
Natural Calamities Demand More Rescuers:
Exploring Connectivity Time Dynamic Graphs
Ashish Saxena #

Indian Institute of Technology Ropar, Rupnagar, Punjab, India

Kaushik Mondal #

Indian Institute of Technology Ropar, Rupnagar, Punjab, India

Abstract
We study the exploration problem by mobile agents in Connectivity Time dynamic graphs. The
Connectivity Time model was introduced by Michail et al. [JPDC 2014] and is arguably one of
the weakest dynamic graph connectivity models. We prove that exploration is impossible in such
graphs using (n−1)(n−2)

2 mobile agents starting from an arbitrary initial configuration, even when
agents have full knowledge of system parameters, global communication, full visibility, and infinite
memory. We then present an exploration algorithm that uses (n−1)(n−2)

2 + 1 agents equipped with
global communication, 1-hop visibility and O(log n) memory.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Mobile agents, Anonymous graphs, Exploration, Dynamic graphs, Determin-
istic algorithm

Digital Object Identifier 10.4230/LIPIcs.DISC.2025.41

Funding Ashish Saxena: Acknowledge the financial support from IIT Ropar.
Kaushik Mondal: Acknowledge the ISIRD grant provided by IIT Ropar.

1 Introduction

The exploration of graphs by mobile agents is a well-studied problem in distributed computing
and has foundational importance in theoretical computer science. Originating from early
work by Shannon [39], the objective is for mobile agents to collectively visit every node in a
given network. Depending on the requirements, the task may involve visiting each node at
least once (exploration with termination) or repeatedly over time (perpetual exploration).
This problem is not only of theoretical interest but also has practical implications for systems
involving autonomous agents, such as robots, software agents, or vehicles, where exploration
helps in fault detection, information dissemination, or data collection across the network.

The graph exploration problem has been studied under a wide range of assumptions. These
include whether the nodes are uniquely labelled or anonymous, whether agents have distinct
identities or are indistinguishable, and the mode of communication or interaction among
agents, such as using whiteboards, tokens, face-to-face meetings, or vision-based mechanisms.
Variations also arise based on the degree of synchrony among agents (asynchronous, semi-
synchronous, or fully-synchronous), the extent of their knowledge about the network, and the
amount of memory available to them (refer to [2,6,7,11,13,14,21,22,37], for a comprehensive
overview, refer to [9]). Despite the diversity in models, most of the prior research is on static
graphs, meaning the graph structure remains fixed throughout the exploration. While this
assumption works well for traditional networks, where changes typically result from failures
but it falls short in capturing the behaviour of today’s highly dynamic networks.

The dynamic nature of modern networks presents significant challenges in addressing
various algorithmic problems in mobile computing and related domains, as the underlying
network topology evolves over time. From the perspective of mobile agents, this means

© Ashish Saxena and Kaushik Mondal;
licensed under Creative Commons License CC-BY 4.0

39th International Symposium on Distributed Computing (DISC 2025).
Editor: Dariusz R. Kowalski; Article No. 41; pp. 41:1–41:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ashish.21maz0004@iitrpr.ac.in
https://orcid.org/0009-0007-4767-8862
mailto:kaushik.mondal@iitrpr.ac.in
https://orcid.org/0000-0002-9606-9293
https://doi.org/10.4230/LIPIcs.DISC.2025.41
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

41:2 Exploring Connectivity Time Dynamic Graphs

that agents must carry out their tasks in an environment that evolves over time steps. A
foundational model capturing such dynamic behaviour was introduced by Kuhn et al. [32].
In their framework, they defined a stability property known as T -Interval Connectivity (for
T ≥ 1), which requires that in every sequence of T consecutive rounds, there exists a stable,
connected spanning subgraph, although additional edges may appear or disappear in each
round. Later, Michail et al. [33] proposed a more relaxed and natural notion of connectivity in
dynamic networks, particularly suitable for networks that may be disconnected at individual
time steps. They introduced the concept of Connectivity Time, defined as follows:

Let V be a fixed set of nodes and S = {(u, v), |, u, v ∈ V } be the set of possible edges. Let
P(S) denote the power set of S. A synchronous dynamic network is modeled as a dynamic
graph G = (V, E), where E : N → P(S) maps each round number r ∈ N ∪ {0} to the set of
edges present at that round. The static graph at round r is denoted by Gr = (V, E(r)).

Definition. [33] The Connectivity Time of a dynamic graph G = (V, E) is the minimum
integer T ∈ N such that ∀ r ∈ N∪{0}, the union graph Gr,T := (V,

⋃r+T −1
i=r E(i)) is connected.

This model generalizes T -Interval Connectivity, but unlike T -Interval Connectivity, it
allows temporary disconnections. Thus, Connectivity Time is strictly weaker than T -Interval
Connectivity. In the next section, we discuss the model and problem definition.

2 Model and Problem Definition

Dynamic graph model. We consider a dynamic network modeled as a sequence of undirected
graphs G = (V, E), where the node set V remains fixed over time and satisfies |V | = n.
Define S = {(u, v) | u, v ∈ V } as the set of all possible edges, and let P(S) denote its power
set. The function E : N → P(S) maps each round number r ∈ N∪{0} to the set of edges E(r)
present at that round, yielding the snapshot graph Gr = (V, E(r)). The dynamic graph G is
thus given as a sequence ⟨G0, G1, G2, . . .⟩. We assume the presence of a dynamic adversary
that may insert or delete any edge at the beginning of each round. The degree of a node v

at round r is denoted by degr(v). The diameter of Gr is denoted by Dr.
Each snapshot graph Gr is unweighted, undirected, and anonymous. Moreover, the graph

is port-labelled: for any node v ∈ Gr, the incident edges are assigned distinct local port
numbers in the range [0, degr(v) − 1]. For an edge (u, v), the port numbers at u and v are
independently assigned and unrelated. Port labellings can differ across rounds; i.e., port
numbers at a node in Gr may not match those in Gr′ for r ̸= r′. Nodes do not have any
storage capability. A node is referred to as hole in round r if no agent is present at that
node, and as multinode if two or more agents occupy it at round r. In this work, the graph
G(= ⟨G0, G1, G2, . . .⟩) maintains the Connectivity Time property for some T , i.e., for every
r ≥ 0, the graph Gr,T := (V,

⋃r+T −1
i=r E(i)) is connected.

Agent model. We consider ℓ mobile agents that are initially placed arbitrarily on the nodes
of G. Each agent has a unique identifier from the range [1, nc], where c is some constant,
and knows only its own ID. Agents are equipped with O(log n) memory and execute the
algorithm under a fully synchronous scheduler, i.e., in each round t, every agent executes a
Communicate-Compute-Move (CCM) cycle:

Communicate: Agents communicate as per the communication model.
Compute: Based on its local view and any received information, the agent performs
computation, including deciding whether and where to move.
Move: The agent moves through a chosen port or stays idle.

A. Saxena and K. Mondal 41:3

The time complexity is measured by the number of synchronous rounds. We refer to Gr

together with the agents’ positions as the configuration. With a slight abuse of notation, we
may denote the configuration at round r by Gr.

Visibility model. We adopt a standard visibility framework where agents have l-hop visibility.
In the l-hop model [1,34], at the beginning of round r, an agent can see the subgraph induced
by nodes within distance l from its current location in Gr, including the presence or absence
of agents in that neighbourhood. When l = Dr, this provides full visibility at round r.

Communication model. In this work, we consider the global communication model [8, 20,
30,31,36]. The global communication allows agents to exchange messages with any agent
located in the same connected component of Gr, utilizing the graph’s links. The global
communication between two different connected components of Gr is not possible, as there is
no edge between two different connected components.

Problem definition. A node v is visited by round r if at least one agent is at node v at
round t, where t ∈ [0, r]. An algorithm achieves exploration if every node is visited at least
once. And, an algorithm achieves perpetual exploration if every node is visited infinitely
often.

3 Related Work

Exploration of dynamic graphs has been widely studied in centralized settings, where agents
have full knowledge of the network’s evolution. Notably, optimal exploration schedules have
been analyzed under 1-Interval Connectivity [18] and extended in subsequent works [15–17].
Specific topologies such as rings and cactuses have also been explored under T -Interval and
1-Interval Connectivity, respectively [26,27].

Distributed exploration, with limited agent knowledge, has received less attention. Prob-
abilistic methods like random walks were introduced in early foundation work [3], while
deterministic approaches focus on periodic graphs and carrier models [18,19,27,28]. Perpetual
exploration and exploration with termination have been studied in 1-Interval Connected
rings using 2 or 3 agents under Fsync and Ssync models [4, 5, 12]. Other results include
exploration with O(n) agents in toroidal networks [24], and single-agent strategies with
partial foresight [25]. A significant advancement in this area is the work by Gotoh et al. [23],
which investigates the fundamental limits of exploration in time-varying graphs under Fsync
and Ssync schedulers. In their model, the network is derived from a fixed footprint graph
from which edges are deleted dynamically. Agents are able to detect missing edges indirectly
when their attempted movements fail. Additionally, port numbers at nodes remain fixed
throughout the computation, inherited from the footprint. In contrast, our model assumes
the absence of a global footprint. More importantly, port numbers are not fixed over time, as
they depend on the local degree of Gr. Consequently, agent movements are always successful,
and agents may be unable to detect the change of topology. These characteristics make our
model weaker than the one studied in [23], as it places fewer constraints on the dynamic
behaviour of the network and provides the agents with less information. In this work, we
study perpetual exploration in the Connectivity Time dynamic graphs.

Recently, Saxena et al. [38] studied exploration under various connectivity models,
including Connectivity Time, and showed that exploration is impossible with at most n

agents (under model assumptions consistent with ours). However, their result did not

DISC 2025

41:4 Exploring Connectivity Time Dynamic Graphs

yield tight bounds. In this work, we strengthen their impossibility result by proving that
exploration is not solvable even with up to (n − 2)(n − 1)/2 agents, and complement this with
a matching algorithmic upper bound. Our contributions are presented in the next section.

4 Our Contribution

In this work, we present the following two results:
1. Exploration is impossible in the Connectivity Time dynamic graphs by (n−2)(n−1)

2 agents
starting from an arbitrary initial configuration, even if agents have infinite memory, full
visibility, global communication, and knowledge of all parameters (refer Theorem 4).1

2. We present a perpetual exploration algorithm for the Connectivity Time dynamic graphs
using (n−2)(n−1)

2 + 1 agents starting from arbitrary initial configuration, where each agent
has 1-hop visibility, global communication, and O(log n) memory (refer Theorem 17).

v1 v2 vn−3 vn−2 vn−1 vn

n − 2 n − 3 2 1 0 0

Figure 1 Initial configuration C0 of (n−2)(n−1)
2 agents.

5 Impossibility Result

In this section, we show that exploration is impossible to solve using (n−2)(n−1)
2 agents.

Before proceeding with the construction of G = ⟨G0, G1, . . .⟩, we first outline the high-level
idea behind the impossibility result.

High-level idea. While there remains a non-empty set of unexplored nodes, the goal is to
transfer agents from explored and occupied nodes to those unexplored ones. As it can be
difficult to differentiate between an unexplored node with an explored but unoccupied node,
the algorithm may require to transfer agents from explored and occupied nodes to explored
but currently unoccupied nodes as well. If an algorithm succeeds in keeping all explored
nodes occupied, then eventually, as the adversary must pick an edge across the cut, some
agent will move to an unexplored node and hence the node becomes visited. However, the
adversary is powerful: if b agents move from a node with x agents to a node with y < x

agents according to some deterministic algorithm, making the new counts y′ = y + b and
x′ = x − b, the adversary can flip the roles of these two nodes in the next graph instance,
effectively undoing progress as the algorithm performs the reverse operation. The proofs
formalize this idea: with fewer than (n − 1)(n − 2)/2 + 1 agents, the adversary can always
choose such a flip whereas with that many agents it cannot always do that.

Dynamic graph G. Let n = 2k for some k ∈ N, n ≥ 4 and T ≥ 2. We give an initial
configuration with (n−2)(n−1)

2 agents such that the exploration is impossible to solve. Let
v1, v2, . . . , vn be nodes. At the beginning of round 0, consider k many one length paths as
follows: P1(= v1 ∼ v2), P2(= v3 ∼ v4), . . . , Pk−1(= vn−3 ∼ vn−2) and Pk(= vn−1 ∼ vn). Let
αr(w) represent the number of agents located at a node w at the beginning of round r, and

1 If exploration is impossible then so is perpetual exploration and if perpetual exploration is possible then
so is exploration.

A. Saxena and K. Mondal 41:5

let βr(w) represent the number of agents located at the node w at the end of round r.2 Let
α0(vi) = n − i − 1 for i ∈ [1, n − 2], and α0(vn−1) = α0(vn) = 0 (i.e., nodes vn−1 and vn are
holes). Let’s denote this configuration by C0 (refer to Fig. 1). The total number of agents is∑n

i=1 α0(vi) =
∑n−2

i=1 i = (n−2)(n−1)
2 . In round r ≥ 0, the adversary maintains Gr as follows:

w1 w2 wn−3 wn−2 wn−1 wn

(A)

P1 Pk−1 Pk

(B)

P ′
1 P ′

2 P ′
k−1 P ′

k

Figure 2 (A) Graph GiT −2, (B) Graph GiT −1.

w1 w2 w3 wn−4 wn−3 wn−2 wn−1 wn

(A)

ai

w1 w2 w3 wn−4 wn−3 wn−2 wn−1 wn

(B)

ai

Figure 3 (A) An agent moves from node wn−2 to node wn−1 at round r − 1 in Gr−1, (B) Gr with
respect to Gr−1.

w1 w2 w3 wn−4 wn−3 wn−2 wn−1 wn

(A)

ai

w1 w2 w3 wn−4 wn−3 wn−2 wn−1 wn

(B)

ai

Figure 4 (A) An agent moves from node wn−1 to node wn−2 at round r − 1 in Gr−1, (B) Gr with
respect to Gr−1.

(a) r ∈ [0, T − 2] : It maintains C0 in these rounds.
(b) r ∈ [iT − 1, (i + 1)T − 2], where i ≥ 1 & i(mod 2) ̸= 0:
At round iT − 2, there are k many one length paths, say P1(= w1 ∼ w2), P2(= w3 ∼ w4),
. . . , Pk−1(= wn−3 ∼ wn−2), Pk(= wn−1 ∼ wn) (we separately show that nodes wn−1 and wn

are holes at round iT − 2, with wn = vn). Note that at the end of round T − 2, wi = vi, for
every i. We can see GiT −2 in Fig. 2(A). Based on the movement of agents at round iT − 2,
the adversary forms k paths, say P ′

1, P ′
2, . . . , P ′

k, at the beginning of round iT − 1 as follows.
If βiT −2(w1) ≥ βiT −2(w2), then P ′

1 = w1. Else, P ′
1 = w2. For j ∈ [2, k − 1], P ′

j is defined
as follows.

P ′
j =


w2j−3 ∼ w2j−1, if βiT −2(w2j−3) < βiT −2(w2j−2) and βiT −2(w2j−1) ≥ βiT −2(w2j)
w2j−2 ∼ w2j−1, if βiT −2(w2j−3) ≥ βiT −2(w2j−2) and βiT −2(w2j−1) ≥ βiT −2(w2j)
w2j−3 ∼ w2j , if βiT −2(w2j−3) < βiT −2(w2j−2) and βiT −2(w2j−1) < βiT −2(w2j)
w2j−2 ∼ w2j , if βiT −2(w2j−3) ≥ βiT −2(w2j−2) and βiT −2(w2j−1) < βiT −2(w2j)

If βiT −2(wn−3) ≥ βiT −2(wn−2), then P ′
k = wn−2 ∼ wn−1 ∼ wn. Else, P ′

k = wn−3 ∼
wn−1 ∼ wn. We can see GiT −1 in Fig. 2(B).

Without loss of generality, let P ′
1(= w1), P ′

2(= w2 ∼ w3), . . . , P ′
k−1(= wn−4 ∼ wn−3),

P ′
k(= wn−2 ∼ wn−1 ∼ wn). If αiT −1(wn−2) = 0, the adversary maintains the graph Gr as

2 The parameter βr(w) is the number of agents at node w after completing CCM cycle at round r.

DISC 2025

41:6 Exploring Connectivity Time Dynamic Graphs

GiT −1 for every r ∈ [iT, (i + 1)T − 2]. If αiT −1(wn−2) > 0, the adversary maintains the graph
Gr for every r ∈ [iT, (i + 1)T − 2] as follows.

If an agent from node wn−2 moves to node wn−1 at round r − 1, then adversary at
the beginning of round r maintains the following path: P ′

1 = w1, P ′
2 = w2 ∼ w3,. . . ,

P ′
k−1 = wn−4 ∼ wn−3, and P ′

k = wn−1 ∼ wn−2 ∼ wn (refer Fig. 3(A) at round r − 1, and
refer Fig. 3(B) at round r). Otherwise, it maintains the graph Gr as Gr−1.

If an agent from node wn−1 moves to node wn−2 at round r − 1, then adversary at
the beginning of round r maintains the following path: P ′

1 = w1, P ′
2 = w2 ∼ w3,. . . ,

P ′
k−1 = wn−4 ∼ wn−3, and P ′

k = wn−2 ∼ wn−1 ∼ wn (refer Fig. 4(A) at round r − 1, and
refer Fig. 4(B) at round r). Otherwise, it maintains the graph Gr as Gr−1.

If i = 1, then it is not difficult to observe that the number of agents at node αT −1(wn−2) ≤
1 as αT −2(xn−3) + αT −2(xn−2) = 3. We show later for every i, αiT −1(wn−2) ≤ 1. Thus, the
way we change the graph, the agent always stays between node wn−2 and wn−1 and can not
access node wn in round r. We denote this configuration by C1−2−3.

w1 w2 w3 wn−4 wn−3 wn−2 wn−1 wn

(A)

P ′
1 P ′

2 P ′
k−1 P ′

k

(B)

P1 Pk−1 Pk

Figure 5 (A) Graph GiT −2, (B) Graph GiT −1.

(c) r ∈ [iT − 1, (i + 1)T − 2], where i ≥ 1 & i(mod 2) = 0:
At the end of round iT − 2, there are k many paths, say P ′

1(= w1), P ′
2(= w2 ∼ w3), . . . ,

P ′
k−1(= wn−4 ∼ wn−3), P ′

k = wn−2 ∼ wn−1 ∼ wn (we separately show that nodes wn−1 and
wn are holes at the beginning of round iT − 2, with wn = vn, and at most one agent occupy
node wn−2). We can see GiT −2 in Fig. 5(A). At round iT − 1, the adversary forms k many
one length paths, say P1, P2, . . . , Pk. Based on the movement of agents at round iT − 2, the
adversary forms k paths, say P1, P2, . . . , Pk, at the beginning of round iT − 1 as follows.

If βiT −2(w2) ≥ βiT −2(w3), then P1 = w1 ∼ w2. Else, P1 = w1 ∼ w3. For j ∈ [2, k − 2],
Pj is defined as follows.

Pj =


w2j−2 ∼ w2j , if βiT −2(w2j−2) < βiT −2(w2j−1) and βiT −2(w2j) ≥ βiT −2(w2j+1)
w2j−1 ∼ w2j , if βiT −2(w2j−2) ≥ βiT −2(w2j−1) and βiT −2(w2j) ≥ βiT −2(w2j+1)
w2j−2 ∼ w2j+1, if βiT −2(w2j−2) < βiT −2(w2j−1) and βiT −2(w2j) < βiT −2(w2j+1)
w2j−1 ∼ w2j+1, if βiT −2(w2j−2) ≥ βiT −2(w2j−1) and βiT −2(w2j) < βiT −2(w2j+1)

At the end of round iT − 2, there is at most one agent in path P ′
k, and this agent is either

at node wn−2 or wn−1 (we show this separately). If there is no agent in path P ′
k, then Pk−1

and Pk are defined as follows. If βiT −2(wn−4) ≥ βiT −2(wn−3), then Pk−1 = wn−3 ∼ wn−2
and Pk = wn−1 ∼ wn. Else, Pk−1 = wn−4 ∼ wn−2 and Pk = wn−1 ∼ wn. If there is one
agent in path P ′

k, then Pk−1 and Pk are defined as follows. Based on agent’s position at node
wn−2 or wn−1 at the end of round iT − 2, the cases are as follows.

If an agent is at node wn−2 at the end of round iT − 2, the path Pk−1 and Pk are
defined as follows. If βiT −2(wn−4) ≥ βiT −2(wn−3), then Pk−1 = wn−3 ∼ wn−2 and
Pk = wn−1 ∼ wn. Else, Pk−1 = wn−4 ∼ wn−2 and Pk = wn−1 ∼ wn.
If an agent is at node wn−1 at the end of round iT − 2, the path Pk−1 and Pk are
defined as follows. If βiT −2(wn−4) ≥ βiT −2(wn−3), then Pk−1 = wn−3 ∼ wn−1 and
Pk = wn−2 ∼ wn. Else, Pk−1 = wn−4 ∼ wn−1 and Pk = wn−2 ∼ wn.

A. Saxena and K. Mondal 41:7

0 T − 2 2T − 2 3T − 2 4T − 2 5T − 2

C0 C1−2−3 C2−2 C1−2−3 C2−2

Figure 6 It shows how the agent configurations evolve periodically over the dynamic graph, with
specific configurations like C0, C1−2−3, and C2−2 reappearing at regular intervals.

We can see GiT −1 in Fig. 5(B). It maintains Gr as GiT −1 for every r ∈ [iT, (i + 1)T − 2].
Later, we show that there is no agent in Pk, and one of the nodes in Pk is vn. We denote
this configuration by C2−2.

Fig. 6 shows how the configuration evolves over time.

▶ Lemma 1. Dynamic graph G maintains the Connectivity Time property. (Proof in
Appendix, see Section A.1)

We define two notations as follows.
(N1) r ∈ [iT − 1, (i + 1)T − 2], where i ≥ 1 & i(mod 2) = 0 (or r ∈ [0, T − 2]):
In this case, either configuration C0 or C2−2 is true. Therefore, at round r, there are
k one length paths P1, P2, . . . , Pk. Let Pj(= w2j−1 ∼ w2j), for every j ∈ [1, k]. If
αr(w2j−1) ≥ αr(w2j), then we denote w2j−1 as wr

2j−1 and w2j as wr
2j . Otherwise, we

denote w2j−1 as wr
2j and w2j as wr

2j−1.
(N2) r ∈ [iT − 1, (i + 1)T − 2], where i ≥ 1 & i(mod 2) ̸= 0 : In this case,
configuration C1−2−3 is true. Therefore, at round r, there are k paths P ′

1, P ′
2, . . . , P ′

k. Let
P ′

j(= w2j−2 ∼ w2j−1), for every j ∈ [2, k−1], P ′
1(= w1) and P ′

k(= wn−2 ∼ wn−1 ∼ wn). If
αr(w2j−2) ≥ αr(w2j−1), then we denote w2j−2 as wr

2j−2 and w2j−1 as wr
2j−1. Otherwise,

we denote w2j−2 as wr
2j−1 and w2j−1 as wr

2j−2. We consider w1 as wr
1, wn−2 as wr

n−2,
wn−1 as wr

n−1, and wn as wr
n.

▶ Lemma 2. The following inequality holds ∀ l ∈ [1, n − 2] and for every round r ≥ 0.

l∑
i=1

αr(wr
i) ≥

l∑
i=1

(n − i − 1)

Proof. Proving our lemma is equivalent to showing that the following two inequalities hold
for every j ∈ [1, k − 1] at round r:

(A)
2j∑

i=1
αr(wr

i) ≥
2j∑

i=1
(n − i − 1), (B)

2j−1∑
i=1

αr(wr
i) ≥

2j−1∑
i=1

(n − i − 1).

We use mathematical induction to prove inequalities (A) and (B) for every r ≥ 0. Both
inequalities are true for r = 0 as C0 includes k paths: P1(= v1 ∼ v2), P2(= v3 ∼ v4), ...,
Pk−1(= vn−3 ∼ vn−2), and an additional path Pk(= vn−1 ∼ vn). We define α0(vi) = n− i−1
for i ∈ [1, n − 2], with α0(vn−1) = α0(vn) = 0. Therefore, w0

i = vi for every i ≤ n − 2.
Assuming the statement is true for round r ≥ 0, we aim to show that it also holds for

round r + 1. There are five possible cases to consider: Case 1: r, r + 1 ∈ [0, T − 2], Case 2:
r, r+1 ∈ [iT −1, (i+1)T −2], where i is an odd number, Case 3: r, r+1 ∈ [iT −1, (i+1)T −2],
where i is an even number, Case 4: r = iT − 2, where i is odd, and Case 5: r = iT − 2,
where i is even. Due to the length of the proof, we present only the proofs of Case 1 and
Case 4 here. The proofs of Case 2 and Case 3 follow similar ideas to Case 1, and Case 5
builds upon the approach used in Case 4. The proof of Case 2, 3 and 5 is in Appendix, see
Section A.2.
Case 1. In this case, agents are in configuration C0 at round r and r + 1.

DISC 2025

41:8 Exploring Connectivity Time Dynamic Graphs

Proof of (A). Due to the induction hypothesis, the following inequality holds:

2j∑
i=1

αr(wr
i) ≥

2j∑
i=1

(n − i − 1) (1)

Since the dynamic graph does not change between rounds 0 and T − 2, no matter how agents
move, for every j ∈ [1, k − 1], we have the following:

αr(wr
2j−1) + αr(wr

2j) = αr+1(wr+1
2j−1) + αr+1(wr+1

2j) (2)

Therefore, the following inequality holds using Eq. (1) and Eq. (2):

2j∑
i=1

αr+1(wr+1
i) =

2j∑
i=1

αr(wr
i) ≥

2j∑
i=1

(n − i − 1) (3)

Proof of (B). The inequality αr(wr
1) ≥ n − 2 holds due to the induction hypothesis,

and the inequality αr(wr
1) + αr(wr

2) ≥ (n − 2) + (n − 3) is valid due to proof of (A).
Therefore, regardless of how the agents move in round r, we have αr+1(wr+1

1) ≥ n − 2 as
αr(wr

1) + αr(wr
2) = αr+1(wr+1

1) + αr+1(wr+1
2) and αr+1(wr+1

1) ≥ αr+1(wr+1
2). This shows

(B) holds for j = 1. For j ∈ [2, k − 1], we use a contrapositive argument. Suppose for some
smallest value j ≥ 2, the inequality (B) does not hold for round r + 1. Then the following
inequality must be true:

2j−1∑
i=1

αr+1(wr+1
i) <

2j−1∑
i=1

(n − i − 1) (4)

Due to Eq. (3), we get:

2j−2∑
i=1

αr+1(wr+1
i) ≥

2j−2∑
i=1

(n − i − 1) (5)

Therefore, using Eq. (4) and Eq. (5), the inequality αr+1(wr+1
2j−1) < n − (2j − 1) − 1 = n − 2j

holds. Rewrite Eq. (3) as:

αr+1(wr+1
2j) ≥

2j∑
i=1

(n − i − 1) −
2j−1∑
i=1

αr+1(wr+1
i) (6)

From Eq. (4) and Eq. (6), the inequality αr+1(wr+1
2j) > n − 2j holds. Thus, due to our

assumption (i.e., Eq. 4), we have αr+1(wr+1
2j−1) < n − 2j and αr+1(wr+1

2j) > n − 2j. Therefore,
we have αr+1(wr+1

2j−1) < αr+1(wr+1
2j). This leads to a contradiction because, due to (N1),

the inequality αr+1(wr+1
2j−1) ≥ αr+1(wr+1

2j) holds. This shows that our initial assumption is
incorrect. Therefore, inequality (B) holds for round r + 1.

Case 4. In this case, at round r = iT − 2, where i is an odd number, the configuration is
either C0 or C2-2, and at round r + 1, it changes to C1−2−3

Proof of (A). Due to the induction hypothesis, the following inequality is true:

2j∑
i=1

αr(wr
i) ≥

2j∑
i=1

(n − i − 1) (7)

A. Saxena and K. Mondal 41:9

The adversary constructs the dynamic graph in round r + 1 based on the agents’ positions at
the end of round r. Let p = max{βr(wr

2j−1), βr(wr
2j)}. Therefore, αr+1(w2j−1) = p and the

value of αr+1(w2j) is as follows (recall configuration C1−2−3):

αr+1(wr+1
2j) = max

{
αr(wr

2j−1) + αr(wr
2j) − p, max

{
βr(wr

2j+1), βr(wr
2j+2)

}}
(8)

The adversary forms the dynamic graph at round iT − 1, ensuring the following equality:

2j−1∑
i=1

αr+1(wr+1
i) =

2j−2∑
i=1

αr(wr
i) + p (9)

Using Eq. (9), the following equality holds.

2j∑
i=1

αr+1(wr+1
i) =

2j−1∑
i=1

αr+1(wr+1
i) + αr+1(wr+1

2j) ≥
2j−2∑
i=1

αr(wr
i) + p + αr+1(wr+1

2j) (10)

Due to Eq. (8), we have αr+1(wr+1
2j) ≥ αr(wr

2j−1) + αr(wr
2j) − p. Thus, using Eq. (10):

2j∑
i=1

αr+1(wr+1
i) ≥

2j∑
i=1

αr(wr
i) (11)

Using Eq. (7) and Eq. (11), the inequality (A) holds for round r + 1.
Proof of (B). For j = 1, the inequality αr(wr

1) ≥ n − 2 holds, and due to the proof of (A),
the inequality αr(wr

1) + αr(wr
2) ≥ n − 2 + n − 3 holds. Therefore, αr+1(wr+1

1) ≥ n − 2 holds
regardless of how agents move at round r due to the following reason. If αr+1(wr+1

1) < n − 2,
then βr(wr

1) < n−2 and βr(wr
2) < n−2 holds as per the dynamic graph construction at round

iT − 1, αr+1(wr+1
1) = max {βr(wr

1), βr(wr
2)}. Therefore, βr(wr

1) ≤ n − 3 and βr(wr
2) ≤ n − 3,

and hence the inequality βr(wr
1) + βr(wr

2) ≤ 2(n − 3) holds. Since βr(wr
1) + βr(wr

2) =
αr(wr

1) + αr(wr
2), the inequality αr(wr

1) + αr(wr
2) ≤ 2(n − 3). This leads to a contradiction

as αr(wr
1) + αr(wr

2) ≥ n − 2 + n − 3. Therefore, our assumption is wrong, and it implies
αr+1(wr+1

1) ≥ n − 2. Now we prove (B) when j ≥ 2. Due to (A), the following inequalities
hold for j ≥ 2.

2j−2∑
i=1

αr(wr
i) ≥

2j−2∑
i=1

(n − i − 1) and
2j∑

i=1
αr(wr

i) ≥
2j∑

i=1
(n − i − 1) (12)

In Eq. (9), the lower bound of p is
⌈

αr(wr
2j−1)+αr(wr

2j)
2

⌉
. Using Eq. (9), we have:

2j−1∑
i=1

αr+1(wr+1
i) ≥

2j−2∑
i=1

αr(wr
i) +

⌈
αr(wr

2j−1) + αr(wr
2j)

2

⌉
(13)

Using Eq. (12), we have (by taking the sum of inequalities of Eq. (12)):

2
(2j−2∑

i=1
αr(wr

i)
)

+ αr(wr
2j−1) + αr(wr

2j) ≥ 2
(2j−2∑

i=1
(n − i − 1)

)
+ (n − 2j) + (n − 2j − 1)

=⇒
2j−2∑
i=1

αr(wr
i) +

αr(wr
2j−1) + αr(wr

2j)
2 ≥

2j−2∑
i=1

(n − i − 1) + n − 2j − 1
2 (14)

DISC 2025

41:10 Exploring Connectivity Time Dynamic Graphs

Since ⌈x⌉ ≥ x for every x ∈ R, the following holds:

2j−2∑
i=1

αr(wr
i) +

⌈
αr(wr

2j−1) + αr(wr
2j)

2

⌉
≥

2j−2∑
i=1

(n − i − 1) + n − 2j =
2j−1∑
i=1

(n − i − 1) (15)

Due to Eq. (13) and (15), inequality (B) holds for round r + 1. This completes the proof. ◀

▶ Corollary 3. At round iT − 1, αiT −1(wiT −1
n−2) ≤ 1, where i is an odd number.

Proof. Due to Lemma 2, the following two inequalities hold at round iT − 1.

2n−3∑
i=1

wiT −1
i ≥

2n−3∑
i=1

(n − i − 1) and
2n−2∑
i=1

wiT −1
i ≥

2n−2∑
i=1

(n − i − 1) (16)

Therefore, due to Eq. (16), αiT −1(wiT −1
n−2) ≤ 1. This completes the proof. ◀

▶ Theorem 4. If the initial configuration contains at least two holes, then a group of
(n − 2)(n − 1)/2 agents cannot solve the exploration problem in dynamic graphs that maintain
the Connectivity Time property. This impossibility holds even if agents have infinite memory,
full visibility, global communication, and know the parameters k, n(≥ 4), T (≥ 2).

Proof. Our dynamic graph construction satisfies the Connectivity Time property as estab-
lished in Lemma 1. To prove that exploration is impossible, it suffices to show that node vn

remains a hole at every round r ≥ 0. If r ∈ [0, T − 2], node vn is not accessible to the agents
because node vn is in path Pk, where vn−1 is a hole.

As per Corollary 3, αT −1(wT −1
n−2) ≤ 1. Therefore, at the beginning of round T − 1, there

can be at most one agent at node wn−2. If there is no agent, then node vn is not accessible
to the agents because node vn is in path P ′

k, where wn−2, wn−1 are holes.
If there is an agent at node wn−2 at the beginning of round T − 1, it has the option

to move to node wn−1 during round r ∈ [T − 1, 2T − 3]. In this scenario, the adversary
constructs the following graph at round r + 1 according to our dynamic graph construction
method: the adversary maintains the paths P ′

1, P ′
2, . . . , P ′

k−1 unchanged and modifies P ′
k

from wn−2 ∼ wn−1 ∼ vn to wn−1 ∼ wn−2 ∼ vn. In this manner, at round r + 1, the node vn

is two hops away from the agent’s position. The adversary follows the same procedure; if
the agents move in later rounds from node wn−1 to wn−2, this ensures that during rounds
r ∈ [T − 1, 2T − 2], the agents consistently remain at nodes wn−2 and wn−1. Consequently,
the agent can not reach node vn in any of these rounds.

At the beginning of round 2T − 1, as per our dynamic graph construction, if there was an
agent in path P ′

k at round 2T − 2 (there is at most one agent due to Corollary 3), it removes
such a node from P ′

k at the beginning of round 2T − 1. Therefore, as per dynamic graph
construction at the beginning of round 2T −1, the node vn is in path Pk = wn−1 ∼ wn(= vn),
where node wn−1 is a hole. The adversary maintains the same configuration at every round
r ∈ [2T − 1, 3T − 2]. Therefore, the agent can not reach node vn in any of these rounds. This
idea can be extended for r ≥ 3T − 1 using Corollary 3. It is important to note that this is
independent of the agents’ power. Therefore, the proof remains valid even if the agents have
full visibility, global communication, and know all parameters. This completes the proof. ◀

6 Connectivity Time Dynamic Graph Exploration

The Connectivity Time dynamic graph has high dynamicity, and the high dynamicity may
prevent even basic coordination if agents are significantly restricted in their ability to perceive
their surroundings or communicate with one another. Assume agents have 1-hop visibility.

A. Saxena and K. Mondal 41:11

v1 v1 v1

v2
v2 v2

v3

v3 v3v4 v4 v4

v5 v5 v5

(a) (b) (c)

Figure 7 (a) Graph Gr, where r(mod 3)=0, (b) Graph Gr, where r(mod 3)=1, (c) Graph Gr,
where r(mod 3)=2. This figure is an example of the Connectivity Time for T = 3.

Consider two paths: P = w1 ∼ w2 ∼ w3 ∼ w4 ∼ w5 and P ′ = w5 ∼ w2 ∼ w3 ∼ w4 ∼ w1.
The adversary can create either P or P ′, such that only at w3, the 1-hop view remains
unchanged. The movement of agent(s) at w3 remains the same for both P and P ′ irrespective
of the hole position. This can cause exploration to fail. Now, assume agents have global
communication but no 1-hop visibility. Then, local views at each node remain the same
in the above example, making it difficult again. To address these challenges, we assume
that agents are equipped with 1-hop visibility and global communication capabilities in our
algorithm. Even stronger assumptions are considered in the study of 1-Interval Connected
dynamic networks (e.g., in [10], [35], authors use full visibility), and are instrumental in
enabling tractable algorithmic solutions under highly dynamic conditions. Since 1-Interval
Connectivity is a stronger assumption than the Connectivity Time, the Connectivity Time
model imposes greater difficulty. It is important to emphasize that these assumptions are
not fundamental to the definition of the problem but are adopted solely to overcome the
adversarial nature of the Connectivity Time model. Moreover, we complement our algorithmic
results with lower bounds and impossibility results (refer to Section 5) that hold even when
agents possess stronger capabilities, including full knowledge of all system parameters, full
visibility, and global communication. This highlights the inherent difficulty of perpetual
exploration in such settings.

High-level idea. Suppose that at round r, agents know the map of Gr. Let w be a multinode
and v a hole in Gr, connected via a shortest path v1 ∼ v2 ∼ · · · ∼ vp, with v1 = w, vp = v,
and all intermediate nodes v2, . . . , vp−1 occupied by some agent. Let ai denote an agent at vi

for 1 ≤ i ≤ p − 1. In round r, each ai moves to vi+1. The multinode v1 remains non-empty,
and each vi (2 ≤ i ≤ p − 1) receives an agent from vi−1 and sends one to vi+1, preserving
non-hole status. Finally, the hole vp is filled. This strategy is known as pipeline strategy,
which pushes an agent to the nearest hole without creating new holes and has been used in
prior works (e.g., [29]).

Challenges. A key challenge arises from the agents’ inability to reconstruct the dynamic
graph due to limited knowledge of the adversary’s behavior. However, with 1-hop visibility
and global communication, agents can share local views to collaboratively form a partial
network snapshot. While this may not capture the full graph, it often suffices for executing
the pipeline procedure.

The core difficulty lies in ensuring every node is visited at least once. Even if agents
can fill holes, some nodes may remain unvisited. Under the Connectivity Time model, two
nodes may never belong to the same connected component in any single round. For example,
let V = {v1, v2, v3, v4, v5} with T = 3, where v1 is a multinode, and nodes v2, v3, v4 are not
holes; node v5 is initially a hole. Define Gr = (V, E(r)) as follows: if r mod 3 = 0 or 1,

DISC 2025

41:12 Exploring Connectivity Time Dynamic Graphs

let E(r) = {(v1, v2), (v2, v3), (v2, v4)} (see Fig. 7(a), (b)), and if r mod 3 = 2, let E(r) =
{(v1, v2), (v5, v3), (v5, v4)} (see Fig. 7(c)). Although Gr,3 = (V,

⋃r+2
i=r E(i)) is connected for

all r, no direct path exists between v1 and v5 in any single round. Thus, v1 cannot pipeline
to v5, despite being a multinode. This illustrates how the adversary can isolate nodes round
by round, impeding exploration. To address this, we use an enhanced pipeline. If at round r,
agents detect that there exists at least one hole and at least one multinode in their connected
component of Gr, then the standard pipeline fills it. If not, then each node in the component
has at least one agent. Let Count(v) be the number of agents at node v at round r. If two
nodes v and w in the same component satisfy Count(w) ≥ Count(v) + 2, agents initiate a
redistribution along a shortest path v1 ∼ v2 ∼ · · · ∼ vp from w to v (with v1 = w, vp = v),
transferring one agent via pipelining to balance the load of agents. Since the graph can be
highly sparse and disconnected, enhanced pipeline gradually builds a configuration of agents
on the nodes such that pipeline becomes feasible along every connected path in each round.

In the following sections, we use two parameters: Count(v), which denotes the number of
agents at node v, and ai.ID, which denotes the ID of agent ai.

6.1 Map Construction
We begin by presenting an algorithm that allows agents to construct a partial map of
the network, specifically, the subgraph induced by the nodes currently occupied by agents.
A similar strategy was proposed in [29]; we adapt and modify it to suit our setting and
terminology. This serves as a subroutine in our exploration algorithm.

At round r, since Gr may be disconnected, it consists of p connected components, denoted
G1, G2, . . . , Gp, where each Gi = (Vi, Ei) with Vi ⊆ V and Ei ⊆ E(r). For each connected
component Gi, we further divide it into several subgraphs considering nodes that contains
agent(s). In this context, we define:

▶ Definition 5 (Connected component of Gi without holes). The component Gi can be
partitioned into subgraphs G1

i , G2
i , . . . , Gk

i , where each Gj
i = (V j

i , Ej
i) satisfies the following:

Every node v ∈ V j
i have at least one agent, for all j ∈ [1, k].

The sets of nodes and edges are pairwise disjoint, i.e., V j
i ∩ V l

i = ∅ and Ej
i ∩ El

i = ∅ for
all j ̸= l, where j, l ∈ [1, k].
There exists no edge e = (u, v) ∈ Ei such that u ∈ V j

i and v ∈ V l
i , where j ̸= l, i.e., the

subgraphs are disconnected from each other within Gi.
We refer to the collection of subgraphs Gj

i as the connected component of Gi without holes,
and denote by AC(Gi).

In other words, AC(Gi) denotes the collection of connected components obtained by
removing all holes and their associated edges from Gi. Recall that agents use global
communication, but communication is limited within each connected component. That is,
agents located in Gi cannot communicate with agents in Gj for i ̸= j, as communication
happens through the graph links. An agent aj in component Gi performs the following steps
at round r to compute AC(Gi). The algorithm is divided into two phases as described below.

Phase 1. (1-hop view collection) Let aj be the agent with the minimum ID located at a
node v ∈ Gi. The agent aj performs the following for each port p ∈ {0, 1, . . . , degr(v) − 1}:

Let u be the neighbor of v reachable via port p. Set IDv = aj .ID.
If at least one agent is present at u: define Cp

v = (Count(v), IDv, p, IDu), where IDu is
the minimum ID among the agents at node u.

A. Saxena and K. Mondal 41:13

If no agent is present at u (i.e., it is a hole): define Cp
v = (Count(v), IDv, p, ⊥), where ⊥

denotes a hole via port p.
Let Cv = {C0

v , C1
v , . . . , Cd

v } denote the 1-hop view at node v, where d = degr(v) − 1.
The agent aj broadcasts Cv to all agents in Gi using global communication.

Phase 2. (Graph Reconstruction) After receiving all 1-hop views from agents in Gi, agent
aj proceeds as follows:

Define V ′ = {IDv | Cv}, where each unique ID represents a node.
Construct the edge set E′ as follows: for each pair of tuples (Count(v), IDv, p, IDu)
and (Count(u), IDu, q, IDv), where IDu ̸= ⊥ and IDv ̸= ⊥, add an undirected edge
(IDv, IDu) with port labels π(IDv, IDu) = p and π(IDu, IDv) = q, where π(v1, v2)
denotes the outgoing port from node v1 to v2.
For each tuple (Count(v), IDv, p, ⊥), mark port p at node IDv as leading to a hole.3
We denote this algorithm as MAP(). The correctness of MAP() is as follows. We show

that at round r, if agent ai is in connected component Gi of Gr, then it constructs AC(Gi)
by using MAP(). Let G′

i be the map constructed by agent ai using MAP().

▶ Theorem 6. Let agent ai be located at some node in the connected component Gi. Then,
using the subroutine MAP(), agent ai constructs AC(Gi). (Proof in Appendix, see
Section A.3)

From Theorem 6 and Definition 5, we derive three key observations.

▶ Observation 7. Using MAP(), the agents in Gi construct AC(Gi), including information
of the number of agents at each node v and the ports from node v (if any) that lead to a hole.

▶ Observation 8. Since all agents within the same connected component exchange information
via global communication, the output of MAP() is identical for every agent in that component.

▶ Observation 9. If there is no hole in Gi, then AC(Gi) is the same as Gi, as per Def. 5.

6.2 Perpetual Exploration Algorithm
In this section, we present the algorithm EXP_ALGO(), which solves perpetual exploration
when agents are equipped with 1-hop visibility and global communication. The following is a
detailed description of the algorithm for agent ai at node v during round r: if node v is a
multinode and agent ai is not the minimum ID agent, then it stays at node v. If agent ai is
the minimum ID agent at node v, it follows the following steps at round r.

Agent ai broadcasts Cv.
After receiving all Cus, agent ai use MAP () algorithm. Let’s call this constructed graph
G′. Using Theorem 6, the graph G′ is nothing but a collection of partitioned subgraphs
G1

j , G2
j , . . . , Gk

j of Gj , where Gj is the connected component for which ai is a part. The
following four cases may arise in the constructed map G′, and in each case, agent ai

makes a corresponding decision.

Case 1 (there is no multinode and no information of a port towards a hole):
Agent ai stays at node v.

3 This step does not introduce any new holes or edges leading to holes during Phase 2; it only marks the
port(s) at node v that lead to a hole.

DISC 2025

41:14 Exploring Connectivity Time Dynamic Graphs

Case 2 (there is no multinode, but there is information of a port leading to a hole):
Assume there are k nodes, each with an agent that has a port leading to a hole. Let
b1, b2, . . . , bk be agents at node u1, u2, . . . , uk, respectively in G′, where one of the
ports of uj leads to a hole for every j ∈ [1, k]. If ai.ID = min{bj .ID : j ∈ [1, k]}, then
it moves to the node which leads to the hole via the minimum port. Otherwise, it
stays at its position.

Case 3 (both a multinode and information of a port towards a hole are present):
Suppose there are k multinodes in G′. Let b1, b2, . . . , bk be agents at node u1, u2,
. . . , uk, respectively in G′ where each node ui is a multinode in G′. Without loss of
generality, let b1.ID = min{bj .ID : j ∈ [1, k]}. Without loss of generality, let b1 be
in G1

j . One of the nodes in G1
j leads to a hole as there is a hole in Gj , and using

Definition 5. Assume there are k′ nodes in G1
j , each with an agent that has a port

leading to a hole. Let a1, a2, . . . , ak′ be agents at node u1, u2, . . . , uk′ , respectively in
G1

j such that one of the ports lead to a hole from node uj , for every j ∈ [1, k]. Without
loss of generality, let a1.ID = min{aj .ID : j ∈ [1, k′]}.
Since, agent ai is aware of G′, it consider a shortest path P between u1 and u1. If
there are multiple shortest paths between u1 and u1, then it selects the one that is
lexicographically shortest among all other shortest paths. Let P = w1(= u1) ∼ w2 ∼
. . . ∼ wy(= u1). If agent ai is at some node wj , for 1 ≤ j < y, then it moves to node
wj+1. Else if agent ai is at node wy, then it moves to the node via the minimum
available port, which leads to a hole. Otherwise, it stays at node v.

Case 4 (there is a multinode but there is no information of a port towards a hole):
Assume there are k nodes in G′. Due to Observation 8, the graph G′ is the graph G1.
Define: i′ = max{Count(x) : x ∈ V1}, and j′ = min{Count(x) : x ∈ V1}, where V1 is
the set of nodes in G1. Let v1, v2, . . . , vp be the nodes in G1 such that Count(vk) = i′

for each k ∈ [1, p], and let ak denote the minimum ID agent at node vk. Similarly, let
w1, w2, . . . , wq be the nodes in G1 such that Count(wk′) = j′ for each k′ ∈ [1, q], and
let bk′ denote the minimum ID agent at node wk′ . Without loss of generality, let a1 be
the agent among {ak : k ∈ [1, p]} with the minimum ID, and b1 be the agent among
{bk′ : k′ ∈ [1, q]} with the minimum ID. If Count(v1) < Count(w1) + 2, agent ai stays
at node v. Otherwise (i.e.,Count(v1) ≥ Count(w1) + 2), agent ai find a shortest path
P between v1 and w1. If there are multiple shortest paths between v1 and w1, then it
selects the one that is lexicographically shortest. Let P = z1(= v1) ∼ z2 . . . ∼ zy(= w1).
If agent ai is at some node zj , for 1 ≤ j < y, then it moves to node wj+1. Else, it
stays at v.

In the next section, we show the correctness of our algorithm.

6.3 Correctness and Analysis of the Algorithm
Before proving correctness, we introduce the following notation. Let n be the number of
nodes, and define l = (n−2)(n−1)

2 + 1. For each i ∈ [0, l], let Si := {v ∈ V : Count(v) = i}. Let
L denote the largest integer such that SL ̸= ∅ at round 0.

▶ Lemma 10. Let Gr be the configuration at round r. If there exists at least one hole and at
least one multinode in the same connected component of Gr, then the total number of holes in
Gr decreases by at least one at the end of round r. (Proof in Appendix, see Section A.4)

▶ Lemma 11. Let Gr be the configuration at round r, and suppose that there exists a
connected component G1 of Gr such that G1 contains at least one multinode but no hole.
Define i′ = max{Count(x) : x ∈ V1} and j′ = min{Count(x) : x ∈ V1)}, where V1 is the

A. Saxena and K. Mondal 41:15

set of nodes in G1. If i′ ≥ j′ + 2, then at the end of round r, one of the nodes v ∈ V (G1) with
Count(v) = i′ reduces its Count by 1, and one of the nodes w ∈ V (G1) with Count(w) = j′

increases its Count by 1. (Proof in Appendix, see Section A.5)

▶ Remark 12. Based on Lemma 11, we observe that one agent reaches a node w1 ∈ Sj′ at
round r. As a result, Count(w1) becomes j′ + 1 at the beginning of round r + 1, implying
that w1 ∈ Sj′+1. Whenever at round r, a node becomes a part of Sp, i.e., at round r − 1, it
was not a part of Sp, we call this event join. Whenever at round r, a node does not remain a
part of Sp, i.e., at round r − 1, it was a part of Sp but it is not part of Sp at round r, we call
this event leave.

We have an observation based on EXP_ALGO(), which is as follows.

▶ Observation 13. A node v with Count(v) ≥ 1 at round r can become a hole by the end of
round r only if Count(v) = 1 and v belongs to a connected component of Gr that contains a
hole but no multinode.

We now show that perpetual exploration is achieved using l agents.

▶ Lemma 14. If |S0| = 1 at some round r, then node v ∈ S0 is visited by some agent within
the next T rounds. (Proof in Appendix, see Section A.6)

▶ Lemma 15. If |S0| ≥ 2, then ∃ i, j (≥ i) ∈ [1, l] such that Si ≠ ∅, Sj ̸= ∅, j ≥ i + 2 and
Sk = ∅ for all i < k < j. (Proof in Appendix, see Section A.7)

▶ Lemma 16. If initially |S0| ≥ 2, then within O(n4 · T) round |S0| ≤ 1.

Proof. At round 0, there are two possible cases: Case 1: |S1| = 0, or Case 2: |S1| ≥ 1.
Case 1. To maintain the Connectivity Time, some node from S0 must be in the same
connected component as a node from Si, i ≥ 2, within the first T rounds. By Lemma 10, this
causes |S0| to decrease by at least one in the next T rounds. If |S1| = 0 throughout [0, n · T],
then S0 eventually becomes empty. Otherwise, if |S1| ≥ 1 at some round r ∈ [0, n · T], we
are in Case 2.
Case 2. Suppose that at round r ≥ 0, |S1| ≥ 1. To show that |S0| ≤ 1, we proceed by
contrapositive argument. Assume that |S0| ≥ 2 throughout the interval [r, r + (n4 + 1) · T].
Then, by Lemma 15, there exist indices i and j with j ≥ i + 2 such that Si ≠ ∅, Sj ̸= ∅, and
Sk = ∅ for all k ∈ [i + 1, j − 1].

According to Remark 12, nodes may join or leave the set Sp at each time step. A key
question is: how many times can nodes join the set Sp? By Lemma 11, a node can join Sp

at round t ≥ r only if at least one node from Sq (with q ≥ p + 1) and one node from Sp−1
belong to the same connected component G1 of Gt, and no node from Sp′ for p′ < p − 1 is in
G1. We have l many agents. Then in the worst case, nodes can join the set Sp at most l

times, as each time one agent can move from Sq to Sp−1. If at most l times nodes joins set
Sp, the size of Sq decreases due to Lemma 11, eventually making Sq = ∅ for every q > p.

As there are L such sets with L ≤ l, the total number of join events between rounds r and
r+(n4+1)·T can not be more than l2 ≤ n4. Now divide the interval [r, r+(n4+1)·T] into n4+1
consecutive sub-intervals of length T : each sub-interval is of the form [r +kT, r +(k +1)T −1]
for k = 0, 1, . . . , n4 + 1. If at least one node leaves some set Sj during each sub-interval,
then there are n4 + 1 such leave events in total. Since each leave corresponds to a join, this
implies there are also n4 + 1 join events. But this contradicts our earlier conclusion that
there can be at most n4 join events. By the pigeonhole principle, this contradiction implies
that our assumption is false. Therefore, within O(n4 · T) rounds, we must have |S0| ≤ 1.

Since Case 2 is reached within O(n · T) rounds from any initial configuration, |S0| ≤ 1
holds within O(n4 · T) rounds overall. This completes the proof. ◀

DISC 2025

41:16 Exploring Connectivity Time Dynamic Graphs

▶ Theorem 17. EXP_ALGO() solves perpetual exploration in Connectivity Time dy-
namic graphs using (n−2)(n−1)

2 + 1 synchronous agents equipped with 1-hop visibility, global
communication, and O(log n) bits of memory. The agents have no knowledge of n, T , l.

Proof. If |S0| ≥ 2 initially, then by Lemma 16, |S0| ≤ 1 within O(n4 ·T) rounds. Suppose that
at some round r ≥ 0, |S0| ≤ 1. If S0 = ∅, then all nodes are occupied, and by Observation 13,
no node becomes a hole in future rounds. Thus, perpetual exploration is achieved.

If S0 = {v}, then by Lemma 14, node v is visited within the next T rounds. Thus,
all nodes are visited by some agent within O(n4 · T) rounds, and the invariant |S0| ≤ 1 is
preserved thereafter. This process repeats indefinitely, ensuring perpetual exploration.

Each agent requires O(log n) bits to distinguish itself. Since the computation is round-
local (i.e., agents do not retain information from previous rounds), O(log n) bits of memory
are sufficient. This completes the proof. ◀

▶ Remark 18. Lemma 16 shows that at least n − 1 nodes are occupied in the first O(n4 · T)
rounds. Theorem 17 ensures that from this point onward, at most one hole exists and, by
Lemma 14, it is revisited within each T rounds. Therefore, this also implies that each node
of the network is visited by some agent in the first O(n4 · T) rounds.

7 Conclusion and Future Work

In this work, we have shown that exploration is impossible in Connectivity Time dynamic
graphs by (n−2)(n−1)

2 agents starting from an arbitrary initial configuration, even if agents
have infinite memory, full visibility, global communication, and knowledge of all parameters.
We then presented an algorithm that solves perpetual exploration using one extra agent
with only 1-hop visibility, global communication, and O(log n) memory. One can study
whether this extra agent helps to reduce the assumptions of 1-hop visibility and/or global
communication which we require for exploration.

References
1 A. Agarwalla, J. Augustine, W. K. Moses, S. K. Madhav, and A. K. Sridhar. Deterministic

dispersion of mobile robots in dynamic rings. In ICDCN, pages 1–4, 2018.
2 S. Albers and M. Henzinger. Exploring unknown environments. SIAM Journal on Computing,

29(4):1164–1188, 2000. doi:10.1137/S009753979732428X.
3 Chen Avin, Michal Kouckỳ, and Zvi Lotker. How to explore a fast-changing world (cover time

of a simple random walk on evolving graphs). In ICALP 2008, pages 121–132, 2008.
4 Marjorie Bournat, Ajoy K Datta, and Swan Dubois. Self-stabilizing robots in highly dynamic

environments. In SSS 2016, pages 54–69, 2016. doi:10.1007/978-3-319-49259-9_5.
5 Marjorie Bournat, Swan Dubois, and Franck Petit. Computability of perpetual exploration in

highly dynamic rings. In ICDCS 2017, pages 794–804, 2017. doi:10.1109/ICDCS.2017.80.
6 J. Chalopin, P. Flocchini, B. Mans, and N. Santoro. Network exploration by silent and

oblivious robots. In WG, pages 208–219, 2010.
7 R. Cohen, P. Fraigniaud, D. Ilcinkas, A. Korman, and D. Peleg. Label-guided graph exploration

by a finite automaton. ACM Transactions on Algorithms, 4(4):1–18, 2008. doi:10.1145/
1383369.1383373.

8 S. Das, D. Dereniowski, and C. Karousatou. Collaborative exploration of trees by energy-
constrained mobile robots. Theor. Comp. Sys., 62(5):1223–1240, July 2018. doi:10.1007/
S00224-017-9816-3.

9 Shantanu Das. Graph Explorations with Mobile Agents, pages 403–422. Springer International
Publishing, 2019. doi:10.1007/978-3-030-11072-7_16.

https://doi.org/10.1137/S009753979732428X
https://doi.org/10.1007/978-3-319-49259-9_5
https://doi.org/10.1109/ICDCS.2017.80
https://doi.org/10.1145/1383369.1383373
https://doi.org/10.1145/1383369.1383373
https://doi.org/10.1007/S00224-017-9816-3
https://doi.org/10.1007/S00224-017-9816-3
https://doi.org/10.1007/978-3-030-11072-7_16

A. Saxena and K. Mondal 41:17

10 Shantanu Das, Nikos Giachoudis, Flaminia L. Luccio, and Euripides Markou. Broadcasting
with Mobile Agents in Dynamic Networks. In OPODIS 2020, pages 24:1–24:16, 2021.

11 X. Deng and C.H. Papadimitriou. Exploring an unknown graph. Journal of Graph Theory,
32(3):265–297, 1999. doi:10.1002/(SICI)1097-0118(199911)32:3\%3C265::AID-JGT6\%3E3.
0.CO;2-8.

12 G Di Luna, Stefan Dobrev, Paola Flocchini, and Nicola Santoro. Distributed exploration of
dynamic rings. Distributed Computing, 33:41–67, 2020. doi:10.1007/S00446-018-0339-1.

13 Y. Dieudonné and A. Pelc. Deterministic network exploration by anonymous silent agents
with local traffic reports. ACM Transactions on Algorithms, 11(2):1–29, 2014. doi:10.1145/
2594581.

14 S. Dobrev, L. Narayanan, J. Opatrny, and D. Pankratov. Exploration of high-dimensional
grids by finite automata. In ICALP, pages 1–16, 2019.

15 Thomas Erlebach, Michael Hoffmann, and Frank Kammer. On temporal graph exploration.
Journal of Computer and System Sciences, 119:1–18, 2021. doi:10.1016/J.JCSS.2021.01.005.

16 Thomas Erlebach, Frank Kammer, Kelin Luo, Andrej Sajenko, and Jakob T Spooner. Two
moves per time step make a difference. In ICALP 2019, page 141, 2019.

17 Thomas Erlebach and Jakob T Spooner. Faster exploration of degree-bounded temporal
graphs. In MFCS 2018), pages 36:1–36:13, 2018. doi:10.4230/LIPICS.MFCS.2018.36.

18 Paola Flocchini, Matthew Kellett, Peter C Mason, and Nicola Santoro. Searching for
black holes in subways. Theory of Computing Systems, 50:158–184, 2012. doi:10.1007/
S00224-011-9341-8.

19 Paola Flocchini, Bernard Mans, and Nicola Santoro. On the exploration of time-varying
networks. Theoretical Computer Science, 469:53–68, 2013. doi:10.1016/J.TCS.2012.10.029.

20 P. Fraigniaud, L. Gasieniec, D. R. Kowalski, and A. Pelc. Collective tree exploration. Networks,
48(3):166–177, 2006. doi:10.1002/NET.20127.

21 P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, and D. Peleg. Graph exploration by a finite
automaton. Theoretical Computer Science, 345(2–3):331–344, 2005. doi:10.1016/J.TCS.2005.
07.014.

22 P. Fraigniaud, D. Ilcinkas, and A. Pelc. Impact of memory size on graph exploration capability.
Discrete Applied Mathematics, 156(12):2310–2319, 2008. doi:10.1016/J.DAM.2007.11.001.

23 Tsuyoshi Gotoh, Paola Flocchini, Toshimitsu Masuzawa, and Nicola Santoro. Exploration of
dynamic networks: Tight bounds on the number of agents. Journal of Computer and System
Sciences, 122:1–18, 2021. doi:10.1016/J.JCSS.2021.04.003.

24 Tsuyoshi Gotoh, Yuichi Sudo, Fukuhito Ooshita, Hirotsugu Kakugawa, and Toshimitsu
Masuzawa. Group exploration of dynamic tori. In ICDCS 2018, pages 775–785, 2018.
doi:10.1109/ICDCS.2018.00080.

25 Tsuyoshi Gotoh, Yuichi Sudo, Fukuhito Ooshita, and Toshimitsu Masuzawa. Exploration of
dynamic ring networks by a single agent with the h-hops and s-time steps view. In SSS 2019,
pages 165–177, 2019. doi:10.1007/978-3-030-34992-9_14.

26 David Ilcinkas, Ralf Klasing, and Ahmed Mouhamadou Wade. Exploration of constantly
connected dynamic graphs based on cactuses. In SIROCCO, pages 250–262, 2014. doi:
10.1007/978-3-319-09620-9_20.

27 David Ilcinkas and Ahmed M Wade. Exploration of the t-interval-connected dynamic graphs:
the case of the ring. Theory of Computing Systems, 62:1144–1160, 2018. doi:10.1007/
S00224-017-9796-3.

28 David Ilcinkas and Ahmed Mouhamadou Wade. On the power of waiting when ex-
ploring public transportation systems. In OPODIS 2011, pages 451–464, 2011. doi:
10.1007/978-3-642-25873-2_31.

29 Ajay D. Kshemkalyani and Faizan Ali. Efficient dispersion of mobile robots on graphs. In
Proceedings of the 20th International Conference on Distributed Computing and Networking,
ICDCN ’19, page 218–227, New York, NY, USA, 2019. Association for Computing Machinery.
doi:10.1145/3288599.3288610.

DISC 2025

https://doi.org/10.1002/(SICI)1097-0118(199911)32:3%3C265::AID-JGT6%3E3.0.CO;2-8
https://doi.org/10.1002/(SICI)1097-0118(199911)32:3%3C265::AID-JGT6%3E3.0.CO;2-8
https://doi.org/10.1007/S00446-018-0339-1
https://doi.org/10.1145/2594581
https://doi.org/10.1145/2594581
https://doi.org/10.1016/J.JCSS.2021.01.005
https://doi.org/10.4230/LIPICS.MFCS.2018.36
https://doi.org/10.1007/S00224-011-9341-8
https://doi.org/10.1007/S00224-011-9341-8
https://doi.org/10.1016/J.TCS.2012.10.029
https://doi.org/10.1002/NET.20127
https://doi.org/10.1016/J.TCS.2005.07.014
https://doi.org/10.1016/J.TCS.2005.07.014
https://doi.org/10.1016/J.DAM.2007.11.001
https://doi.org/10.1016/J.JCSS.2021.04.003
https://doi.org/10.1109/ICDCS.2018.00080
https://doi.org/10.1007/978-3-030-34992-9_14
https://doi.org/10.1007/978-3-319-09620-9_20
https://doi.org/10.1007/978-3-319-09620-9_20
https://doi.org/10.1007/S00224-017-9796-3
https://doi.org/10.1007/S00224-017-9796-3
https://doi.org/10.1007/978-3-642-25873-2_31
https://doi.org/10.1007/978-3-642-25873-2_31
https://doi.org/10.1145/3288599.3288610

41:18 Exploring Connectivity Time Dynamic Graphs

30 Ajay D. Kshemkalyani, Anisur Rahaman Molla, and Gokarna Sharma. Dispersion of mobile
robots in the global communication model. In Proceedings of the 21st International Conference
on Distributed Computing and Networking, ICDCN ’20, New York, NY, USA, 2020. Association
for Computing Machinery. doi:10.1145/3369740.3369775.

31 Ajay D. Kshemkalyani, Anisur Rahaman Molla, and Gokarna Sharma. Dispersion of mobile
robots on grids. In WALCOM: Algorithms and Computation: 14th International Conference,
WALCOM 2020, Singapore, Singapore, March 31 – April 2, 2020, Proceedings, page 183–197,
Berlin, Heidelberg, 2020. Springer-Verlag. doi:10.1007/978-3-030-39881-1_16.

32 F. Kuhn, N. Lynch, and R. Oshman. Distributed computation in dynamic networks. In STOC,
pages 513–522, New York, NY, USA, 2010.

33 O. Michail, I. Chatzigiannakis, and P. G. Spirakis. Causality, influence, and computation in
possibly disconnected synchronous dynamic networks. Journal of Parallel and Distributed
Computing, 74(1):2016–2026, 2014. doi:10.1016/J.JPDC.2013.07.007.

34 A. Miller and U. Saha. Fast byzantine gathering with visibility in graphs. In Algorithms for
Sensor Systems, pages 140–153, 2020.

35 William K. Moses Jr., Amanda Redlich, and Frederick Stock. Brief Announcement: Broadcast
via Mobile Agents in a Dynamic Network: Interplay of Graph Properties & Agents. In SAND
2025, pages 17:1–17:5, 2025. doi:10.4230/LIPICS.SAND.2025.17.

36 C. Ortolf and C. Schindelhauer. Online multi-robot exploration of grid graphs with rectangular
obstacles. In SPAA 2012, pages 27–36, New York, NY, USA, 2012.

37 P. Panaite and A. Pelc. Exploring unknown undirected graphs. Journal of Algorithms,
33:281–295, 1999. doi:10.1006/JAGM.1999.1043.

38 Ashish Saxena and Kaushik Mondal. Path connected dynamic graphs with a study of dispersion
and exploration. Theoretical Computer Science, 1050:115390, 2025. doi:10.1016/J.TCS.2025.
115390.

39 Claude E Shannon. Presentation of a maze-solving machine. Claude Elwood Shannon Collected
Papers, pages 681–687, 1993.

A Appendix

A.1 Proof of Lemma 1

Proof. For r ≥ 0, let Gr, Gr+1, . . . , Gr+T −1 be consecutive T sequence of graphs, where
Gi = (V, E(i)) for i ∈ [r, r + T − 1]. Suppose the above dynamic graph G does not satisfy the
Connectivity Time property for some round r, i.e., Gr,T := (V, ∪r+T −1

r E(i)) is not connected.
It is important to note that there exists a round r′ between r and r + T − 1 such that
r′ = iT − 1, for some i ∈ N.

If i is odd, then in each round t ∈ [r, iT − 2], there are k one length paths in Gt:
P1(= w1 ∼ w2), P2(= w3 ∼ w4), . . . , Pk−1(= wn−3 ∼ wn−2) and Pk(= wn−1 ∼ wn). As per
the dynamic graph construction at round iT − 1, the adversary changes paths as follows:
P ′

1(= w′
1), P ′

2(= w′
2 ∼ w′

3), . . . , P ′
k−1(= w′

n−4 ∼ w′
n−3) and P ′

k(= w′
n−2 ∼ w′

n−1 ∼ w′
n),

where w′
2j−1 ∈ {w2j−1, w2j} and w′

2j = {w2j−1, w2j} \ {w′
2j−1}, for every j ∈ [1, k]. Taking

the union of the edges from Gi for r ≤ i ≤ r + T − 1 creates a path of length n.
Similarly, if i is even, then in each round t ∈ [r, iT −2], there are k paths in Gt: P ′

1(= w1),
P ′

2(= w2 ∼ w3), ..., P ′
k−1(= wn−4 ∼ wn−3), and P ′

k(= wn−2 ∼ wn−1 ∼ wn). By using a
similar argument, we can show that the way we modify the construction at round iT − 1
results in the union of edges from Gi for r ≤ i ≤ r + T − 1, which forms a path of length n.

This shows our assumption is wrong. Therefore, this dynamic setting satisfies the
Connectivity Time property. ◀

https://doi.org/10.1145/3369740.3369775
https://doi.org/10.1007/978-3-030-39881-1_16
https://doi.org/10.1016/J.JPDC.2013.07.007
https://doi.org/10.4230/LIPICS.SAND.2025.17
https://doi.org/10.1006/JAGM.1999.1043
https://doi.org/10.1016/J.TCS.2025.115390
https://doi.org/10.1016/J.TCS.2025.115390

A. Saxena and K. Mondal 41:19

A.2 Proof of Lemma 2 (Remaining Cases)
Proof. The proof for Cases 2, 3, and 5 is as follows.
Case 2. In this case, round r, r + 1 ∈ [iT − 1, (i + 1)T − 2], where i is an odd number, and
agents are in configuration C1−2−3. The proof of Eq. (A) and Eq. (B) for round r + 1 is as
follows.
Proof of (B). Due to the induction hypothesis, the following inequality holds for j ≥ 1:

2j−1∑
i=1

αr(wr
i) ≥

2j−1∑
i=1

(n − i − 1) (1)

Since the dynamic graph does not change for every round r ∈ [iT − 1, (i + 1)T − 2], no
matter how agents move, for every j ∈ [1, k − 2], we have the following

αr(wr
2j) + αr(wr

2j+1) = αr+1(wr+1
2j) + αr+1(wr+1

2j+1) (2)

Therefore, inequality (B) holds for round r + 1 using Eq. (1) and Eq. (2).
Proof of (A). We use a contrapositive argument. Suppose for some smallest value j ≥ 1,
the inequality does not hold. Then the following inequality must be true:

2j∑
i=1

αr+1(wr+1
i) <

2j∑
i=1

(n − i − 1) (3)

Due to proof of (B), we have:
2j−1∑
i=1

αr+1(wr+1
i) ≥

2j−1∑
i=1

(n − i − 1) (4)

Therefore, using Eq. (3) and Eq. (4), the inequality αr+1(wr+1
2j) < n − 2j − 1 =⇒

αr+1(wr+1
2j−1) ≤ n − 2j − 2 holds. Due to proof of (B), we have:

2j+1∑
i=1

αr+1(wr+1
i) ≥

2j+1∑
i=1

(n − i − 1) (5)

We now rewrite Eq. (5) as:

αr+1(wr+1
2j+1) ≥

2j+1∑
i=1

(n − i − 1) −
2j∑

i=1
αr+1(wr+1

i) (6)

From Eq. (3) and Eq. (6), the inequality αr+1(wr+1
2j+1) > n−2j−2 holds. Therefore, due to

our assumption (i.e., Eq. (3)), we have αr+1(wr+1
2j−1) ≤ n−2j−2 and αr+1(wr+1

2j+1) > n−2j−2.
This leads to a contradiction because, due to (N2), the inequality αr+1(wr+1

2j) ≥ αr+1(wr+1
2j+1)

holds. This shows that our initial assumption is incorrect. Therefore, inequality (A) holds
for round r + 1.
Case 3. In this case, round r, r + 1 ∈ [iT − 1, (i + 1)T − 2], where i is an even number. The
proof is similar to Case 1.
Case 5. In this scenario, let r = iT − 2, where i is an even integer. At round r, the
configuration is C1−2−3. As per (N2), there are k paths: P ′

1(= wr
1), P ′

2(= wr
2 ∼ wr

3), . . . ,
P ′

k−1(= wr
n−4 ∼ wr

n−3), and P ′
k(= wr

n−2 ∼ wr
n−1 ∼ wr

n). At round r + 1 as per (N1), there
are k paths: P1(= wr+1

1 ∼ wr+1
2), P2(= wr+1

3 ∼ wr+1
4), . . . , Pk−1(= wr+1

n−3 ∼ wr+1
n−2), and

Pk(= wr+1
n−1 ∼ wr+1

n). It holds that αr(wr+1
2j−1) ≤ αr(wr+1

2j) for every j ∈ [1, k − 1].

DISC 2025

41:20 Exploring Connectivity Time Dynamic Graphs

Proof of (B). Due to the induction hypothesis, the following inequality is true:
2j−1∑
i=1

αr(wr
i) ≥

2j−1∑
i=1

(n − i − 1) (7)

Since αr+1(wr
1) = max {αr(wr

1), max{βr(wr
2), βr(wr

3)}}, αr+1(wr
1) ≥ αr(wr

1) ≥ n − 2.
Therefore, for j = 1, the inequality (A) holds at round r + 1. For j ≥ 2, the inequality (A)
holds at round r + 1 for the following reason. Let p = max{βr(wr

2j−2), βr(wr
2j−1)} for j ≥ 2.

Therefore, the value of αr+1(w2j−1) is as follows.

αr+1(wr+1
2j−1) = max

{
αr(wr

2j−2) + αr(wr
2j−1) − p, max

{
βr(wr

2j), βr(wr
2j+1

}}
(8)

The adversary forms the dynamic graph at round iT − 1, ensuring the following equality is
true.

2j−2∑
i=1

αr+1(wr+1
i) =

2j−3∑
i=1

αr(wr
i) + p (9)

Using Eq. (9), the following equality holds.
2j−1∑
i=1

αr+1(wr+1
i) =

2j−2∑
i=1

αr+1(wr+1
i) + αr+1(wr+1

2j−1) ≥
2j−3∑
i=1

αr(wr
i) + p + αr+1(wr+1

2j−1) (10)

Due to Eq. (8), αr+1(wr+1
2j−1) ≥ αr(wr

2j−2) + αr(wr
2j−1) − p. Therefore, we have the

following from Eq. (10).

2j−1∑
i=1

αr+1(wr+1
i) ≥

2j−3∑
i=1

αr(wr
i)+p+αr+1(wr+1

2j−1) ≥
2j−3∑
i=1

αr(wr
i)+p+αr(wr

2j−2)+αr(wr
2j−1)−p

=⇒
2j−1∑
i=1

αr+1(wr+1
i) ≥

2j−1∑
i=1

αr(wr
i) (11)

Using Eq. (7) and Eq. (11), the inequality (B) holds at round r + 1.
Proof of (A). Due to the proof of (B), the following inequalities are true for any j ≥ 1.

2j−1∑
i=1

αr(wr
i) ≥

2j−1∑
i=1

(n − i − 1) (12)

2j+1∑
i=1

αr(wr
i) ≥

2j+1∑
i=1

(n − i − 1) (13)

Due to Eq. (9), the following inequality is true for j ≥ 1.
2j∑

i=1
αr+1(wr+1

i) =
2j−1∑
i=1

αr(wr
i) + p (14)

The lower bound of p is
⌈

αr(wr
2j)+αr(wr

2j+1)
2

⌉
. Therefore, we get the following inequality from

Eq. (14).
2j∑

i=1
αr+1(wr+1

i) ≥
2j−1∑
i=1

αr(wr
i) +

⌈
αr(wr

2j) + αr(wr
2j+1)

2

⌉
(15)

A. Saxena and K. Mondal 41:21

Using Eq. (12) and Eq. (13), we get the following inequality (by taking the sum of Eq.
(12) and Eq. (13)):

2
(2j−1∑

i=1
αr(wr

i)
)

+αr(wr
2j)+αr(wr

2j+1) ≥ 2
(2j−1∑

i=1
(n − i − 1)

)
+(n−2j −2)+(n−2j −1)

=⇒
2j−1∑
i=1

αr(wr
i) +

αr(wr
2j) + αr(wr

2j+1)
2 ≥

2j−1∑
i=1

(n − i − 1) + 2n − 4j − 3
2

=⇒
2j−1∑
i=1

αr(wr
i) +

αr(wr
2j) + αr(wr

2j+1)
2 ≥

2j−1∑
i=1

(n − i − 1) + n − 2j − 1 − 1
2 (16)

We know that the following inequality is true.

2j−1∑
i=1

αr(wr
i) +

⌈
αr(wr

2j) + αr(wr
2j+1)

2

⌉
≥

2j−1∑
i=1

αr(wr
i) +

αr(wr
2j) + αr(wr

2j+1)
2 (17)

Due to Eq. (16) and Eq. (17), the following holds.

2j−1∑
i=1

αr(wr
i) +

⌈
αr(wr

2j) + αr(wr
2j+1)

2

⌉
≥

2j−1∑
i=1

(n − i − 1) + n − 2j − 1 =
2j∑

i=1
(n − i − 1) (18)

Due to Eq. (15) and Eq. (18), the following holds.

2j∑
i=1

αr+1(wr+1
i) ≥

2j∑
i=1

(n − i − 1)

This completes the proof. ◀

A.3 Proof of Theorem 6
Proof. Let edge (u, v) be in graph Gj

i , for some j, which is a subgraph of Gi, and π(u, v) = p,
π(v, u) = q. Since (u, v) ∈ Ej

i , there is at least one agent at each node u and v using Definition
5. Let agent a be the minimum ID agent at node u, and agent b the minimum ID agent at
node v. Since node u and v are in the same connected component, agent a gets information
of Cv, and agent b gets information of Cu. Since q is an outgoing port of node v, agent a gets
information about Cq

v . And since p is an outgoing port of node u, agent b gets information
about Cp

u, Cq
v = (Count(v), b.ID, q, a.ID) and Cp

u = (Count(u), a.ID, p, b.ID). As per
MAP(), agent a add edge (a.ID, b.ID), where a.ID and b.ID are two nodes in G′

i, and
π(a.ID, b.ID) = p, and π(b.ID, a.ID) = q. Therefore, G′

i = AC(Gi). This completes the
proof. ◀

A.4 Proof of Lemma 10
Proof. Let G1, G2, . . . , Gk be the connected components of Gr. Without loss of generality,
suppose G1 contains at least one hole and at least one multinode. By Theorem 6 and
Observation 8, all agents in G1 possess a common map of the anonymous copy AC(G1),
denoted by G′ = {G1

1, G2
1, . . . , Gm

1 }. Suppose there are k′ multinodes in G′, located at nodes
u1, u2, . . . , uk′ , with the minimum ID agents b1, b2, . . . , bk′ occupying them. Without loss of
generality, let b1 be the agent with the minimum ID among them, i.e., b1.ID = min{bi.ID :
i ∈ [1, k′]}, and assume b1 resides in G1

1.

DISC 2025

41:22 Exploring Connectivity Time Dynamic Graphs

Since G1 contains at least one hole, there exists at least one node in G1
1 from which a

port leads to a hole. Let there be k′′ such nodes, denoted u1, u2, . . . , uk′′ , with corresponding
minimum-ID agents a1, a2, . . . , ak′′ occupying them. Let a1 be the agent with the minimum
ID among them, i.e., a1.ID = min{aj .ID : j ∈ [1, k′′]}. Since all agents in G1 share the
same map G′, they identify the same pair of nodes: u1 (a multinode) and u1 (adjacent to a
hole). Let P = (v1 = u1 ∼ v2 ∼ . . . ∼ vy = u1) denote the lexicographically shortest path
from u1 to u1 in G′. This path is unique due to the deterministic selection criteria based on
IDs and shared knowledge of G′.

Each agent on this path identifies its current position and acts accordingly: if an agent is
at node vi for i < y, it moves to vi+1. The agent at vy = u1 selects the minimum available
port that leads to a hole and moves through it. Thus, a hole gets filled without creating a
new hole elsewhere. Therefore, the total number of holes in Gr decreases by at least one at
the end of round r. This completes the proof. ◀

A.5 Proof of Lemma 11
Proof. Let G1, G2, . . . , Gk be the connected components of Gr. Without loss of generality,
let G1 be the connected component that contains at least one multinode but no hole. Since
G1 contains a multinode but no hole, by Theorem 6 and Observation 9, every agent in G1
constructs the map of G1 using the procedure MAP(). Let v1, v2, . . . , vp be the nodes in
G1 such that Count(vk) = i′ for each k ∈ [1, p], and let ak denote the minimum ID agent
at node vk. Similarly, let w1, w2, . . . , wq be the nodes such that Count(wk′) = j′ for each
k′ ∈ [1, q], and let bk′ denote the minimum ID agent at node wk′ . Without loss of generality,
let a1 be the agent among {ak : k ∈ [1, p]} with the minimum ID, and b1 be the agent among
{bk′ : k′ ∈ [1, q]} with the minimum ID. Since all agents share the same reconstructed map
G1, they all identify the same pair of nodes v1 and w1 as the nodes with maximum and
minimum Count values, respectively. Let P = (v1 = u1 ∼ u2 ∼ · · · ∼ uy = w1) be the
lexicographically shortest path from v1 to w1 in G1, which is uniquely determined by the map
and agent ID choices. Each agent on this path identifies its position and moves accordingly:
if an agent is at node ui for i < y, it moves to ui+1. As a result, the value of Count(v1)
decreases by 1, and the value of Count(w1) increases by 1. This completes the proof. ◀

A.6 Proof of Lemma 14
Proof. To maintain the Connectivity Time property, node v must be connected to some
node w at round t, where t ∈ [r, r + T]. Let G1 be the connected component of Gt at round
t such that the node v is part of the graph G1. If G1 has at least one multinode, then one
agent moves to node v as agents in G1 execute EXP_ALGO() due to Lemma 10.

Otherwise, all nodes in G1 except node v contain exactly one agent. At round t, let w1, w2,
. . . , wp be neighbours of node v in G1, and agent ai be at node wi. As per EXP_ALGO(),
the minimum ID agent ID among ais moves to node v. This completes the proof. ◀

A.7 Proof of Lemma 15
Proof. Suppose the lemma does not hold. It implies |Si| ≥ 1 for every i ∈ [1, L], where L is
the largest index satisfying SL ̸= ∅. The value L is ≤ n − 2. Assume L > n − 2. Without
loss of generality, let L = n − 1. Since |Si| ≥ 1 for every i ∈ [1, L],

∑L
i=1 |Si| ≥ n − 1.

Therefore, the total number of nodes is |S0| +
∑L

i=1 |Si| ≥ 2 + n − 1 = n + 1 as |S0| ≥ 2 and∑L
i=1 |Si| ≥ n − 1. This leads to the contradiction as n many nodes are present. Therefore,

L ≤ n − 2.

A. Saxena and K. Mondal 41:23

Since |Si| ≥ 1 for every i ∈ [1, L], L ≤ ∪L
i=1|Si| ≤ n−2. Therefore, L ≤ n−2. Define X =∑L

i=1 i · |Si|. The value X denotes the total number of agents when C is false. The maximum
value of X occurs when |Si| = 1 for 1 ≤ i ≤ L − 1, and |SL| = n − |S0| − (L − 1) ≤ n − L − 1
as |S0| ≥ 2. Thus, X ≤ 1 + 2 + · · · + (L − 1) + L · (n − L − 1) = L · (L − 1)/2 + L · (n − L − 1).
After simplifying, we get that X ≤ L · (2n − L − 3)/2 ≤ (n − 2)(n − 1)/2. This leads to
the contradiction as the number of agents in the system is (n−2)(n−1)

2 + 1. Thus, our initial
assumption must be incorrect. This completes the proof. ◀

DISC 2025

	1 Introduction
	2 Model and Problem Definition
	3 Related Work
	4 Our Contribution
	5 Impossibility Result
	6 Connectivity Time Dynamic Graph Exploration
	6.1 Map Construction
	6.2 Perpetual Exploration Algorithm
	6.3 Correctness and Analysis of the Algorithm

	7 Conclusion and Future Work
	A Appendix
	A.1 Proof of Lemma 1
	A.2 Proof of Lemma 2 (Remaining Cases)
	A.3 Proof of Theorem 6
	A.4 Proof of Lemma 10
	A.5 Proof of Lemma 11
	A.6 Proof of Lemma 14
	A.7 Proof of Lemma 15

