Natural Calamities Demand More Rescuers:
Exploring Connectivity Time Dynamic Graphs

Ashish Saxena &
Indian Institute of Technology Ropar, Rupnagar, Punjab, India

Kaushik Mondal &
Indian Institute of Technology Ropar, Rupnagar, Punjab, India

—— Abstract

We study the exploration problem by mobile agents in Connectivity Time dynamic graphs. The
Connectivity Time model was introduced by Michail et al. [JPDC 2014] and is arguably one of

the weakest dynamic graph connectivity models. We prove that exploration is impossible in such
(n—1)(n—2)
2

graphs using mobile agents starting from an arbitrary initial configuration, even when
agents have full knowledge of system parameters, global communication, full visibility, and infinite
memory. We then present an exploration algorithm that uses % + 1 agents equipped with

global communication, 1-hop visibility and O(logn) memory.
2012 ACM Subject Classification Theory of computation — Distributed algorithms

Keywords and phrases Mobile agents, Anonymous graphs, Exploration, Dynamic graphs, Determin-
istic algorithm

Digital Object Identifier 10.4230/LIPIcs.DISC.2025.41

Funding Ashish Sazena: Acknowledge the financial support from IIT Ropar.
Kaushik Mondal: Acknowledge the ISIRD grant provided by IIT Ropar.

1 Introduction

The exploration of graphs by mobile agents is a well-studied problem in distributed computing
and has foundational importance in theoretical computer science. Originating from early
work by Shannon [39], the objective is for mobile agents to collectively visit every node in a
given network. Depending on the requirements, the task may involve visiting each node at
least once (exploration with termination) or repeatedly over time (perpetual exploration).
This problem is not only of theoretical interest but also has practical implications for systems
involving autonomous agents, such as robots, software agents, or vehicles, where exploration
helps in fault detection, information dissemination, or data collection across the network.

The graph exploration problem has been studied under a wide range of assumptions. These
include whether the nodes are uniquely labelled or anonymous, whether agents have distinct
identities or are indistinguishable, and the mode of communication or interaction among
agents, such as using whiteboards, tokens, face-to-face meetings, or vision-based mechanisms.
Variations also arise based on the degree of synchrony among agents (asynchronous, semi-
synchronous, or fully-synchronous), the extent of their knowledge about the network, and the
amount of memory available to them (refer to [2,6,7,11,13,14,21,22,37], for a comprehensive
overview, refer to [9]). Despite the diversity in models, most of the prior research is on static
graphs, meaning the graph structure remains fixed throughout the exploration. While this
assumption works well for traditional networks, where changes typically result from failures
but it falls short in capturing the behaviour of today’s highly dynamic networks.

The dynamic nature of modern networks presents significant challenges in addressing
various algorithmic problems in mobile computing and related domains, as the underlying
network topology evolves over time. From the perspective of mobile agents, this means
? Ashish Saxena and. Kaushik Mond.al;

37 icensed under Creative Commons License CC-BY 4.0
39th International Symposium on Distributed Computing (DISC 2025).
Editor: Dariusz R. Kowalski; Article No.41; pp.41:1-41:23

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:ashish.21maz0004@iitrpr.ac.in
https://orcid.org/0009-0007-4767-8862
mailto:kaushik.mondal@iitrpr.ac.in
https://orcid.org/0000-0002-9606-9293
https://doi.org/10.4230/LIPIcs.DISC.2025.41
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

41:2

Exploring Connectivity Time Dynamic Graphs

that agents must carry out their tasks in an environment that evolves over time steps. A
foundational model capturing such dynamic behaviour was introduced by Kuhn et al. [32].
In their framework, they defined a stability property known as T-Interval Connectivity (for
T > 1), which requires that in every sequence of T' consecutive rounds, there exists a stable,
connected spanning subgraph, although additional edges may appear or disappear in each
round. Later, Michail et al. [33] proposed a more relaxed and natural notion of connectivity in
dynamic networks, particularly suitable for networks that may be disconnected at individual
time steps. They introduced the concept of Connectivity Time, defined as follows:

Let V be a fixed set of nodes and S = {(u,v),|,u,v € V'} be the set of possible edges. Let
P(S) denote the power set of S. A synchronous dynamic network is modeled as a dynamic
graph G = (V, E), where FE : N — P(S) maps each round number r € NU {0} to the set of
edges present at that round. The static graph at round r is denoted by G, = (V, E(r)).

Definition. [33] The Connectivity Time of a dynamic graph G = (V, E) is the minimum
integer T' € N such that ¥V r € NU{0}, the union graph G, = (V, U::ZLI E(i)) is connected.
This model generalizes T-Interval Connectivity, but unlike T-Interval Connectivity, it
allows temporary disconnections. Thus, Connectivity Time is strictly weaker than T-Interval
Connectivity. In the next section, we discuss the model and problem definition.

2 Model and Problem Definition

Dynamic graph model. We consider a dynamic network modeled as a sequence of undirected
graphs G = (V, E), where the node set V remains fixed over time and satisfies |V| = n.
Define S = {(u,v) |u,v € V} as the set of all possible edges, and let P(S) denote its power
set. The function F : N — P(S) maps each round number » € NU{0} to the set of edges E(r)
present at that round, yielding the snapshot graph G, = (V, E(r)). The dynamic graph G is
thus given as a sequence (Go, G1,Ga,...). We assume the presence of a dynamic adversary
that may insert or delete any edge at the beginning of each round. The degree of a node v
at round r is denoted by deg,.(v). The diameter of G, is denoted by D,..

Each snapshot graph G, is unweighted, undirected, and anonymous. Moreover, the graph

is port-labelled: for any node v € G,, the incident edges are assigned distinct local port
numbers in the range [0, deg,.(v) — 1]. For an edge (u,v), the port numbers at u and v are
independently assigned and unrelated. Port labellings can differ across rounds; i.e., port
numbers at a node in G, may not match those in G,/ for r # r’. Nodes do not have any
storage capability. A node is referred to as hole in round r if no agent is present at that
node, and as multinode if two or more agents occupy it at round r. In this work, the graph
G(= (Go,G1,Ga, .. .)) maintains the Connectivity Time property for some T, i.e., for every
r > 0, the graph G, := (V, U:LT_l E(i)) is connected.
Agent model. We consider ¢ mobile agents that are initially placed arbitrarily on the nodes
of G. Each agent has a unique identifier from the range [1,n°|, where ¢ is some constant,
and knows only its own ID. Agents are equipped with O(logn) memory and execute the
algorithm under a fully synchronous scheduler, i.e., in each round ¢, every agent executes a
Communicate-Compute-Move (CCM) cycle:

Communicate: Agents communicate as per the communication model.

Compute: Based on its local view and any received information, the agent performs

computation, including deciding whether and where to move.

Move: The agent moves through a chosen port or stays idle.

A. Saxena and K. Mondal

The time complexity is measured by the number of synchronous rounds. We refer to G,
together with the agents’ positions as the configuration. With a slight abuse of notation, we
may denote the configuration at round r by G,.

Visibility model. We adopt a standard visibility framework where agents have [-hop visibility.
In the I-hop model [1,34], at the beginning of round r, an agent can see the subgraph induced
by nodes within distance ! from its current location in G,., including the presence or absence
of agents in that neighbourhood. When [= D,., this provides full visibility at round r.

Communication model. In this work, we consider the global communication model [8, 20,
30,31,36]. The global communication allows agents to exchange messages with any agent
located in the same connected component of G,, utilizing the graph’s links. The global
communication between two different connected components of G, is not possible, as there is
no edge between two different connected components.

Problem definition. A node v is visited by round r if at least one agent is at node v at
round ¢, where ¢ € [0,7]. An algorithm achieves exploration if every node is visited at least
once. And, an algorithm achieves perpetual exploration if every node is visited infinitely
often.

3 Related Work

Exploration of dynamic graphs has been widely studied in centralized settings, where agents
have full knowledge of the network’s evolution. Notably, optimal exploration schedules have
been analyzed under 1-Interval Connectivity [18] and extended in subsequent works [15-17].
Specific topologies such as rings and cactuses have also been explored under T-Interval and
1-Interval Connectivity, respectively [26,27].

Distributed exploration, with limited agent knowledge, has received less attention. Prob-
abilistic methods like random walks were introduced in early foundation work [3], while
deterministic approaches focus on periodic graphs and carrier models [18,19,27,28]. Perpetual
exploration and exploration with termination have been studied in 1-Interval Connected
rings using 2 or 3 agents under Fsync and Ssync models [4,5,12]. Other results include
exploration with O(n) agents in toroidal networks [24], and single-agent strategies with
partial foresight [25]. A significant advancement in this area is the work by Gotoh et al. [23],
which investigates the fundamental limits of exploration in time-varying graphs under Fsync
and Ssync schedulers. In their model, the network is derived from a fixed footprint graph
from which edges are deleted dynamically. Agents are able to detect missing edges indirectly
when their attempted movements fail. Additionally, port numbers at nodes remain fixed
throughout the computation, inherited from the footprint. In contrast, our model assumes
the absence of a global footprint. More importantly, port numbers are not fixed over time, as
they depend on the local degree of G,.. Consequently, agent movements are always successful,
and agents may be unable to detect the change of topology. These characteristics make our
model weaker than the one studied in [23], as it places fewer constraints on the dynamic
behaviour of the network and provides the agents with less information. In this work, we
study perpetual exploration in the Connectivity Time dynamic graphs.

Recently, Saxena et al. [38] studied exploration under various connectivity models,
including Connectivity Time, and showed that exploration is impossible with at most n
agents (under model assumptions consistent with ours). However, their result did not

41:3

DISC 2025

41:4

Exploring Connectivity Time Dynamic Graphs

yield tight bounds. In this work, we strengthen their impossibility result by proving that
exploration is not solvable even with up to (n—2)(n—1)/2 agents, and complement this with
a matching algorithmic upper bound. Our contributions are presented in the next section.

4 Qur Contribution

In this work, we present the following two results:

1. Exploration is impossible in the Connectivity Time dynamic graphs by %

agents
starting from an arbitrary initial configuration, even if agents have infinite memory, full
visibility, global communication, and knowledge of all parameters (refer Theorem 4).!

2. We present a perpetual exploration algorithm for the Connectivity Time dynamic graphs
using % + 1 agents starting from arbitrary initial configuration, where each agent
has 1-hop visibility, global communication, and O(logn) memory (refer Theorem 17).

Figure 1 Initial configuration Co of % agents.
5 Impossibility Result
In this section, we show that exploration is impossible to solve using % agents.

Before proceeding with the construction of G = (Go, G1, .. .), we first outline the high-level
idea behind the impossibility result.

High-level idea. While there remains a non-empty set of unexplored nodes, the goal is to
transfer agents from explored and occupied nodes to those unexplored ones. As it can be
difficult to differentiate between an unexplored node with an explored but unoccupied node,
the algorithm may require to transfer agents from explored and occupied nodes to explored
but currently unoccupied nodes as well. If an algorithm succeeds in keeping all explored
nodes occupied, then eventually, as the adversary must pick an edge across the cut, some
agent will move to an unexplored node and hence the node becomes visited. However, the
adversary is powerful: if b agents move from a node with x agents to a node with y < x
agents according to some deterministic algorithm, making the new counts ¥’ = y + b and
2’ = x — b, the adversary can flip the roles of these two nodes in the next graph instance,
effectively undoing progress as the algorithm performs the reverse operation. The proofs
formalize this idea: with fewer than (n — 1)(n — 2)/2 + 1 agents, the adversary can always
choose such a flip whereas with that many agents it cannot always do that.

Dynamic graph G. Let n = 2k for some k£ € N, n > 4 and T > 2. We give an initial
configuration with % agents such that the exploration is impossible to solve. Let
V1, Vg, ..., Uy be nodes. At the beginning of round 0, consider k£ many one length paths as
follows: P (= vy ~ v3), Pa(=v3 ~v4), ..., Po—1(= U3 ~ vp_2) and Py(= v,—1 ~ v,). Let

a,-(w) represent the number of agents located at a node w at the beginning of round r, and

L If exploration is impossible then so is perpetual exploration and if perpetual exploration is possible then
so is exploration.

A. Saxena and K. Mondal

let 3, (w) represent the number of agents located at the node w at the end of round .2 Let
ap(v;) =n—i—1forie[l,n—2], and ap(vy—1) = ap(v,) =0 (i.e., nodes v,_1 and v,, are
holes). Let’s denote this configuration by Cy (refer to Fig. 1). The total number of agents is
Yo ao(v) = Z?;fi = % In round r > 0, the adversary maintains G, as follows:

Py Py Py Py Py Pl

By
o 0 ---- © o —0 o o o ---- © o o
Wy

(A)

Figure 2 (A) Graph G;r_2, (B) Graph Gir_1.

o o——o0 ---- ©

wy wy w3 Wn—4 Wy—3 W2 Wp—1 wy, wy wy ws

(A) (B)

Figure 3 (A) An agent moves from node wn—2 to node wn—1 at round r — 1 in G,_1, (B) G, with

respect to Gr_1.

— a; a;
o o0——o0 ---- o——o0 é & o o o ---- © o o Or o]
Wn Wy

wy wa w3 Wy—q Wn—3 Wn—2 Wn—1 wy,

wy wy wa Wp—q Wn—3 Wn-2 1

(A) (B)

Figure 4 (A) An agent moves from node wy,—1 to node wp—2 at round r — 1 in G,—1, (B) G, with

respect to G,_1.

(a) 7€ [0, T — 2]: It maintains Cy in these rounds.

(b) re€[iT -1, (i4+1)T — 2], where i > 1 &¢(mod 2) # 0:

At round T — 2, there are k many one length paths, say P(= w1 ~ ws), Po(= w3 ~ wy),

vovy Poo1(= wp—3 ~ wp_2), Pp(= wy—1 ~ wy,) (we separately show that nodes w,,—1 and w,

are holes at round iT" — 2, with w,, = v,). Note that at the end of round T' — 2, w; = v;, for

every i. We can see G;p_» in Fig. 2(A). Based on the movement of agents at round i1’ — 2,

the adversary forms k paths, say P;, Py, ..., P}, at the beginning of round i7" — 1 as follows.
If Bir—2(w1) > Bir—2(w2), then P| = w;. Else, P = wa. For j € [2,k — 1], P} is defined

as follows.

waj_g ~ woj_1, if Bir_a(wa;j—3) < Bir—2(waj—2) and Bir_a(waj—_1) > Bir—2(wa;)
Woj—a ~ waj—1, if Bir—a(wej—3) > Bir—2(wej—2) and Bir—2(wej—1) > Bir—2(w2;)
! woj—3 ~ waj, if Bir—a(wej—3) < Pir—2(waj—2) and Bir—_a(waj—1) < Bir—2(w2;)
Waj—2 ~ W25, if BiT—2(w2j—3) > ﬂiT—z(w2j—2) and 5iT—2(w2j—1) < /BiT—Q(w2j)
If Bir—2(wn—3) > Bir—2(wp—2), then P = wy_o ~ wyp—1 ~ wy,. Else, P, = wy_3 ~
Wp—1 ~ wy. We can see G;7_1 in Fig. 2(B).

Without loss of generality, let Pj(= wy), Piy(= wa ~ w3), ..., Pi_{(= Wp—a ~ wy_3),
Pl (= wp—2 ~ Wp—1 ~ wy). If ayr_1(w,—2) = 0, the adversary maintains the graph G, as

2 The parameter 3.(w) is the number of agents at node w after completing CCM cycle at round 7.

41:5

DISC 2025

41:6

Exploring Connectivity Time Dynamic Graphs

Gir—1 for every r € [iT, (i + 1)T —2]. If ayr—1(wp—2) > 0, the adversary maintains the graph
G, for every r € [iT, (i + 1)T — 2] as follows.

If an agent from node w,_s moves to node w,_; at round r — 1, then adversary at
the beginning of round r maintains the following path: P/ = wy, Py = ws ~ ws,...,
P/ | = wp—4 ~ Wy_3, and P| = w,_1 ~ Wy_2 ~ wy, (refer Fig. 3(A) at round r — 1, and
refer Fig. 3(B) at round 7). Otherwise, it maintains the graph G, as G,_;.

If an agent from node w,_1; moves to node w,_o at round r — 1, then adversary at
the beginning of round r maintains the following path: P| = wy, Py = wy ~ ws,...,
Pl | =Wp_4 ~ wWy_3, and P} = wy_o ~ Wy_1 ~ w, (refer Fig. 4(A) at round r — 1, and
refer Fig. 4(B) at round r). Otherwise, it maintains the graph G, as G,_1.

If ¢ = 1, then it is not difficult to observe that the number of agents at node ag_1 (wy,—2) <
1as ar—s(xn—3) + ar—2(xn_2) = 3. We show later for every 4, ayr—1(w,—2) < 1. Thus, the
way we change the graph, the agent always stays between node w,,_o and w,_; and can not
access node w,, in round r. We denote this configuration by C;_s_3.

Py Py Py Py Py Pr-1 Py
o o—o0 ---- © o o O xo) o—o0 ---- o0——o0 ©G—¢
wy w2 w3 Wn—q Wn—3 Wn-2 Wn—1 Wy,

(4) (B)

Figure 5 (A) Graph G;r—2, (B) Graph Gir—1.

(c) reiT -1, (i4+1)T — 2], where ¢ > 1&i(mod 2) = 0:
At the end of round T — 2, there are k many paths, say Pj(= wy), Pi(= wa ~ ws), ...,
P/ (=wp—q ~wp_3), Pl = wp_2 ~ wy_1 ~ w, (we separately show that nodes w,,_; and
wy,, are holes at the beginning of round T — 2, with w,, = v,, and at most one agent occupy
node w,_s). We can see G;r_s in Fig. 5(A). At round T — 1, the adversary forms k many
one length paths, say P;, Ps, ..., P;. Based on the movement of agents at round T — 2, the
adversary forms k paths, say Pi, Ps, ..., Pg, at the beginning of round T — 1 as follows.
If Bir—o(we) > Bir—2(ws), then Py = wy ~ wy. Else, P, = wy ~ ws. For j € [2,k — 2],
P;j is defined as follows.

Waj—2 ~ W2y, if ﬁiT72(w2j72) < 5iT72(w2j71) and BiT72(w2j) > 5iT72(w2j+1)
Waj—1 ~ W2y, if ﬁiT—Z(wzj—z) > BiT—Z(ij—l) and ,6iT—2(w2j) > BiT—z(w2j+1)
Waj—o ~ wajt1, if Bir—a(wej—2) < Bir—2(waej—1) and Bir—o(wa;) < Bir—2(wW2j+1)

Woj—1 ~ Wojt1, if Bir—a(waj—2) > Bir—2(wej—1) and Bir_o(we;) < Bir—2(wajt1)

At the end of round ¢T" — 2, there is at most one agent in path P}, and this agent is either
at node wy,_o or wy,_1 (we show this separately). If there is no agent in path P/, then Py,_q
and Py are defined as follows. If Bir_o(wn—4) > Bir—2(wn_3), then Py_1 = wyp—3 ~ Wwp_o
and P, = w,_1 ~ wy,. Else, P,_1 = wy_4 ~ wp_o and P, = w,_1 ~ w,. If there is one
agent in path P/, then Pj_; and Py are defined as follows. Based on agent’s position at node
Wy _9 O W,_1 at the end of round T — 2, the cases are as follows.

If an agent is at node w,_o at the end of round T — 2, the path P,_; and Py are
defined as follows. If Bir_o(wp_4) > Bir—2(wn—3), then Pr_1 = wy_3 ~ wp_2 and
P, =w,_1 ~w,. Else, P,_1 =w,_4 ~wy_o and Py = w,_1 ~ w,.
If an agent is at node w,_1 at the end of round T — 2, the path Py_; and Py are
defined as follows. If B,‘T_Q(wn_4) > ﬁiT_Q(wn_g), then Pk—l = Wp—-3 ~ Wp-1 and
P, =w,_9 ~w,. Else, P,_1 = wn_4q4 ~wnp_1 and Py = W,_o ~ Wy,

A. Saxena and K. Mondal

1 C2—2 |
I I I I I
0 T-2 27 -2 3T —2 4T -2 5T — 2

Co A Ci—2-3 A Cos 1C142—3

Figure 6 It shows how the agent configurations evolve periodically over the dynamic graph, with
specific configurations like Co, C1_2_3, and Ca_2 reappearing at regular intervals.

We can see G;7—1 in Fig. 5(B). It maintains G, as G;r—1 for every r € [iT, (i + 1)T — 2].

Later, we show that there is no agent in P, and one of the nodes in Py is v,. We denote
this configuration by Co_s.
Fig. 6 shows how the configuration evolves over time.

» Lemma 1. Dynamic graph G maintains the Connectivity Time property. (Proof in
Appendiz, see Section A.1)

We define two notations as follows.

(N1) r € iT —1, (i + 1)T — 2], where ¢ > 1&i(mod 2) =0 (or r € [0,T — 2]):
In this case, either configuration Cy or Cy_o is true. Therefore, at round r, there are
k one length paths Pi, P, ..., Py. Let Pj(= waj_1 ~ waj), for every j € [1,k]. If
ar(wej—1) > ar(we;), then we denote woj_1 as wy; 1 and wa; as wy;. Otherwise, we
denote wyj_1 as wy; and wa; as wy;_;.

(N2) r € iT — 1, (i + 1)T — 2], where i > 1&i(mod 2) # 0 : In this case,
configuration C1_o_3 is true. Therefore, at round r, there are k paths P;, Py, ..., P}. Let
Pi(= waj_g ~ waj_1), for every j € [2,k—1], P{(= w1) and P{(= wp—2 ~ wp_1 ~ wy). If
ar(waj—2) > ay(wej—1), then we denote wo;_o as wh; o and w1 as wh; ;. Otherwise,
we denote wy;—2 as wy;_; and wgj_1 as wy,;_,. We consider wy as wy, wp—2 as wy,_o,
Wyp—1 as w),_,, and w, as w,,.

» Lemma 2. The following inequality holds ¥ I € [1,n — 2] and for every round r > 0.

! 1
Zar(wf) > Z(n —i—1)

Proof. Proving our lemma is equivalent to showing that the following two inequalities hold
for every j € [1,k — 1] at round r:

(&) > o)z m—i-1), B) Y aw)z Y (m-i-1),

We use mathematical induction to prove inequalities (A) and (B) for every » > 0. Both
inequalities are true for r = 0 as Cp includes k paths: Pj(= v1 ~ v3), Pa(= v3 ~ v4), ...,
P_1(= vp—3 ~ vp_2), and an additional path Py(= v,—1 ~ v,). We define ap(v;) =n—i—1
for i € [1,n — 2], with ag(v,_1) = ag(v,) = 0. Therefore, w = v; for every i < n — 2.

Assuming the statement is true for round r > 0, we aim to show that it also holds for
round 7 + 1. There are five possible cases to consider: Case 1: r,r+1 € [0,T — 2|, Case 2:
ryr+1 € [iT—1,(i+1)T —2], where i is an odd number, Case 3: r,r+1 € [iT—1, (i+1)T—-2],
where i is an even number, Case 4: r = iT — 2, where 7 is odd, and Case 5: r = T — 2,
where i is even. Due to the length of the proof, we present only the proofs of Case 1 and
Case 4 here. The proofs of Case 2 and Case 3 follow similar ideas to Case 1, and Case 5
builds upon the approach used in Case 4. The proof of Case 2, 3 and 5 is in Appendix, see
Section A.2.

Case 1. In this case, agents are in configuration Cy at round r and r + 1.

41:7

DISC 2025

41:8

Exploring Connectivity Time Dynamic Graphs

Proof of (A). Due to the induction hypothesis, the following inequality holds:

Sarw) =Y (m-i-1) (1)

Since the dynamic graph does not change between rounds 0 and T — 2, no matter how agents
move, for every j € [1,k — 1], we have the following:

ar(wy;_q) + ar(wy;) = ar+1(w2j' 1)+ O‘r-&-l(wzjl) (2)

Therefore, the following inequality holds using Eq. (1) and Eq. (2):

27

Yot =Y ap(w)) =Y (n-i-1) 3)
i=1 =1

i=1

Proof of (B). The inequality a,(w]) > n — 2 holds due to the induction hypothesis,
and the inequality a,(w]) + a,(wh) > (n —2) + (n — 3) is valid due to proof of (A).
Therefore, regardless of how the agents move in round r, we have ar+1(w1) >n—2as
ar(w]) + ap(wh) = a1 (W) 4+ appr (whT) and o (W) >,y (wh). This shows
(B) holds for j = 1. For j € [2,k — 1], we use a contrapositive argument. Suppose for some
smallest value j > 2, the inequality (B) does not hold for round r + 1. Then the following

inequality must be true:

2j—1 2j—1
> arn@it) < X n-i-1) (4)
=1

Due to Eq. (3), we get:

2j—2 2j—2
S arpait)y =D (n—i—1) (5)
i=1 i=1

Therefore, using Eq. (4) and Eq. (5), the inequality ar+1(w§j_11) <n—(2j-1)—1=n-2j
holds. Rewrite Eq. (3) as

ol > Y m—i— 1) z)

From Eq. (4) and Eq. (6), the inequality oz,«H(w2 ') > n —2j holds. Thus, due to our
assumption (i.e., Eq. 4), we have arH(ij ') <n—2jand ar+1(w2 1) > n—24. Therefore,
we have ozTH(wQJ+ 1) < ar+1(ng1). ThlS leads to a contradiction because, due to (N1),
the inequality arH(wQ;rll) > g (ws) holds. This shows that our initial assumption is

incorrect. Therefore, inequality (B) holds for round r + 1.

Case 4. In this case, at round r = ¢1" — 2, where ¢ is an odd number, the configuration is
either Cy or Cso.2, and at round r + 1, it changes to C1_2_3

Proof of (A). Due to the induction hypothesis, the following inequality is true:

San) =Y (n—i-1) (7)
i=1 =

A. Saxena and K. Mondal

The adversary constructs the dynamic graph in round r 4+ 1 based on the agents’ positions at
the end of round . Let p = max{,(w5;_;), B(w5;)}. Therefore, a;41(wg;—1) = p and the
value of a,y1(ws;) is as follows (recall configuration Ci_s_3):

i1 (wh) = max{ay (wh;_y) + o (wh;) — pmax{ B (wS41), By (w5, 2)} | (8)

The adversary forms the dynamic graph at round 7" — 1, ensuring the following equality:

2j—1 2j-2
o) =Y ap(w)) +p (9)
i=1 i=1

Using Eq. (9), the following equality holds.
2j 2j—1 2j—2
D@ = > ap () F e (i) = Y an(w)) + p+ app (wpt) (10)
i=1 i=1 i=1

Due to Eq. (8), we have a7.+1(w£;-'1) > ap(wy;_q) + ar(wy;) — p. Thus, using Eq. (10):

2j 2j
D (W) = an(wy) (11)
i=1 i=1

Using Eq. (7) and Eq. (11), the inequality (A) holds for round r + 1.

Proof of (B). For j =1, the inequality a,(w]) > n — 2 holds, and due to the proof of (A),
the inequality o, (w}]) + a,.(wh) >n — 2 +n — 3 holds. Therefore, a1 (w]™) > n — 2 holds
regardless of how agents move at round r due to the following reason. If ar+1(w1+1) <n-—2,
then B, (w]) < n—2 and S, (wh) < n—2 holds as per the dynamic graph construction at round
iT — 1, apgr (W)™ = max {8, (w?), Br-(wh)}. Therefore, B,.(w}) <n—3 and B, (wh) < n— 3,
and hence the inequality S.(w]) + Br(w}) < 2(n — 3) holds. Since B,.(w]) + Br(wh) =
a-(w]) + a,(wh), the inequality a,.(w]) + a,-(wh) < 2(n — 3). This leads to a contradiction
as a.(w]) + a,(wh) > n — 2+ n — 3. Therefore, our assumption is wrong, and it implies
a1 (wiT) > n — 2. Now we prove (B) when j > 2. Due to (A), the following inequalities
hold for j > 2.

2j—2 2j—2 2j 2j
> apw)) =Y (n—i—1) and ap(w)) >y (n—i-1) (12)
i=1 i=1 i=1 i=1
In Eq. (9), the lower bound of p is [w—‘ Using Eq. (9), we have:
2j—1 2j—2 , .
Qr(Wo 1) + QW
Z Oér+1(wf+1) > Z @r(wz) + ’7 (2j 1) (2])“ (13)
‘ . 2
i=1 i=1
Using Eq. (12), we have (by taking the sum of inequalities of Eq. (12)):
2j—2 2j—2
2 (3 o) rtutyo i) 22 (S n-i-) a2 25
i=1 i=1
2j—2 ’ ’ 2j—2
o ar(wyi_g) + o (ws;) . o1
= ;ar(wi)—i— 3 2;(71—1—1)+n—2]—§ (14)

41:9

DISC 2025

41:10

Exploring Connectivity Time Dynamic Graphs

Since [z] > z for every x € R, the following holds:

2j—2 2j—1

Z OéT(w:) 4 lrar(ng—l) + ar(ng)—‘ > Z (n i 1) +n— 2] _ Z (n i 1) (15)

; 2 ; ;
i=1 1=1 =1

Due to Eq. (13) and (15), inequality (B) holds for round r+ 1. This completes the proof. <

iT—1

w5) <1, where i is an odd number.

» Corollary 3. At round iT — 1, ayp—1(w

Proof. Due to Lemma 2, the following two inequalities hold at round 7" — 1.

2n—3] 2n—3 2n—2) 2n—2
Sw >N (n—i—1) and D wTr> D (n—i-1) (16)
i=1 i=1 i=1 i=1

Therefore, due to Eq. (16), aiT,l(wflT_El) < 1. This completes the proof. <

» Theorem 4. If the initial configuration contains at least two holes, then a group of
(n—2)(n—1)/2 agents cannot solve the exploration problem in dynamic graphs that maintain
the Connectivity Time property. This impossibility holds even if agents have infinite memory,
full wvisibility, global communication, and know the parameters k, n(> 4), T(> 2).

Proof. Our dynamic graph construction satisfies the Connectivity Time property as estab-
lished in Lemma 1. To prove that exploration is impossible, it suffices to show that node v,
remains a hole at every round r > 0. If r € [0, T — 2], node v,, is not accessible to the agents
because node v, is in path Py, where v,,_1 is a hole.

As per Corollary 3, aT,l(wTleé) < 1. Therefore, at the beginning of round 7" — 1, there
can be at most one agent at node w,_o. If there is no agent, then node v,, is not accessible
to the agents because node v, is in path P];, where w,,_o, w,_1 are holes.

If there is an agent at node w,_o at the beginning of round 7" — 1, it has the option
to move to node w,_1 during round r € [T'— 1,27 — 3]. In this scenario, the adversary
constructs the following graph at round r + 1 according to our dynamic graph construction
method: the adversary maintains the paths P, P;,..., P,_; unchanged and modifies P}
from w,,_o ~ Wp_1 ~ Uy tO Wy_1 ~ Wy_9 ~ V,. In this manner, at round r + 1, the node v,,
is two hops away from the agent’s position. The adversary follows the same procedure; if
the agents move in later rounds from node w,_1 to w,_2, this ensures that during rounds
r € [T —1,2T — 2], the agents consistently remain at nodes w,,—» and w,_1. Consequently,
the agent can not reach node v,, in any of these rounds.

At the beginning of round 27 — 1, as per our dynamic graph construction, if there was an
agent in path P} at round 27 — 2 (there is at most one agent due to Corollary 3), it removes
such a node from Pj at the beginning of round 2T — 1. Therefore, as per dynamic graph
construction at the beginning of round 27— 1, the node v,, is in path Py = w,—1 ~ wy, (= vy),
where node w,,_1 is a hole. The adversary maintains the same configuration at every round
r € [2T — 1,3T — 2]. Therefore, the agent can not reach node v,, in any of these rounds. This
idea can be extended for r > 3T — 1 using Corollary 3. It is important to note that this is
independent of the agents’ power. Therefore, the proof remains valid even if the agents have
full visibility, global communication, and know all parameters. This completes the proof. <«

6 Connectivity Time Dynamic Graph Exploration

The Connectivity Time dynamic graph has high dynamicity, and the high dynamicity may
prevent even basic coordination if agents are significantly restricted in their ability to perceive
their surroundings or communicate with one another. Assume agents have 1-hop visibility.

A. Saxena and K. Mondal

Figure 7 (a) Graph G,, where r(mod 3)=0, (b) Graph G,, where r(mod 3)=1, (c) Graph G,,
where r(mod 3)=2. This figure is an example of the Connectivity Time for 7' = 3.

Consider two paths: P = wy ~ wy ~ w3 ~wy ~ wsand P’ = ws ~ wy ~ w3 ~ wy ~ wi.

The adversary can create either P or P’, such that only at ws, the 1-hop view remains
unchanged. The movement of agent(s) at w3 remains the same for both P and P’ irrespective
of the hole position. This can cause exploration to fail. Now, assume agents have global
communication but no 1-hop visibility. Then, local views at each node remain the same
in the above example, making it difficult again. To address these challenges, we assume
that agents are equipped with 1-hop visibility and global communication capabilities in our
algorithm. Even stronger assumptions are considered in the study of 1-Interval Connected
dynamic networks (e.g., in [10], [35], authors use full visibility), and are instrumental in
enabling tractable algorithmic solutions under highly dynamic conditions. Since 1-Interval
Connectivity is a stronger assumption than the Connectivity Time, the Connectivity Time
model imposes greater difficulty. It is important to emphasize that these assumptions are
not fundamental to the definition of the problem but are adopted solely to overcome the
adversarial nature of the Connectivity Time model. Moreover, we complement our algorithmic
results with lower bounds and impossibility results (refer to Section 5) that hold even when
agents possess stronger capabilities, including full knowledge of all system parameters, full
visibility, and global communication. This highlights the inherent difficulty of perpetual
exploration in such settings.

High-level idea. Suppose that at round r, agents know the map of G,.. Let w be a multinode
and v a hole in G,, connected via a shortest path vi ~ vy ~ -+ ~ v, with v1 = w, v, = v,
and all intermediate nodes vy, ...,v,—1 occupied by some agent. Let a; denote an agent at v;
for 1 <i <p—1. In round r, each a; moves to v;;1. The multinode v; remains non-empty,
and each v; (2 <1i < p—1) receives an agent from v;_; and sends one to v; 1, preserving
non-hole status. Finally, the hole v, is filled. This strategy is known as pipeline strategy,
which pushes an agent to the nearest hole without creating new holes and has been used in
prior works (e.g., [29]).

Challenges. A key challenge arises from the agents’ inability to reconstruct the dynamic
graph due to limited knowledge of the adversary’s behavior. However, with 1-hop visibility
and global communication, agents can share local views to collaboratively form a partial
network snapshot. While this may not capture the full graph, it often suffices for executing
the pipeline procedure.

The core difficulty lies in ensuring every node is visited at least once. Even if agents
can fill holes, some nodes may remain unvisited. Under the Connectivity Time model, two
nodes may never belong to the same connected component in any single round. For example,
let V' = {v1,v2, v3,v4,v5} with T' = 3, where v; is a multinode, and nodes vq, v3,v4 are not
holes; node vy is initially a hole. Define G, = (V, E(r)) as follows: if r mod 3 = 0 or 1,

41:11

DISC 2025

41:12

Exploring Connectivity Time Dynamic Graphs

let E(r) = {(v1,v2), (v2,v3), (v2,v4)} (see Fig. 7(a), (b)), and if r mod 3 = 2, let E(r) =
{(v1,02), (s, v3), (vs,v4)} (see Fig. 7(c)). Although G5 = (V,UjZ? E(i)) is connected for
all 7, no direct path exists between v; and vy in any single round. Thus, v; cannot pipeline
to vs, despite being a multinode. This illustrates how the adversary can isolate nodes round
by round, impeding exploration. To address this, we use an enhanced pipeline. If at round 7,
agents detect that there exists at least one hole and at least one multinode in their connected
component of G,., then the standard pipeline fills it. If not, then each node in the component
has at least one agent. Let Count(v) be the number of agents at node v at round r. If two
nodes v and w in the same component satisfy Count(w) > Count(v) + 2, agents initiate a
redistribution along a shortest path vy ~ vy ~ -+ ~ v, from w to v (with v; = w, v, = v),
transferring one agent via pipelining to balance the load of agents. Since the graph can be
highly sparse and disconnected, enhanced pipeline gradually builds a configuration of agents
on the nodes such that pipeline becomes feasible along every connected path in each round.

In the following sections, we use two parameters: Count(v), which denotes the number of
agents at node v, and a;.ID, which denotes the ID of agent a;.

6.1 Map Construction

We begin by presenting an algorithm that allows agents to construct a partial map of
the network, specifically, the subgraph induced by the nodes currently occupied by agents.
A similar strategy was proposed in [29]; we adapt and modify it to suit our setting and
terminology. This serves as a subroutine in our exploration algorithm.

At round r, since G, may be disconnected, it consists of p connected components, denoted
G1,Go,...,Gp, where each G; = (V;, E;) with V; CV and E; C E(r). For each connected
component G;, we further divide it into several subgraphs considering nodes that contains
agent(s). In this context, we define:

» Definition 5 (Connected component of G; without holes). The component G; can be
partitioned into subgraphs G, G2, ...,G¥, where each GI = (V| E!) satisfies the following:
Every node v € Vij have at least one agent, for all j € [1,k].
The sets of nodes and edges are pairwise disjoint, i.e., Vij NVi=0 and EZJ NE!=0 for
all j # 1, where 4,1 € [1,k].
There exists no edge e = (u,v) € E; such that u € Vij and v € Vil, where j # 1, i.e., the
subgraphs are disconnected from each other within G;.

We refer to the collection of subgraphs Gg as the connected component of G; without holes,
and denote by AC(G;).

In other words, AC(G;) denotes the collection of connected components obtained by
removing all holes and their associated edges from G;. Recall that agents use global
communication, but communication is limited within each connected component. That is,
agents located in G; cannot communicate with agents in G; for ¢ # j, as communication
happens through the graph links. An agent a; in component G; performs the following steps
at round r to compute AC(G;). The algorithm is divided into two phases as described below.

Phase 1. (1-hop view collection) Let a; be the agent with the minimum ID located at a
node v € G;. The agent a; performs the following for each port p € {0,1,...,deg.(v) — 1}:
Let u be the neighbor of v reachable via port p. Set 1D, = a;.ID.
If at least one agent is present at u: define C2 = (Count(v), ID,, p, ID,,), where ID, is
the minimum ID among the agents at node u.

A. Saxena and K. Mondal

If no agent is present at u (i.e., it is a hole): define C? = (Count(v), ID,, p, L), where L

denotes a hole via port p.

Let C, = {C?, CL, ..., CZ} denote the 1-hop view at node v, where d = deg,.(v) — 1.
The agent a; broadcasts C,, to all agents in G; using global communication.

Phase 2. (Graph Reconstruction) After receiving all 1-hop views from agents in G;, agent
a; proceeds as follows:
Define V' = {ID, | C,}, where each unique ID represents a node.
Construct the edge set E’ as follows: for each pair of tuples (Count(v), ID,, p, ID,,)
and (Count(u), ID,, q, ID,), where ID,, # 1 and ID, # L, add an undirected edge
(ID,,ID,) with port labels n(ID,,ID,) = p and w(ID,,ID,) = ¢, where m(v1,v2)
denotes the outgoing port from node v to vs.
For each tuple (Count(v), ID,, p, 1), mark port p at node ID, as leading to a hole.?
We denote this algorithm as MAP(). The correctness of MAP() is as follows. We show
that at round r, if agent a; is in connected component G; of G,., then it constructs AC(G;)
by using MAP(). Let G} be the map constructed by agent a; using MAP().

» Theorem 6. Let agent a; be located at some node in the connected component G;. Then,
using the subroutine MAP(), agent a; constructs AC(G;). (Proof in Appendix, see
Section A.3)

From Theorem 6 and Definition 5, we derive three key observations.

» Observation 7. Using MAP(), the agents in G; construct AC(G;), including information
of the number of agents at each node v and the ports from node v (if any) that lead to a hole.

» Observation 8. Since all agents within the same connected component exchange information
via global communication, the output of MAP() is identical for every agent in that component.

» Observation 9. If there is no hole in G;, then AC(G;) is the same as G;, as per Def. 5.

6.2 Perpetual Exploration Algorithm

In this section, we present the algorithm EXP__ ALGO(), which solves perpetual exploration
when agents are equipped with 1-hop visibility and global communication. The following is a
detailed description of the algorithm for agent a; at node v during round r: if node v is a
multinode and agent a; is not the minimum ID agent, then it stays at node v. If agent a; is
the minimum ID agent at node v, it follows the following steps at round r.

Agent a; broadcasts C,,.

After receiving all Cys, agent a; use M AP() algorithm. Let’s call this constructed graph
G’. Using Theorem 6, the graph G’ is nothing but a collection of partitioned subgraphs
G;, G?, cery Gf of G, where G is the connected component for which a; is a part. The
following four cases may arise in the constructed map G’, and in each case, agent a;
makes a corresponding decision.

Case 1 (there is no multinode and no information of a port towards a hole):
Agent a; stays at node v.

3 This step does not introduce any new holes or edges leading to holes during Phase 2; it only marks the
port(s) at node v that lead to a hole.

41:13

DISC 2025

41:14

Exploring Connectivity Time Dynamic Graphs

Case 2 (there is no multinode, but there is information of a port leading to a hole):
Assume there are k nodes, each with an agent that has a port leading to a hole. Let
b1, ba, ..., by be agents at node uy, us, ..., ug, respectively in G’, where one of the
ports of u; leads to a hole for every j € [1,k]. If a;.]D = min{b;.ID : j € [1,k]}, then
it moves to the node which leads to the hole via the minimum port. Otherwise, it
stays at its position.

Case 3 (both a multinode and information of a port towards a hole are present):
Suppose there are k multinodes in G’. Let by, ba, ..., by be agents at node uy, us,
..., ug, respectively in G’ where each node u; is a multinode in G’. Without loss of
generality, let b;./D = min{b;.ID : j € [1,k]}. Without loss of generality, let b; be
in G}. One of the nodes in G} leads to a hole as there is a hole in G, and using

Definition 5. Assume there are k' nodes in G}, each with an agent that has a port

leading to a hole. Let @y, as, ..., ax be agents jat node w1, Us, ..., U, respectively in
G} such that one of the ports lead to a hole from node u;, for every j € [1, k]. Without
loss of generality, let @;.ID = min{a;.ID : j € [1,k']}.
Since, agent a; is aware of G', it consider a shortest path P between w; and u;. If
there are multiple shortest paths between u; and %y, then it selects the one that is
lexicographically shortest among all other shortest paths. Let P = wy(= u1) ~ wa ~
.~ wy(=71). If agent q; is at some node wj, for 1 < j < y, then it moves to node
wj+1. Else if agent a; is at node wy, then it moves to the node via the minimum
available port, which leads to a hole. Otherwise, it stays at node v.
Case 4 (there is a multinode but there is no information of a port towards a hole):
Assume there are k nodes in G’. Due to Observation 8, the graph G’ is the graph G;.
Define: i’ = max{Count(x) : z € V1}, and j* = min{Count(z) : € V1 }, where V] is

the set of nodes in G;. Let vy, vg,...,v, be the nodes in G; such that Count(vg) = ¢
for each k € [1, p], and let @5 denote the minimum ID agent at node vy. Similarly, let
w1, Wa, . .., wy be the nodes in Gy such that Count(wy) = j’ for each k' € [1,¢], and

let by denote the minimum ID agent at node wg. Without loss of generality, let @; be
the agent among {ay, : k € [1,p]} with the minimum ID, and b; be the agent among
{byr : k" € [1,q]} with the minimum ID. If Count(v;) < Count(w1) + 2, agent a; stays
at node v. Otherwise (i.e.,Count(vy) > Count(w;) 4 2), agent a; find a shortest path
P between v; and wy. If there are multiple shortest paths between v; and wq, then it
selects the one that is lexicographically shortest. Let P = 2z (= v1) ~ 22... ~ z,(= w1).
If agent a; is at some node z;, for 1 < j < y, then it moves to node w;41. Else, it
stays at v.

In the next section, we show the correctness of our algorithm.

6.3 Correctness and Analysis of the Algorithm

Before proving correctness, we introduce the following notation. Let n be the number of
nodes, and define | = % + 1. For each i € [0,1], let S; := {v € V : Count(v) = i}. Let
L denote the largest integer such that Sy, # () at round 0.

» Lemma 10. Let G, be the configuration at round r. If there exists at least one hole and at
least one multinode in the same connected component of G,., then the total number of holes in
G, decreases by at least one at the end of round r. (Proof in Appendix, see Section A.4)

» Lemma 11. Let G, be the configuration at round r, and suppose that there exists a
connected component Gy of G, such that G1 contains at least one multinode but no hole.
Define i’ = max{Count(z) : z € V1} and j' = min{Count(x) : x € V1)}, where Vi is the

A. Saxena and K. Mondal

set of nodes in G1. Ifi' > j'+2, then at the end of round r, one of the nodes v € V(Gy) with
Count(v) = 4’ reduces its Count by 1, and one of the nodes w € V(G1) with Count(w) = j
increases its Count by 1. (Proof in Appendix, see Section A.5)

» Remark 12. Based on Lemma 11, we observe that one agent reaches a node w; € S at
round r. As a result, Count(w;) becomes j' + 1 at the beginning of round r + 1, implying
that wy € Sj/41. Whenever at round r, a node becomes a part of Sy, i.e., at round r — 1, it
was not a part of S, we call this event join. Whenever at round r, a node does not remain a
part of Sp, i.e., at round r — 1, it was a part of S, but it is not part of S, at round r, we call
this event leave.

We have an observation based on EXP_ALGO(), which is as follows.
» Observation 13. A4 node v with Count(v) > 1 at round r can become a hole by the end of

round r only if Count(v) = 1 and v belongs to a connected component of G, that contains a
hole but no multinode.

We now show that perpetual exploration is achieved using [agents.

» Lemma 14. If |So| =1 at some round r, then node v € Sy is visited by some agent within
the next T rounds. (Proof in Appendix, see Section A.6)

» Lemma 15. If |Sy| > 2, then 34, j (> i) € [1,1] such that S; # 0, S; #0, j > i+ 2 and
Sk =0 for alli < k < j. (Proof in Appendiz, see Section A.7)

» Lemma 16. If initially |So| > 2, then within O(n* - T) round |So| < 1.
Proof. At round 0, there are two possible cases: Case 1: |S1| =0, or Case 2: |S1| > 1.

Case 1. To maintain the Connectivity Time, some node from Sy must be in the same
connected component as a node from 5;, ¢ > 2, within the first 7' rounds. By Lemma 10, this
causes |Sp| to decrease by at least one in the next T rounds. If |S;| = 0 throughout [0,n - T,
then Sy eventually becomes empty. Otherwise, if |S;| > 1 at some round r € [0,n - T], we
are in Case 2.

Case 2. Suppose that at round r > 0, |S1| > 1. To show that |Sy| < 1, we proceed by

contrapositive argument. Assume that |Sg| > 2 throughout the interval [r,r + (n* + 1) - T).

Then, by Lemma 15, there exist indices ¢ and j with j > ¢ 4 2 such that S; # 0, S; # (), and
Sg=0forallke[i+1,7—1].

According to Remark 12, nodes may join or leave the set S, at each time step. A key
question is: how many times can nodes join the set S,? By Lemma 11, a node can join S,
at round ¢ > r only if at least one node from S; (with ¢ > p+ 1) and one node from S,_;
belong to the same connected component Gy of G;, and no node from S, for p’ < p—1isin
G1. We have [many agents. Then in the worst case, nodes can join the set .S, at most !
times, as each time one agent can move from S, to S,_;. If at most [times nodes joins set
Sp, the size of S, decreases due to Lemma 11, eventually making S, = 0 for every g > p.

As there are L such sets with L < [, the total number of join events between rounds r and
r+(n*+1)-T can not be more than [? < n*. Now divide the interval [r, 7+ (n*+1)-T] into n*+1
consecutive sub-intervals of length T": each sub-interval is of the form [r +&T, 7+ (k+1)T —1]
for k = 0,1,...,n* + 1. If at least one node leaves some set S; during each sub-interval,
then there are n* 4+ 1 such leave events in total. Since each leave corresponds to a join, this
implies there are also n* + 1 join events. But this contradicts our earlier conclusion that
there can be at most n* join events. By the pigeonhole principle, this contradiction implies
that our assumption is false. Therefore, within O(n? - T') rounds, we must have |Sp| < 1.

Since Case 2 is reached within O(n - T') rounds from any initial configuration, |Sp| < 1
holds within O(n* - T') rounds overall. This completes the proof. <

41:15

DISC 2025

41:16

Exploring Connectivity Time Dynamic Graphs

» Theorem 17. EXP ALGO() solves perpetual exploration in Connectivity Time dy-
namic graphs using % + 1 synchronous agents equipped with 1-hop visibility, global
communication, and O(logn) bits of memory. The agents have no knowledge of n, T, 1.

Proof. If |Sp| > 2 initially, then by Lemma 16, |Sp| < 1 within O(n*-T) rounds. Suppose that
at some round r > 0, |Sy| < 1. If Sy = 0, then all nodes are occupied, and by Observation 13,
no node becomes a hole in future rounds. Thus, perpetual exploration is achieved.

If So = {v}, then by Lemma 14, node v is visited within the next T' rounds. Thus,
all nodes are visited by some agent within O(n* - T') rounds, and the invariant |Sp| < 1 is
preserved thereafter. This process repeats indefinitely, ensuring perpetual exploration.

Each agent requires O(logn) bits to distinguish itself. Since the computation is round-
local (i.e., agents do not retain information from previous rounds), O(logn) bits of memory
are sufficient. This completes the proof. <

» Remark 18. Lemma 16 shows that at least n — 1 nodes are occupied in the first O(n* - T)
rounds. Theorem 17 ensures that from this point onward, at most one hole exists and, by
Lemma 14, it is revisited within each T rounds. Therefore, this also implies that each node
of the network is visited by some agent in the first O(n? - T') rounds.

7 Conclusion and Future Work

In this work, we have shown that exploration is impossible in Connectivity Time dynamic
graphs by % agents starting from an arbitrary initial configuration, even if agents
have infinite memory, full visibility, global communication, and knowledge of all parameters.
We then presented an algorithm that solves perpetual exploration using one extra agent
with only 1-hop visibility, global communication, and O(logn) memory. One can study
whether this extra agent helps to reduce the assumptions of 1-hop visibility and/or global
communication which we require for exploration.

—— References

1 A. Agarwalla, J. Augustine, W. K. Moses, S. K. Madhav, and A. K. Sridhar. Deterministic
dispersion of mobile robots in dynamic rings. In ICDCN, pages 1-4, 2018.

2 S. Albers and M. Henzinger. Exploring unknown environments. SIAM Journal on Computing,
29(4):1164-1188, 2000. doi:10.1137/5009753979732428X.

3 Chen Avin, Michal Koucky, and Zvi Lotker. How to explore a fast-changing world (cover time
of a simple random walk on evolving graphs). In ICALP 2008, pages 121-132, 2008.

4 Marjorie Bournat, Ajoy K Datta, and Swan Dubois. Self-stabilizing robots in highly dynamic
environments. In SSS 2016, pages 54—69, 2016. doi:10.1007/978-3-319-49259-9_5.

5 Marjorie Bournat, Swan Dubois, and Franck Petit. Computability of perpetual exploration in
highly dynamic rings. In ICDCS 2017, pages 794-804, 2017. doi:10.1109/ICDCS.2017.80.

6 J. Chalopin, P. Flocchini, B. Mans, and N. Santoro. Network exploration by silent and
oblivious robots. In WG, pages 208-219, 2010.

7 R. Cohen, P. Fraigniaud, D. Ilcinkas, A. Korman, and D. Peleg. Label-guided graph exploration
by a finite automaton. ACM Transactions on Algorithms, 4(4):1-18, 2008. doi:10.1145/
1383369.1383373.

8 S. Das, D. Dereniowski, and C. Karousatou. Collaborative exploration of trees by energy-
constrained mobile robots. Theor. Comp. Sys., 62(5):1223-1240, July 2018. doi:10.1007/
S500224-017-9816-3.

9 Shantanu Das. Graph Explorations with Mobile Agents, pages 403-422. Springer International
Publishing, 2019. doi:10.1007/978-3-030-11072-7_16.

https://doi.org/10.1137/S009753979732428X
https://doi.org/10.1007/978-3-319-49259-9_5
https://doi.org/10.1109/ICDCS.2017.80
https://doi.org/10.1145/1383369.1383373
https://doi.org/10.1145/1383369.1383373
https://doi.org/10.1007/S00224-017-9816-3
https://doi.org/10.1007/S00224-017-9816-3
https://doi.org/10.1007/978-3-030-11072-7_16

A. Saxena and K. Mondal

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Shantanu Das, Nikos Giachoudis, Flaminia L. Luccio, and Euripides Markou. Broadcasting
with Mobile Agents in Dynamic Networks. In OPODIS 2020, pages 24:1-24:16, 2021.

X. Deng and C.H. Papadimitriou. Exploring an unknown graph. Journal of Graph Theory,
32(3):265-297, 1999. doi:10.1002/(SICI)1097-0118(199911)32:3\%3C265: : AID-JGT6\%3E3.
0.C0;2-8.

G Di Luna, Stefan Dobrev, Paola Flocchini, and Nicola Santoro. Distributed exploration of
dynamic rings. Distributed Computing, 33:41-67, 2020. doi:10.1007/S00446-018-0339-1.
Y. Dieudonné and A. Pelc. Deterministic network exploration by anonymous silent agents
with local traffic reports. ACM Transactions on Algorithms, 11(2):1-29, 2014. doi:10.1145/
2594581.

S. Dobrev, L. Narayanan, J. Opatrny, and D. Pankratov. Exploration of high-dimensional
grids by finite automata. In JCALP, pages 1-16, 2019.

Thomas Erlebach, Michael Hoffmann, and Frank Kammer. On temporal graph exploration.
Journal of Computer and System Sciences, 119:1-18, 2021. doi:10.1016/J.JCSS.2021.01.005.
Thomas Erlebach, Frank Kammer, Kelin Luo, Andrej Sajenko, and Jakob T Spooner. Two
moves per time step make a difference. In ICALP 2019, page 141, 2019.

Thomas Erlebach and Jakob T Spooner. Faster exploration of degree-bounded temporal
graphs. In MFCS 2018), pages 36:1-36:13, 2018. doi:10.4230/LIPICS.MFCS.2018.36.
Paola Flocchini, Matthew Kellett, Peter C Mason, and Nicola Santoro. Searching for
black holes in subways. Theory of Computing Systems, 50:158-184, 2012. doi:10.1007/
S00224-011-9341-8.

Paola Flocchini, Bernard Mans, and Nicola Santoro. On the exploration of time-varying
networks. Theoretical Computer Science, 469:53—68, 2013. doi:10.1016/J.TCS.2012.10.029.
P. Fraigniaud, L. Gasieniec, D. R. Kowalski, and A. Pelc. Collective tree exploration. Networks,
48(3):166-177, 2006. doi:10.1002/NET.20127.

P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, and D. Peleg. Graph exploration by a finite
automaton. Theoretical Computer Science, 345(2-3):331-344, 2005. doi:10.1016/J.TCS.2005.
07.014.

P. Fraigniaud, D. Ilcinkas, and A. Pelc. Impact of memory size on graph exploration capability.
Discrete Applied Mathematics, 156(12):2310-2319, 2008. doi:10.1016/J.DAM.2007.11.001.
Tsuyoshi Gotoh, Paola Flocchini, Toshimitsu Masuzawa, and Nicola Santoro. Exploration of
dynamic networks: Tight bounds on the number of agents. Journal of Computer and System
Sciences, 122:1-18, 2021. doi:10.1016/J.JCSS.2021.04.003.

Tsuyoshi Gotoh, Yuichi Sudo, Fukuhito Ooshita, Hirotsugu Kakugawa, and Toshimitsu
Masuzawa. Group exploration of dynamic tori. In ICDCS 2018, pages 775-785, 2018.
d0i:10.1109/ICDCS.2018.00080.

Tsuyoshi Gotoh, Yuichi Sudo, Fukuhito Ooshita, and Toshimitsu Masuzawa. Exploration of
dynamic ring networks by a single agent with the h-hops and s-time steps view. In SSS 2019,
pages 165-177, 2019. doi:10.1007/978-3-030-34992-9_14.

David Ilcinkas, Ralf Klasing, and Ahmed Mouhamadou Wade. Exploration of constantly
connected dynamic graphs based on cactuses. In SIROCCO, pages 250-262, 2014. doi:
10.1007/978-3-319-09620-9_20.

David Ilcinkas and Ahmed M Wade. Exploration of the t-interval-connected dynamic graphs:
the case of the ring. Theory of Computing Systems, 62:1144-1160, 2018. doi:10.1007/
S500224-017-9796-3.

David Ilcinkas and Ahmed Mouhamadou Wade. On the power of waiting when ex-
ploring public transportation systems. In OPODIS 2011, pages 451-464, 2011. doi:
10.1007/978-3-642-25873-2_31.

Ajay D. Kshemkalyani and Faizan Ali. Efficient dispersion of mobile robots on graphs. In
Proceedings of the 20th International Conference on Distributed Computing and Networking,
ICDCN 19, page 218-227, New York, NY, USA, 2019. Association for Computing Machinery.
doi:10.1145/3288599.3288610.

41:17

DISC 2025

https://doi.org/10.1002/(SICI)1097-0118(199911)32:3%3C265::AID-JGT6%3E3.0.CO;2-8
https://doi.org/10.1002/(SICI)1097-0118(199911)32:3%3C265::AID-JGT6%3E3.0.CO;2-8
https://doi.org/10.1007/S00446-018-0339-1
https://doi.org/10.1145/2594581
https://doi.org/10.1145/2594581
https://doi.org/10.1016/J.JCSS.2021.01.005
https://doi.org/10.4230/LIPICS.MFCS.2018.36
https://doi.org/10.1007/S00224-011-9341-8
https://doi.org/10.1007/S00224-011-9341-8
https://doi.org/10.1016/J.TCS.2012.10.029
https://doi.org/10.1002/NET.20127
https://doi.org/10.1016/J.TCS.2005.07.014
https://doi.org/10.1016/J.TCS.2005.07.014
https://doi.org/10.1016/J.DAM.2007.11.001
https://doi.org/10.1016/J.JCSS.2021.04.003
https://doi.org/10.1109/ICDCS.2018.00080
https://doi.org/10.1007/978-3-030-34992-9_14
https://doi.org/10.1007/978-3-319-09620-9_20
https://doi.org/10.1007/978-3-319-09620-9_20
https://doi.org/10.1007/S00224-017-9796-3
https://doi.org/10.1007/S00224-017-9796-3
https://doi.org/10.1007/978-3-642-25873-2_31
https://doi.org/10.1007/978-3-642-25873-2_31
https://doi.org/10.1145/3288599.3288610

41:18

Exploring Connectivity Time Dynamic Graphs

30 Ajay D. Kshemkalyani, Anisur Rahaman Molla, and Gokarna Sharma. Dispersion of mobile
robots in the global communication model. In Proceedings of the 21st International Conference
on Distributed Computing and Networking, ICDCN 20, New York, NY, USA, 2020. Association
for Computing Machinery. doi:10.1145/3369740.3369775.

31 Ajay D. Kshemkalyani, Anisur Rahaman Molla, and Gokarna Sharma. Dispersion of mobile
robots on grids. In WALCOM: Algorithms and Computation: 14th International Conference,
WALCOM 2020, Singapore, Singapore, March 81 — April 2, 2020, Proceedings, page 183197,
Berlin, Heidelberg, 2020. Springer-Verlag. doi:10.1007/978-3-030-39881-1_16.

32 F. Kuhn, N. Lynch, and R. Oshman. Distributed computation in dynamic networks. In STOC,
pages 513-522, New York, NY, USA, 2010.

33 O. Michail, I. Chatzigiannakis, and P. G. Spirakis. Causality, influence, and computation in
possibly disconnected synchronous dynamic networks. Journal of Parallel and Distributed
Computing, 74(1):2016-2026, 2014. doi:10.1016/J.JPDC.2013.07.007.

34 A. Miller and U. Saha. Fast byzantine gathering with visibility in graphs. In Algorithms for
Sensor Systems, pages 140153, 2020.

35 William K. Moses Jr., Amanda Redlich, and Frederick Stock. Brief Announcement: Broadcast
via Mobile Agents in a Dynamic Network: Interplay of Graph Properties & Agents. In SAND
2025, pages 17:1-17:5, 2025. doi:10.4230/LIPICS.SAND.2025.17.

36 C. Ortolf and C. Schindelhauer. Online multi-robot exploration of grid graphs with rectangular
obstacles. In SPAA 2012, pages 27-36, New York, NY, USA, 2012.

37 P. Panaite and A. Pelc. Exploring unknown undirected graphs. Journal of Algorithms,
33:281-295, 1999. doi:10.1006/JAGM.1999.1043.

38 Ashish Saxena and Kaushik Mondal. Path connected dynamic graphs with a study of dispersion
and exploration. Theoretical Computer Science, 1050:115390, 2025. doi:10.1016/J.TCS.2025.
115390.

39 Claude E Shannon. Presentation of a maze-solving machine. Claude Elwood Shannon Collected
Papers, pages 681-687, 1993.

A Appendix

A.1 Proof of Lemma 1

Proof. For r > 0, let G, G,41, ..., Gr+7—1 be consecutive T sequence of graphs, where
G, = (V,E(@%)) for i € [r,r +T —1]. Suppose the above dynamic graph G does not satisfy the
Connectivity Time property for some round 7, i.e., G,.r := (V,Ur*T=1 E(i)) is not connected.
It is important to note that there exists a round r’ between r and r + T — 1 such that
" =4I — 1, for some 7 € N.

If ¢ is odd, then in each round ¢t € [r,iT — 2], there are k one length paths in G;:

Pi(=wy ~w3), Po(= w3 ~wy), ..., Pr_1(=wn—3 ~ wp_2) and Pi(= wn_1 ~ w,). As per
the dynamic graph construction at round i7" — 1, the adversary changes paths as follows:
Pi(= wy), Py(= wy ~ wy), ..., Pi_y(= wy gy ~w, 3) and P(= wj,_o ~ wy,_y ~ wy),

where wh; ; € {waj—1,wz;} and wy; = {wa;—1,wa;} \ {wy; 4}, for every j € [1, k]. Taking
the union of the edges from G; for r < i <r 4+ T — 1 creates a path of length n.

Similarly, if 7 is even, then in each round ¢ € [r,iT — 2], there are k paths in G;: Pj(= wy),
Py(= wy ~ w3), ..., Pi_{(= Wn—a ~ wy_3), and P (= wp—2 ~ wy_1 ~ wy). By using a
similar argument, we can show that the way we modify the construction at round 7" — 1
results in the union of edges from G; for r < i <r + T — 1, which forms a path of length n.

This shows our assumption is wrong. Therefore, this dynamic setting satisfies the
Connectivity Time property. |

https://doi.org/10.1145/3369740.3369775
https://doi.org/10.1007/978-3-030-39881-1_16
https://doi.org/10.1016/J.JPDC.2013.07.007
https://doi.org/10.4230/LIPICS.SAND.2025.17
https://doi.org/10.1006/JAGM.1999.1043
https://doi.org/10.1016/J.TCS.2025.115390
https://doi.org/10.1016/J.TCS.2025.115390

A. Saxena and K. Mondal

A.2 Proof of Lemma 2 (Remaining Cases)

Proof. The proof for Cases 2, 3, and 5 is as follows.

Case 2. In this case, round r,r + 1 € [iT — 1, (¢ + 1)T — 2], where 4 is an odd number, and
agents are in configuration C;_s_3. The proof of Eq. (A) and Eq. (B) for round = + 1 is as
follows.

Proof of (B). Due to the induction hypothesis, the following inequality holds for j > 1:

2j—1 2j—1
> arwl) = Y (n—i-1))

Since the dynamic graph does not change for every round r € [iT — 1, (¢ + 1)T — 2], no
matter how agents move, for every j € [1, k — 2], we have the following

aT(w2j) + O‘T(w23+1) = O‘T+1(w2g) + Qrq1 (w2]++1) (2)
Therefore, inequality (B) holds for round r + 1 using Eq. (1) and Eq. (2).

Proof of (A). We use a contrapositive argument. Suppose for some smallest value j > 1,
the inequality does not hold. Then the following inequality must be true:

2j 25
ZO@H(U}Z“) < Z(n —i—1) 3)

Due to proof of (B), we have:

2j—1 25—1
Zam Y=Y (n—i-1) (4)
=1

Therefore, using Eq. (3) and Eq. (4), the inequality ar+1(w§j1) <n-2j-1 =
ar+1(ng_11) <n —2j5 — 2 holds. Due to proof of (B), we have:

2j+1 2j+1
> arp@t) =Y (n—i—1) (5)
i=1 i=1

We now rewrite Eq. (5) as:

2j+1

ary1(wpfh) > D (n—i—1) Zam (6)
i=1

From Eq. (3) and Eq. (6), the inequality ar+1(w2j+1) > n—2j—2 holds. Therefore, due to

our assumption (i.e., Eq. (3)), we have arﬂ(w% ') <n—2j—2and ar+1(w2j+1) >n—2j—2.

This leads to a contradiction because, due to (N2), the inequality a1 (w57 y H> aHl(ijH)
holds. This shows that our initial assumption is incorrect. Therefore, inequality (A) holds
for round r + 1.

Case 3. In this case, round r,r+1 € [iT — 1, (¢ + 1)T — 2], where 7 is an even number. The
proof is similar to Case 1.

Case 5. In this scenario, let » = ¢T — 2, where i is an even integer. At round r, the
configuration is C;_3_3. As per (N2) there are k paths: P/(= wY), Py(= w}h ~ w}), ...,
P, (=w},_, ~w)_3), and P/(=w],_y ~w]_; ~w}). At round r + 1 as per (N1), there
are k paths: Pj(= w]™' ~ TH) Py(= wit? wZH), , Pe_1(= wity ~ with), and
Pi(= wi Tt ~with). Tt holds that ozr(wQJ 1) < ar(wZJ h for every j € [1,k —1].

41:19

DISC 2025

41:20

Exploring Connectivity Time Dynamic Graphs

Proof of (B). Due to the induction hypothesis, the following inequality is true:

2j—1 2j—1
Zar(wI)Z Z(n—i—l) (7)

Since a1 (w}) = max {ap(w}), max{B, (w]), 6, (W) H, aps1(w]) > ap(w]) > n - 2.
Therefore, for j = 1, the inequality (A) holds at round r + 1. For j > 2, the inequality (A)
holds at round r + 1 for the following reason. Let p = max{8,(wj;_,), B-(w3;_;)} for j > 2.
Therefore, the value of a,41(wa;-1) is as follows.

a1 (wghy) = max{ oy (wh;_o) + ar(wh;_y) — pymax{ B, (wS), B, (wh 1} } (8)

The adversary forms the dynamic graph at round 7T — 1, ensuring the following equality is
true.
2j—2

2j—3
Z g1 (w 7+1 Z o (wi) +p (9)
i=1

Using Eq. (9), the following equality holds.

251 2j—2 23
Z ar+1(w:+1 Z a1 (w +04r+1(7UQJ 1) 2 Z o (w)+p+ar+1(w2j 1) (10)
= i=1

Due to Eq. (8), ozr+1(w§jtll) > ap(wh;_5) + ap(wy;_y) — p. Therefore, we have the
following from Eq. (10).

2j—1 2j-3
Z appr (wjth) > Z (W) +pta g (wh b)) > Z o (wi) +ptar(wy;_o)+ar(wy;_1)—p
i=1 i=1
2j-1 2j—1
— Y @) > 3 anul) (1)
i=1 i=1

Using Eq. (7) and Eq. (11), the inequality (B) holds at round r + 1.
Proof of (A). Due to the proof of (B), the following inequalities are true for any j > 1.

2j—1 2j—1
> o)=Y (—i-1) (12)
2j+1 2j+1

S aw) = Y (i) (13)

Due to Eq. (9), the following inequality is true for j > 1.

25 2j—1
> o (wt) =" ap(w]) +p (14)
i=1 i=1

O‘T(ng)""ar (w;j+1)

The lower bound of p is { 5

Eq. (14).

27 25—1 r r

ap(We,) + ap(Ws;
S e 2 Y arup)+ |2)] (15)
i=1 i=1

—‘. Therefore, we get the following inequality from

A. Saxena and K. Mondal

Using Eq. (12) and Eq. (13), we get the following inequality (by taking the sum of Eq.
(12) and Eq. (13)):

2j—1

2j—1
2 (Z w(w{)) + o (why) + o (whyy) > 2 <Z (n—i— 1)) +(n—2j-2)+(n—2j—-1)

=1 i=1

2j-1 - 2j-1 .
o (W) + o (w on—4j—3
e Y o)+ B) S S gy 2 did
i=1 i=1
251 r r 2j—1
A (Wo -) + (W5 1
E Zar(wf)—i— (2]) - (2J+1)22(n—i—1)+n—2j—1_§ (16)

i=1 i=1

We know that the following inequality is true.

2.7_1 T T 2.7_1 ' T
A (Ws) + Qi (Ws QW) + (W,
S () + { (ws;) : (2g+1)w > 3 ag(wl) + (w3;) . (wh41) (17)
i=1 i=1
Due to Eq. (16) and Eq. (17), the following holds.
2§—1 2j—1 25
r ar(wh;) + o (wh) . . .
; a,ﬂ(wi)ﬁ 2l 5 2041 w > ;(n—z—l)—kn—%—l:;(n—z—l) (18)
Due to Eq. (15) and Eq. (18), the following holds.
2j 2j
S @) =3 —i— 1)
i=1 i=1
This completes the proof. <

A.3 Proof of Theorem 6

Proof. Let edge (u,v) be in graph Gf, for some j, which is a subgraph of G;, and 7(u,v) = p,
m(v,u) = q. Since (u,v) € EZJ, there is at least one agent at each node u and v using Definition
5. Let agent a be the minimum ID agent at node u, and agent b the minimum ID agent at
node v. Since node u and v are in the same connected component, agent a gets information
of C,, and agent b gets information of C',. Since ¢ is an outgoing port of node v, agent a gets
information about C. And since p is an outgoing port of node u, agent b gets information
about C2, C? = (Count(v), b.ID, q, a.ID) and C? = (Count(u), a.ID, p, b.ID). As per
MAP(), agent a add edge (a.ID,b.ID), where a.ID and b.ID are two nodes in G}, and
m(a.ID,b.ID) = p, and ©(b.ID,a.ID) = q. Therefore, G; = AC(G;). This completes the
proof. <

A.4 Proof of Lemma 10

Proof. Let G1,Ga, ..., Gy be the connected components of G,.. Without loss of generality,
suppose (G; contains at least one hole and at least one multinode. By Theorem 6 and
Observation 8, all agents in G possess a common map of the anonymous copy AC(G1),
denoted by G’ = {G1,G%,...,G7"}. Suppose there are k' multinodes in G’, located at nodes
U1, Ug, - . ., U, with the minimum ID agents by, bo, . .., bgs occupying them. Without loss of
generality, let b; be the agent with the minimum ID among them, i.e., b;.ID = min{b;. 1D :
i € [1,K]}, and assume b; resides in G1.

41:21

DISC 2025

41:22

Exploring Connectivity Time Dynamic Graphs

Since G contains at least one hole, there exists at least one node in G} from which a
port leads to a hole. Let there be k” such nodes, denoted 1, %o, . . ., U, with corresponding
minimum-ID agents @1, as, ..., ar” occupying them. Let a; be the agent with the minimum
ID among them, i.e., @;.JD = min{a;.ID : j € [1,k"]}. Since all agents in G share the
same map G’, they identify the same pair of nodes: u; (a multinode) and w; (adjacent to a
hole). Let P = (v; = uy ~ vg ~ ... ~ v, = U;) denote the lexicographically shortest path
from uq to Uy in G’. This path is unique due to the deterministic selection criteria based on
IDs and shared knowledge of G’.

Each agent on this path identifies its current position and acts accordingly: if an agent is
at node v; for i < y, it moves to v;y;. The agent at v, = u; selects the minimum available
port that leads to a hole and moves through it. Thus, a hole gets filled without creating a
new hole elsewhere. Therefore, the total number of holes in G, decreases by at least one at
the end of round r. This completes the proof. <

A.5 Proof of Lemma 11

Proof. Let G1,Go,...,G) be the connected components of G,.. Without loss of generality,
let G1 be the connected component that contains at least one multinode but no hole. Since
G contains a multinode but no hole, by Theorem 6 and Observation 9, every agent in Gy
constructs the map of G, using the procedure MAP(). Let vq,vs,...,v, be the nodes in
G1 such that Count(vy) = i’ for each k € [1,p], and let aj, denote the minimum ID agent
at node vg. Similarly, let wy, we, ..., w, be the nodes such that Count(wy/) = j’ for each
k' €[1,q], and let by denote the minimum ID agent at node wy,. Without loss of generality,
let a; be the agent among {ay, : k € [1, p]} with the minimum ID, and b; be the agent among
{bpr : k¥’ € [1,¢]} with the minimum ID. Since all agents share the same reconstructed map
G1, they all identify the same pair of nodes v; and w; as the nodes with maximum and
minimum Count values, respectively. Let P = (v; = ug ~ ug ~ -+ ~ uy = wy) be the
lexicographically shortest path from v to wy in G, which is uniquely determined by the map
and agent ID choices. Each agent on this path identifies its position and moves accordingly:
if an agent is at node w; for i < y, it moves to u;+1. As a result, the value of Count(vy)
decreases by 1, and the value of Count(w;) increases by 1. This completes the proof. <

A.6 Proof of Lemma 14

Proof. To maintain the Connectivity Time property, node v must be connected to some
node w at round ¢, where ¢ € [r, r +T]. Let G; be the connected component of G; at round
t such that the node v is part of the graph G;. If Gy has at least one multinode, then one
agent moves to node v as agents in G; execute EXP__ ALGO() due to Lemma 10.
Otherwise, all nodes in G1 except node v contain exactly one agent. At round t, let wy, wo,
..., wp be neighbours of node v in G1, and agent a; be at node w;. As per EXP__ALGO(),
the minimum ID agent ID among a;s moves to node v. This completes the proof. |

A.7 Proof of Lemma 15

Proof. Suppose the lemma does not hold. It implies |S;| > 1 for every i € [1, L], where L is
the largest index satisfying Sp, # (. The value L is < n — 2. Assume L > n — 2. Without
loss of generality, let L = n — 1. Since |S;| > 1 for every ¢ € [1, L], Ele [Si] > n—1.
Therefore, the total number of nodes is |Sg| + ZiLzl [Si| >2+n—1=n+1as|Sp| > 2 and
S>F . 1Si| > n — 1. This leads to the contradiction as n many nodes are present. Therefore,
L<n—-2.

A. Saxena and K. Mondal

Since |S;| > 1 for every i € [1, L], L < UX,|S;| < n—2. Therefore, L < n—2. Define X =
Zle i-|S;|. The value X denotes the total number of agents when C is false. The maximum
value of X occurs when |S;|=1for 1 <i< L-—1,and |Sp|=n—|So|—(L—1)<n—-L-1

as |So| > 2. Thus, X <1+42+---+(L-1)+L-(n—L-1)=L-(L-1)/2+ L-(n—L-1).

After simplifying, we get that X < L-(2n— L —3)/2 < (n —2)(n — 1)/2. This leads to
the contradiction as the number of agents in the system is % + 1. Thus, our initial
assumption must be incorrect. This completes the proof. <

41:23

DISC 2025

	1 Introduction
	2 Model and Problem Definition
	3 Related Work
	4 Our Contribution
	5 Impossibility Result
	6 Connectivity Time Dynamic Graph Exploration
	6.1 Map Construction
	6.2 Perpetual Exploration Algorithm
	6.3 Correctness and Analysis of the Algorithm

	7 Conclusion and Future Work
	A Appendix
	A.1 Proof of Lemma 1
	A.2 Proof of Lemma 2 (Remaining Cases)
	A.3 Proof of Theorem 6
	A.4 Proof of Lemma 10
	A.5 Proof of Lemma 11
	A.6 Proof of Lemma 14
	A.7 Proof of Lemma 15

