged Complexity of Maximal Matching. When performing a distributed com-
putation, the algorithm may arrive at some parts of its final output before the rest. That
is, some nodes know their local result before the algorithm fully terminates on the last few
stragglers. The notion of node-averaged complexity [26,30,44,47] captures this nuance by
reasoning about the average over the times at which the nodes finish their computation and
commit to their outputs (we formally define the node-averaged complexity in Section 1.2).
Node-averaged complexity captures important applications such as optimizing the total
energy consumption of the network (see, for instance, [44] and references within).

In sharp contrast to the worst-case complexity of maximal matching in regular graphs, our
martingale-based analysis of Luby’s algorithm yields a constant node-averaged complexity.
This also contrasts with a lower bound of Balliu et al. [26] who showed that in general graphs,
the node-averaged complexity of maximal matching is Ω

(
min

{
log ∆

log log ∆ ,
√

log n
log log n

})
.6

▶ Theorem 4 (Main Result II). The node-averaged complexity of finding a maximal matching
in ∆-regular graphs is O(1).

Theorem 4 implies that, with respect to node-average complexity, maximal matching is
easier in regular graphs than in general ones. On the other hand, as discussed earlier, for
worst-case complexity, the O(log n) bound by [65] is still the best known for both regular
and general graphs. Whether maximal matching is any easier in regular graphs with respect
to worst-case complexity remains an interesting open question.

Outline of the paper. In Section 1.2 we provide some basic definitions and notation. In
Section 2 we provide a brief technical overview of our results. Section 3 contains a proof
sketch of Theorem 2. The proof of Theorem 4 is deferred to the full version of the paper.
The result is obtained by applying O(log log ∆) rounds of Luby, which our results show

6 We note that the corresponding edge-averaged complexity of maximal matching is known to be O(1),
even in general graphs, due to the classical algorithms of [3, 76] (when applied on the line graph) that
delete a constant-fraction of the edges in each round [26]. However, when an edge arrives at its part of
the output (i.e., whether it is matched or not), it does not necessarily help an incident node to arrive at
its part of the output, as several edges are not matched. This nuance is fundamental due to the lower
bound by [26] discussed above for the node-averaged complexity of maximal matching in general graphs.
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matches all but a 1/(log ∆)-fraction of the nodes with O(1) node-averaged complexity, and
applying [51] to match the remaining nodes. The details of the proofs of Theorems 4 and 2,
along with all discussion of Theorems 1 and 3, are deferred to the full version.

1.2 Model and Basic Definitions
The LOCAL and CONGEST model. In this work we are interested in the LOCAL and
CONGEST models of distributed computing [73,83]. In both models, there is a synchronized
communication network of n computationally unbounded nodes that can communicate via
communication rounds; this network both defines the communication pattern and serves as
the input graph we want to solve our problem on. In each round, each node can send an
unbounded-size (in the LOCAL model) or O(log n)-bit (in the CONGEST model) message
to each of its neighbors. The goal is to perform a task (e.g., find a large matching) while
minimizing the number of communication rounds. At the end of all communication rounds,
each node needs to know which of its neighbors it is matched with, if any.

Basic Graph Notations. For a graph G, we denote by V (G) the set of nodes in G and by
E(G) the set of edges. Given a node u ∈ V (G), we denote by NG(u) the set of neighbors
of u in G, and by Nd

G(u) the set of nodes at distance exactly d from u. When G is clear
from the context, we omit the letter G from the notation and use V, E and N(u) for brevity.
Throughout the paper, n denotes the number of nodes in the graph. In ∆-regular graphs,
all the nodes have the same degree ∆. In this work, we are interested in unweighted and
undirected graphs.

Maximum and maximal matching. A matching M in a graph G is a set of edges in
E(G), where no two edges in M share a node. A maximum matching is a matching of
maximum possible size. A (1 + ϵ)-approximate matching in G is a matching M satisfying
OPT ≤ (1 + ϵ)|M|, where OPT is the size of a maximum matching. A maximal matching is
a matching that is not a strict subset of any other matching.

Node-averaged Complexity ( [26]). The node-averaged complexity of an algorithm A,
AVGV (A), is defined as follows.

AVGV (A) := max
G∈G

1
|V (G)| ·

∑
v∈V (G)

E
[
T G

v (A)
]

where T G
v (A) is the time it takes for v to reach its part of the output when running A. The

node-average complexity of a graph problem is defined as the node-average complexity of the
best algorithm A∗ that minimizes AVGV (A∗).

2 Technical Overview

2.1 Warmup: A poly(1/ϵ)-Round Algorithm for Regular Graphs
To prove Theorem 1, we use a two stage algorithm. We begin with a ∆-regular graph on n

vertices with target error parameter ϵ > n−1/20. The first stage (sampling) involves uniformly
and independently sampling edges from the graph with the goal of reducing the degree from
∆ to poly(1/ϵ), plus some post-processing. After this stage, we have an (irregular) graph on
at most n vertices with degree at most d = poly(1/ϵ) and have used up a constant fraction

DISC 2025



40:6 On the Randomized Locality of Matching Problems in Regular Graphs

of our error parameter ϵ (i.e. this restricted graph still has an almost-perfect matching). Our
second stage (matching) involves finding a matching in this restricted graph, and its runtime
only depends on the error parameter ϵ and the max degree d.

For the sampling stage, uniformly sampling to degree approximately ϵ−2 log n would
result in a graph that retains a near-perfect matching with high probability (via a Chernoff
bound plus a union bound), which then when combined with Harris’ algorithm [63] can
already give us an O(poly(1/ϵ) log log n)-round algorithm. However, to avoid the dependence
on n, we need to find a way to reduce this degree even further. Instead, we sample down to
degree Θ(ϵ−4). The resulting subgraph can be very irregular, but we manage to tease out
enough structure to make our argument go through. In particular, some small fraction of
vertices may have degree exceeding our target Θ(ϵ−4) by more than a factor two. We use
Chernoff with bounded dependence and the matching polytope to argue that stripping out
these problematic high-degree vertices still leaves an almost-perfect matching.

For the matching stage, we find a matching in the constructed low-degree subgraph from
the sampling stage. The state-of-the-art algorithms of Harris [63] fit our task, but they
have a small runtime dependence on n. Instead, we combine the hypergraph framework
from [63] (which was also used in [27, 49, 50]) with some ideas from [52], as follows. In
poly(1/ϵ) phases, we increase the size of the matching in each phase by poly(ϵ) · n edges. The
algorithm for each phase finds a large set of disjoint augmenting paths. This is done by first
constructing a hypergraph H with the same set of nodes as in the low-degree subgraph, where
each hyperedge corresponds to a 1/ϵ-length augmenting paths. Then, we find an O(1/ϵ)-
approximate fractional matching in the hypergraph by using the algorithms of [31,63,71], and
we round this fractional matching by sampling each hyperedge with probability proportional
to its fractional value. By using a similar McDiarmid-type argument as in [52], we can show
that this rounding produces an integral O(1/ϵ)-approximate matching in the hypergraph
H with high probability. Furthermore, observe that the maximum degree of a node in
the hypergraph H is exp(poly(1/ϵ)). Therefore, the algorithms of [31, 63, 71] for finding a
fractional matching in this hypergraph take O(poly(1/ϵ)) rounds, as desired. We discuss this
result formally in the full version.

2.2 Exponentially Faster Algorithm
In this section, we give a brief technical overview for our main result. On bipartite graphs,
our algorithm for proving Theorem 2 simply runs O(log(1/ϵ)) rounds of Luby’s algorithm [76]
that finds a large matching in each round. On general graphs, we first run a color coding
step to find a large bipartite almost regular subgraph. While the algorithm is very simple,
the main challenge is its analysis. In this work, we provide a new martingale-based analysis
for Luby’s algorithm.

Since our analysis relies on martingale concentration inequalities, it is more convenient
to work with a sequential view of Luby’s algorithm. Our key lemma (Lemma 6) shows
that after applying one round of Luby’s algorithm (and removing the matched nodes along
with incident edges), the remaining graph remains almost regular, i.e., almost all nodes
have very similar degrees. Even with the sequential view, classical martingale concentration
inequalities are not sufficient to provide the high probability bounds that we require. We use
two techniques, a shifted martingale trick and scaled martingale trick, in order to provide
the requisite bounds. Roughly speaking, we show that the number of matched neighbors
of a node behaves similarly to a martingale. Finally, we show that a constant fraction
of the nodes are matched in each iteration of Luby’s algorithm when the graph is almost
regular. Combined with our key lemma, this implies that after O(log(1/ϵ)) rounds at most ϵ

fraction of nodes remain unmatched. We now present a deeper overview of each of the above
components in the subsections below.
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2.2.1 Sequential view of Luby’s algorithm

In the traditional distributed implementation of one round of Luby’s algorithm, each edge f

picks a uniformly random number rf and some edge e is chosen into the matching if and
only if re < re′ for all neighboring edges e′.

We consider the following sequential view - the edges of the graph arrive sequentially in a
uniformly random order and an edge e is chosen into the matching if and only if it arrives
before any of its neighboring edges.

Assuming that there are no collisions (i.e. each edge chooses a different random number
from its neighbors), it can be readily seen that the two algorithms above produce exactly
the same distribution over matchings. For CONGEST algorithms, we restrict the range
of the random numbers to be integers in {1, 2, . . . , M} for some polynomially large M . In
this case, [69] showed that the two algorithms are identical up to a vanishingly small failure
probability.

2.2.2 Martingale Techniques

Our analysis of a single round of Luby’s algorithm relies on analyzing certain associated
martingales and using martingale concentration inequalities.

Shifted Martingale. Consider a collection X1, X2, . . . , Xt of boolean random variables and
let E[Xi | X1, . . . , Xi−1] = pi. We are interested in obtaining high probability bounds on the
sum St =

∑t
i=1 Xi. For example, consider Xi to be the indicator random variable for the

event that the ith edge is chosen into the matching. Now clearly, the random variables {Xi}
are not independent, so we cannot use standard Chernoff bounds. If we let Si =

∑i
j=1 Xj ,

then one could hope to use martingale inequalities to get a concentration result for Si. The
challenge here is that the sequence S1, . . . , St is not necessarily a martingale. Nevertheless,
when the pi are bounded, then we can still utilize martingale concentration inequalities to
show that St does not deviate too much from its mean by considering the following shifted
random variables:

Yi = Si − E[Si | Y0, . . . , Yi−1] + Yi−1

Since the sequence Y1, . . . , Yt is a martingale and further has bounded variance, we can
use bounded variance martingale concentration bounds on Yt to give good concentration
on St as well. This shifting idea is inspired by [69], in which it is used in the context of
approximate-maximum independent set. In this work, we generalize this shifting idea to
broader scenarios, which we discuss in the full version.

Scaled Martingale. In some parts of our analysis, the shifted martingale trick doesn’t
suffice for our purposes. Consider a sequence of random variables S1, . . . , St such that
E[Si | S1, . . . , Si−1] = (1 − p)Si−1 for some fixed 0 < p < 1. In this scenario, we expect the
difference Si − Si−1 to decrease as i increases. It is challenging for the shifted martingale
trick to exploit such dynamics. The main reason is that in order for the shifted martingale
to give a concentration result, we need the expected value of Si − Si−1 to be bounded by
some fixed number, which wouldn’t exploit the property that the difference is decreasing
over time. To get a concentration result in such scenarios, we use another trick which we
refer to as the scaling trick. We can obtain a concentration bound for St by considering the

DISC 2025
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following scaled random variables:

Fi = Si

(1 − p)i−1

Observe that Fi is a martingale. This is because E[Fi | F1, · · · , Fi−1] = 1
(1−p)i−1 E[Si |

F1, · · · , Fi−1] = 1
(1−p)i−1 E[Si | S1, · · · , Si−1] = Si−1

(1−p)i−2 = Fi−1. Therefore, we can get a
concentration result for St by getting a concentration result for Ft. The main intuition behind
the scaling trick is that it exploits the decreasing difference between Si and Si−1 over time.
This is exactly the reason for dividing Si by (1−p)i. For instance, since F1 = S1, if we get that
Ft doesn’t deviate too far from F1, it would imply that Si = (1−p)iFi ≈ (1−p)iF1 = (1−p)iS1,
which is exactly where we’re expecting Si to be at step i.

2.2.3 Local Regular-Graph Preservation Lemma

We analyze a single round of Luby’s algorithm using the above martingale based techniques.
First, we show a lemma with the following local guarantee.

▶ Lemma 5 (Local Regular-Graph Preservation Lemma - Informal). Let G be a bipartite
∆-regular graph and suppose we run one round of Luby’s algorithm on G and let u be an
arbitrary node in G. Then, with probability at least 1−exp(− poly(∆)), ∆/2±o(∆) neighbors
of u get matched.

Recall that N(u) is the set of neighbors of node u and N2(u) is the set of nodes at
distance exactly 2 from u. Let Au be the set of edges between N(u) and N2(u). To prove
Lemma 5, we show that roughly ∆/2 edges from Au are chosen into the matching with
probability at least 1 − exp(− poly(∆)). While the claim holds trivially in expectation, it is
challenging to obtain high probability bounds due to the dependencies between u’s neighbors.

To simplify exposition, let Eu denote the set of edges that are at most 3 hops away from
u, i.e. Eu = E ∩

{
({u} × N(u)) ∪ (N(u) × N2(u)) ∪ (N2(u) × N3(u))

}
. Clearly edges not

in Eu do not affect any of the edges in Au and hence can be ignored, so we restrict the
analysis to assume that only edges from Eu arrive in the sequential view of Luby’s algorithm.

Let Mu ⊂ Au be the set of matching edges chosen from Au and our goal is to get high
probability upper and lower bounds on |Mu|. Let Xi ∈ {0, 1} be an indicator random variable
for the event that the ith arriving edge belongs to Mu. Let qi = E[Xi | X1, . . . , Xi−1] be
the probability that the ith edge is from Au and none of its neighboring edges have already
arrived. One could try now to utilize the shifted martingale trick described above to obtain
concentration bounds on |Mu| =

∑
i Xi. However, the main challenge here is that qi itself is

a random variable. Our goal is to analyze qi using martingales analysis. Roughly speaking,
we use the scaled martingale trick discussed above to get concentration results for qi for all i,
which enables us to apply the shifted martingale trick to get the desired bounds on |Mu|.

Analyzing qi. To analyze qi, we need to understand how many edges survive after the
first i − 1 edges have already arrived. Intuitively, an edge is still surviving in iteration i

if neither it nor any of its neighbors was not sampled in the first i − 1 iterations. Let Ei

be the set of surviving edges in Au at the beginning of the ith iteration. Then we have,
qi = |Ei|

|Eu|−(i−1) = |Ei|
∆(|N2(u)|+1)−(i−1) since a sampled surviving edge is always added to the

matching.
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The final key property towards the proof. To get high probability bounds on |Ei|, we
first prove that E[|Ei| | Ei−1] ≈ (1 − 2/k)|Ei−1|. This is exactly the setting where the scaled
martingale trick can help us to get a concentration result for |Ei|, which paves the way for
proving Lemma 5.

2.2.4 Regular-Graph Preservation Lemma
We use Lemma 5 to show that applying a single round of Luby’s algorithm on a regular
graph and removing the matched nodes along with incident edges results in a graph that is
still almost regular.

▶ Lemma 6 (Regular-Graph Preservation Lemma - Informal). Let G be a bipartite ∆-regular
graph and let G′ be the graph obtained by running one round of Luby’s algorithm on G and
deleting matched nodes and their incident edges. Then all but o(1) fraction of nodes in G′

have their degree in the range ∆/2 ± o(∆) with high probability.

When ∆ is large enough (∆ ≥ poly log n), Lemma 5 followed by a union bound suffices
to show that all nodes have their degree in the range ∆/2 ± o(∆) with high probability.
On the other hand, when ∆ is small, then by Lemma 5, the expected number of nodes
that do not have the requisite degree is only n · exp(− poly(∆)). Further, the degree of a
node after a round of Luby’s algorithm only depends on O(poly(∆)) other nodes. So, we
can use a Chernoff-Hoeffding with bounded dependence inequality to argue that all but a
exp(− poly(∆))-fraction of nodes have the required degree.

2.2.5 Proof Sketch of Theorem 2
We first argue that running one round of Luby’s algorithm on an almost regular graph
matches a constant fraction of the nodes with high probability. We note that while this
claim is easy to see in expectation, obtaining a high probability bound requires the use of
our shifted martingale technique, particularly when the graph becomes only almost regular
(instead of fully regular, as in the first iteration). Combined with Lemma 6 that states that
the resulting graph remains almost regular, we get that after O(log 1/ϵ) rounds, at most
ϵ-fraction of nodes remain unmatched.

2.2.6 Extension to Node-Averaged Complexity
We now sketch our result for the node-average complexity of MM given the Regular-Graph
Preservation Lemma. We can combine Lemma 6 with the observation that in an (almost)
regular graph, every node has a constant probability of being matched (and hence is only
expected to survive a constant number of rounds under Luby). Since node-averaged complexity
cares about the expected time to match a node, our initial rounds of Luby are consistent
with our O(1) node-averaged complexity goal. However, we cannot continue this trick until
all nodes are matched, since eventually the graph will become too irregular for us to proceed.
Instead, we only use Luby until a O(1/ log ∆) fraction of nodes remain; after so few nodes
remain, it is safe for us to finish by repeatedly calling a previous black box [27] that takes
O(log ∆/ log log ∆) rounds to match a constant fraction of nodes but which can handle
general (i.e. irregular) graphs. Similar to our previous argument, nodes are only expected to
survive a constant number of black box invocations, but since there are so few nodes left
our node-averaged complexity is still O(1). Unlike the Luby phase, it is safe to continue this
phase until all nodes are matched since it no longer matters how regular the graph is.
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2.3 Overview of Lower Bounds
To prove lower bounds against LOCAL algorithms, we use some ideas from a lower bound
construction of Ben-Basat, Kawarabayashi, and Schwartzman [32] that gave Ω(1/ϵ) lower
bounds in the LOCAL model for (1 + ϵ) maximum matching as well as other approximate
graph problems. The critical idea in that proof is that when an r-round LOCAL algorithm
is deciding what to do with a node v (e.g. who to match it with), it can only use the local
structure of the graph around v; in particular, it can only see the r-hop neighborhood around
v. This means that we could cut out this r-hop neighborhood from the graph, put it back in
differently, and the algorithm would have to make the same decision on v (or for randomized
algorithms, the same distribution on decisions). The proof revolves around designing these
r-hop neighborhoods as (symmetrical) gadgets, then showing that a constant number of
gadgets will (with constant probability) induce an unmatched node between them. The BKS
proof uses a simple path as their gadget which involves O(r) nodes. Hence the algorithm
can be shown to have an overall error rate of one error per O(r) nodes, so the critical round
threshold to allow for (1 + ϵ)-multiplicative approximations is Ω(1/ϵ) rounds.

Relative to their result, the main upgrade we want to make is that the counterexample
graph(s) should be ∆-regular. It is relatively straightforward to take BKS path gadgets
and stick them into a large cycle, recovering their Ω(1/ϵ) round lower bound for 2-regular
bipartite graphs. The main technical hurdle we overcome is generalizing to higher degree. We
know from our upper bounds that there must be some degradation as the degree ∆ increases,
so the main question is, how much efficiency do we need to lose to burn our excess degree?
We design gadgets with O(∆r) nodes and asymptotically maintain the original error rate
of one error per constant number of gadgets (the cycle proof argues about the outcome of
two gadgets inducing a mistake, but for the general case we reason about the outcome of
five gadgets), yielding Ω(1/(∆ϵ)) round lower bounds. We discuss this formally in the full
version.

3 An O(log 1/ϵ)-round Algorithm

In this section, we show that there is an O(log(1/ϵ))-round algorithm to find a (1 + ϵ)-
approximate maximum matching in ∆-regular graphs when ∆ ≥ ( 1

ϵ )c for a large constant c.
Due to space constraints, we defer the pseudocode for the algorithm and full proofs to the
full version. We note that the proof makes no attempt to optimize the constant c and we
expect that it can be reduced significantly by a more careful analysis.

▶ Theorem 2 (Main Result I). Let c = 105 and let ϵ ∈ (0, 1) be an accuracy parameter. For
∆-regular graphs with ∆ > (1/ϵ)c, there is an O(log(1/ϵ))-round CONGEST algorithm that
finds a (1 + ϵ)-approximate maximum matching with high probability.

A Roadmap for the Proof of Theorem 2. The algorithm for proving Theorem 2 first
runs a simple color coding step to find a bipartite almost regular subgraph, and then runs
Luby’s algorithm for O(log(1/ϵ)) rounds. Since our analysis for Luby’s algorithm uses several
martingale inequalities, it is cleaner to work with the sequential view of Luby that we present
in Section 3.1. In Section 3.2 we show that a single round of Luby’s algorithm in an almost
regular graph matches a constant fraction of the nodes, with high probability.7 In Section 3.3,
we state our key Regular-Graph Preservation Lemma that shows that running one round

7 In fact, we prove a more general claim where it suffices that a constant fraction of the edges are balanced.
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of Luby’s algorithm on an almost regular graph and deleting the matched nodes yields an
almost regular graph. A local version of that lemma, which bounds the probability that the
degree of a particular node u almost exactly halves after each round is the most technical part
of the proof and is given in the full version. Finally, in Section 3.4, we put these components
together to finish the proof.

3.1 Sequential View of Luby’s Algorithm
In the traditional distributed implementation of one round of Luby’s algorithm, each edge
e picks a uniformly random integer re in the set {1, 2, . . . , M} for an appropriately chosen
polynomially large M . An edge e is chosen to be in the matching if re < re′ for all neighboring
edges e′.

However, it is convenient for our analysis to work with a sequential view of Luby’s
algorithm. In the sequential view, the edges are sequentially sampled independently without
replacement. When an edge e is sampled, it is added to the matching only if none of its
neighboring edges had been sampled earlier. Crucially, unlike the greedy matching algorithm,
a sampled edge e is blocked by a neighboring edge e′ that was previously sampled even if e′

itself is not in the matching. [69] showed that the two algorithms are equivalent by showing
that they produce the same distribution over matchings with high probability8. We formalize
this in the following proposition.

▶ Proposition 7 (Proposition 3 in [69]). For any unweighted graph G with m edges and
constant c′ > 0, let D0 and D1 be the distributions over matchings produced by the traditional
and sequential views of Luby respectively. The total variation distance between D0 and D1 is
at most 1/mc′ ; in particular∑

matchings M0

|PM∼D0 [M = M0] − PM∼D1 [M = M0]| ≤ 1/mc′

Following Proposition 7, in this paper we focus on analyzing the sequential view of Luby
whenever we want to make claims about a single round of Luby’s algorithm. This incurs an
additional tiny 1/ poly(n) failure probability, which we can tolerate.

3.2 Analyzing One Round of Luby’s Algorithm on Almost Regular
Graphs

In this section we show that a single round of Luby’s algorithm on almost regular graphs
matches a constant fraction of the nodes with high probability. In fact, we prove this claim
for a more general family of graphs in the following theorem.

▶ Theorem 8. Let G be an undirected graph with n nodes and m edges, and let d = 2m/n

be the average degree. Let Elow = {(u, v) ∈ E(G) | deg(u) ≤ 2d, deg(v) ≤ 2d} be the set of
edges induced by nodes with degree at most 2d. If |Elow| ≥ m/2, then one round of Luby’s
algorithm finds a matching in G of size at least n/288 with high probability.

At a high level, the proof of this theorem does the following. Consider the sequential view
of Luby’s algorithm. When an edge e = {u, v} is sampled, it blocks at most deg(u) + deg(v)
other edges from joining the matching in the future. However, it can only block at most

8 They stated the claim in the context of independent sets.
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2(2d) = 4d edges from Elow, because of the fact that each endpoint of an edge in Elow

has degree at most 2d. Thus, in the first Cn sampling steps of sequential Luby for some
sufficiently small constant C < 1, at most (4d)(Cn) = 4Cdn = 8Cm edges are blocked,
meaning that the probability that any particular edge sampled during one of these steps
is in Elow and has not been blocked is at least (|Elow| − (8Cm))/(m − Cn) > 1/6 as long
as C < 1/16. Thus, the found matching has size at least (Cn)(1/6) in expectation. Using
martingale concentration inequalities, we can argue that the size of the matching found is at
least (1/2)(Cn)(1/6) > n/288 with high probability, as desired. We give a formal version of
this proof in the full version.

3.3 Regular-Graph Preservation
We first define some notation to facilitate the rest of the discussion. Intuitively, we say a
node (α, ∆)-regular if all nodes in its two hop neighborhood have the same degree.

▶ Definition 9 ((α, ∆)-regular node). Let ∆ be an integer and α ∈ [0, 1] be a real number.
Given a graph G, we say that a node u is (α, ∆)-regular in G if for any v ∈ {u}∪N(u)∪N2(u),
we have ∆(1 − α) ≤ deg(v) ≤ ∆(1 + α).

We can now present our main technical lemma that states that if u is a (α, ∆)-regular node,
then its degree becomes almost exactly ∆/2 after running one round of Luby’s algorithm,
with failure probability exponentially small in ∆. The proof of Lemma 10 is the most
technical part of the paper and is deferred to the full version.

▶ Lemma 10 (Local Regular-Graph Preservation Lemma). Let ∆ ≥ 210 be an integer, and
α ∈ [0, 1/10] be a real number. Let G be a bipartite graph and u be an (α, ∆)-regular node in
it. Let deg′(u) be the number of unmatched neighbors of u after running sequential Luby on
G. With probability at least 1 − exp(−∆1/16), it holds that:

∆
2

(
1 − (10α + ∆−1/600)

)
≤ deg′(u) ≤ ∆

2

(
1 + (10α + ∆−1/600)

)
As long as ∆ is large enough (≈ log n), Lemma 10 followed by a union bound suffices to

show that an almost regular graph remains almost regular with their degrees halved after one
round of Luby’s algorithm. However, for smaller ∆, we can no longer rely on a simple union
bound. In the following lemma, we use the Chernoff-Hoeffding concentration inequality with
bounded dependence to show that even for small ∆, almost all nodes halve their degree.

▶ Lemma 11 (Regular-Graph Preservation Lemma). Let n ≥ K ≥ ∆ ≥ 210 be integers, and
let α ∈ [0, 1/10], δ ∈ [0, 1/100] be real numbers. Let G be a bipartite graph with n nodes
and max degree K and let G′ be the graph obtained by running sequential Luby on G and
removing all matched nodes together with their incident edges.

If at least (1 − δ)-fraction of nodes in G are (α, ∆)-regular, then at least (1 − δ′)-fraction
of nodes in G′ are (α′, ∆/2)-regular with probability at least 1 − exp

(
−n/(K10 exp (∆1/99))

)
,

where δ′ = K2 · (δ + 2 exp (−∆1/100) and α′ = 10α + ∆−1/600.

Proof. We say that a node v is good if its degree in G′ is in the range ∆
2 (1 ± α′). Any node

that’s not good is called bad. Let R be the set of nodes that are (α, ∆)-regular in G. By
Lemma 10, each (α, ∆)-regular node in G that remains unmatched is good with probability
at least 1 − exp (−∆1/16). Hence, the expected number of nodes from R that are bad is at
most |R| · exp (−∆1/16) ≤ n. To obtain a high probability bound, we use Chernoff-Hoeffding
inequality with bounded dependence as follows.
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For each node u ∈ R, let Bu ∈ {0, 1} be an indicator random variable that indicates
whether u is bad. We have

∑
u∈R E[Xu] ≤ |R| · exp (−∆1/16) ≤ n · exp (−∆1/16). Since the

maximum degree in G is K, each Xu depends on fewer than K10 nodes . Hence we apply
Chernoff with bounded dependence (see full version for theorem statement) to get:

P

[∑
u∈R

Xu > 2n exp(−∆1/100)
]

≤ P

[∑
u∈R

Xu > 2|R| exp(−∆1/16)
]

≤ P

[∑
u∈R

Xu >
∑
u∈R

E[Xu] + |R| exp(−∆1/16)
]

≤ exp
(

−2(|R| · exp(−∆1/16))2

|R| · K10

)
= exp

(
− 2|R|

K10 exp (2∆1/16)

)
≤ exp

(
− 2|R|

K10 exp (∆1/99)

)
≤ exp

(
− n

K10 exp (∆1/99)

)
where the last line used ∆ > 210 and |R| ≥ (1 − δ)n ≥ n/2. We say that a node v poisons
a node u if v prevents u from being (α′, ∆/2)-regular, i.e., v poisons u if v is bad and is at
distance at most 2 from u. We note that each bad node poisons at most K2 nodes. Let B be
the set of bad nodes, i.e., we have |B| =

∑
u∈R Xu and let B̃ = V (G) \ R be the set of nodes

that are not (α, ∆) regular in G. For nodes in B̃, we have no guarantee on the probability of
whether they become good, so we always assume that they poison K2 nodes. In total, the
number of nodes that are not (α′, ∆/2)-regular in G′ is at most (|B̃| + |B|)K2 which is at
most:

(|B̃| + 2n · exp (−∆1/100)) · K2 ≤ (δn + 2n · exp (−∆1/100)) · K2

= n · K2 · (δ + 2 exp (−∆1/100))

with probability at least 1 − exp
(
−n/(K10 exp (∆1/99))

)
, as desired. ◀

Lemma 11 shows that after each round of Luby’s algorithm, the remaining graph still
satisfies the requirement that most vertices remain almost regular, albeit with worsening
parameters. The following technical claim shows that these parameters remain small enough
after O(log(1/ϵ) rounds. The proof uses basic arithmetic and is deferred to the appendix.

▷ Claim 12. Let ∆ be an integer, c = 1/105, and ϵ be a real number satisfying 1 > ϵ ≥ 1/∆c.
Furthermore let:
1. α0 = ∆−1/600 and αi = 10αi−1 + ∆−1/600 for i ≥ 1,
2. δ0 = exp(−∆1/200), and δi = ∆2(δi−1 + 2 exp(−(∆/2i)1/100)) for i ≥ 1.

It holds that αi ≤ 1/10 and δi ≤ exp(−∆1/300) for 1 ≤ i ≤ 10 log(1/ϵ).

We now extend Lemma 11 to a multi-round argument, showing that most of nodes’
degrees after running Luby’s algorithm for i rounds become ≈ ∆/2i.

▶ Lemma 13 (Multi-Round Regular-Graph Preservation). Let (∆, ϵ, (αi), (δi)) be as defined in
Claim 12. Let G be a bipartite n-node graph, where all but δ = δ0 = exp (−∆1/200)-fraction
of the nodes are (α0, ∆)-regular. For i ≤ 10 log(1/ϵ), let Gi be the graph obtained after
running Luby’s algorithm for i rounds on G, where in each round we remove the matched
nodes together with their incident edges. If |V (Gi)| ≥ ϵn, then with high probability, at least
(1 − δi)-fraction of the nodes in Gi are (αi, ∆/2i)-regular.
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Proof. The idea is to use a recursive argument where we apply Lemma 10 with a simple
union bound in the dense case, and Lemma 11 in the sparse case. For convenience of notation,
let ∆i = ∆/2i. Since we apply Lemmas 10 and 11 recursively for i rounds, we need to
ensure that αi ≤ 1/10 and δi ≤ 1/100, which follows from Claim 12. The proof is split into
two cases, a dense case where ∆ ≥ log50 n, and a sparse case. We start with the dense case.

Dense case where ∆ ≥ log50 n. By Lemma 10 and a simple union bound argument,
in the case where ∆ ≥ log50 n, all the nodes are (αi, ∆/2i)-regular after running Luby’s
algorithm for i rounds with high probability. This is because the failure probability of
Lemma 10 is at most exp (−∆1/16

i ) at round i, and ∆i ≥ ∆0.99 for any i (since ϵ ≥ 1/∆1/c

and i ≤ 10 log(1/ϵ)).

Sparse case where ∆ ≤ log50 n. The idea is to apply Lemma 11 recursively for i rounds
and the proof follows by induction.

Induction base case i=1. By Proposition 7, traditional and sequential Luby produce the
same distributions over matchings in the graph G, up to 1/ poly(n) total variation distance.
Hence, for i = 1 the claim follows directly from Lemma 11, since the failure probability of
Lemma 11 is only exp

(
−n/∆10 exp (∆1/99)

)
< 1/n1000, for ∆ ≤ log50 n.

Induction step. Assume that the claim is true for i, i.e., assume that all but |V (Gi)|·δi nodes
in Gi are (αi, ∆/2i)-regular with high probability. We show that the claim is true for i + 1.
Again, by Proposition 7, traditional Luby and sequential Luby produce the same distributions
over matchings in the graph Gi, up to a 1/|E(Gi)|c ≤ 1/(|V (Gi)|)c ≤ 1/(ϵn)c ≤ (1/n0.99)c

total variation distance, for an arbitrarily large constant c. Since the max degree in Gi is at
most ∆, by Lemma 11 it holds that all but |V (Gi+1)| · δi+1 nodes in Gi+1 are (αi+1, ∆/2i+1)-
regular in Gi+1 with probability at least

1 − exp
(

− |V (Gi)|
∆10 exp (∆1/99

i )

)
≥ 1 − exp

(
− ϵn

∆10 exp (∆1/99)

)
≥ 1 − 1

n1000

where the first inequality holds since ∆i ≤ ∆ and |V (Gi)| ≥ ϵn, and the second inequality
holds since ϵ ≥ 1/∆1/100 ≥ 1/n1/100 and ∆ ≤ log50 n. Hence, by a union bound on all i’s,
we get that as long as V (Gi) has at least ϵn nodes, it holds that all but |V (Gi)| · δi nodes
are (αi, ∆i)-regular in Gi with probability at least 1 − 1/n100. ◀

3.4 Putting it together
Lemma 13 shows that the graph remains almost regular after i ≈ log(1/ϵ) repeated applica-
tions of Luby’s algorithm, and Theorem 8 showed that each round of Luby’s on an almost
regular graph matches a constant fraction of nodes. We can now combine these two results
to show that as long as the remaining graph is large enough, each application of Luby’s
algorithm matches a constant fraction of nodes.

We first present a corollary of Theorem 8 to formalize that the almost regular graphs
implied by Lemma 13 do indeed satisfy the requirements of Theorem 8. We defer the proof
to the appendix for brevity.

▶ Corollary 14. Let ∆ ≥ C, where C is a large enough constant, and let G′ be a graph with
n′ nodes and max degree ∆. Suppose at least (1 − exp(−∆1/300))-fraction of the nodes are
(α′, ∆′)-regular for α′ ≤ 1/10. It holds that Luby’s algorithm matches n′/288 nodes in G′

with high probability.
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We are now ready to prove Theorem 2.

Proof of Theorem 2. We first provide a proof that assumes that the graph in bipartite,
and then we lift this assumption by a simple sampling argument. We simply run Luby’s
algorithm in G for i = 10 log(1/ϵ) rounds. By Lemma 13, all but an exp (−∆1/300)-fraction
of the nodes in the graph are (αi, ∆i)-regular at round i with high probability. Hence, by
Corollary 14, in each of these rounds we match at least a (1/288)-fraction of the nodes.
Therefore, after O(log(1/ϵ)), all but ϵ-fraction of the nodes are matched, as desired.

Overcoming bipartiteness. Lemma 13 assumes that the input graph is bipartite. To
overcome this, we apply a simple color-coding trick. Before running Luby’s algorithm,
each node picks a uniformly random color independently in {0, 1}. This naturally defines a
bipartite subgraph graph G′ by ignoring all monocolored edges. Observe that for a given node
u ∈ G, the degree of u in G′ is (∆/2)(1 ± ∆−0.4) with probability at least 1 − exp (−∆0.2/6)
by a standard Chernoff-Hoeffding bound. Hence, if ∆ ≥ log50 n, then all the nodes degrees
in G′ are ∆(1 ± ∆−0.4) with high probability. Therefore, all the nodes are also (∆−0.4, ∆)-
regular in that case. Otherwise, if ∆ < log50 n, then we can use a bounded dependence
Chernoff-Hoeffding type argument, as follows. By a union bound, the probability that a node
u isn’t (∆−0.4, ∆)-regular is at most ∆2 · exp (−∆0.2/6) ≤ exp (−∆0.1). Hence, the expected
number of nodes that aren’t (∆−0.4, ∆)-regular is at most n · exp (−∆0.1). Furthermore, the
event of whether a node is (∆−0.4, ∆)-regular depends only on < ∆10 other nodes. Hence, by
applying Chernoff with bounded dependence (see full version for details), we get that with
high probability, all but n · exp (−∆1/200) nodes are (∆−0.4, ∆)-regular in G′. Hence, since
∆−0.4 ≤ ∆−1/600, it suffices to apply Lemma 13 on G′. This concludes the proof. ◀
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