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—— Abstract

We present KuDzU, a high-throughput atomic broadcast protocol with an integrated fast path.
Our contribution is based on the combination of two lines of work. Firstly, our protocol achieves
finality in just two rounds of communication if all but p out of n = 3f + 2p + 1 participating replicas
behave correctly, where f is the number of Byzantine faults that are tolerated. Due to the seamless
integration of the fast path, even in the presence of more than p faults, our protocol maintains
state-of-the-art characteristics. Secondly, our protocol utilizes the bandwidth of participating replicas
in a balanced way, alleviating the bottleneck at the leader, and thus enabling high throughput. This
is achieved by disseminating blocks using erasure codes. Despite combining a novel set of advantages,
Kubzu is remarkably simple: intricacies such as “progress certificates”, complex view changes, and
speculative execution are avoided.
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1 Introduction

Recent years have seen a remarkable surge in popularity and development of resilient
distributed systems. The area of blockchain has become a hotbed of research, where systems
akin to decentralized world-computers [11, 39, 5] compete to introduce ever-improving
protocols. At the heart of any such system is a atomic broadcast protocol [12], which allows
all replicas in the network to agree on a stream of transactions.

The crucial requirement that these protocols must satisfy is Byzantine fault tolerance
(BFT) [29], which is the ability of a system composed of n different replicas to continue
to function even if some of the replicas fail in arbitrary (potentially adversarial) ways.
Moreover, the network connecting the replicas can be unreliable, or even controlled by an
attacker. These harsh conditions meant that early global decentralized systems suffered
severe disadvantages compared to centralized counterparts, hindering adoption. Despite the
challenging setting, research has continued to improve once infamously slow decentralized
protocols, and decentralized systems are closing the performance gap.

One key dimension of atomic broadcast performance is the finalization latency of new
transactions. Historically, the protocols with the best finalization latency are protocols,
such as PBFT [14], where a designated leader proposes a block of transactions, and which
work in the partially synchronous communication model [19]. In this model liveness is only
guaranteed during periods of time where the network is well behaved, but correctness (i.e.,
safety) is guaranteed unconditionally. For such protocols, it is natural to measure finalization
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latency as the amount of time that may elapse between when the leader proposes a block
and when all other replicas finalize that block. In measuring finalization latency, we assume
the leader is honest and the network is well behaved. Such protocols assume n > 3f + 1,
where f is a bound on the number of corrupt replicas, and achieve finalization latency as
low as 3§, where ¢ is the longest actual message latency between the replicas of the system.
However, even 26 finalization latency is possible in situations where no more than p replicas
failand n > 3f +2p+1for p > 0 (or even n > 3f +2p—1 for p > 1). Protocols achieving 26
finalization latency in these circumstances employ a special fast path. This type of protocol
was first explored in [32]. Ideally, such protocols would still maintain a finalization latency of
30, even if more than p replicas fail, by running a traditional 3§ slow path alongside the fast
path. However, not all fast path protocols enjoy this property (in particular, the protocol
n [32] does not). Moreover, fast path protocols typically suffer from added complexity,
such as complex view-change logic, “progress certificate” messages, or speculative execution
logic. This added complexity has led to a history of errors (indeed, as pointed out in [1], the
protocol in [32] has a liveness bug).

Another crucial dimension of atomic broadcast performance is its throughput, that is, the
number of transactions that the protocol can process over time given the fixed bandwidth
available at every replica. Unfortunatlely, as has been observed and reported in several works
[37, 33, 16], leader-based protocols often suffer from a severe “bandwidth bottleneck” at the
leader. However, this leader bottleneck can be easily eliminated while still maintaining the
leader-based structure and all of its practical advantages [34]. This is done by using erasure
codes to ensure that the leader can disseminate large blocks with low and well-balanced
communication complexity.

Another desirable feature of leader-based protocols is lightweight view-change logic that
suppports frequent leader rotation. In older protocols, such as PBFT, a leader is generally
kept in place for an extended period of time, and a complex and somewhat inefficient view-
change subprotocol is used to switch to a new leader if the current leader is suspected of
being faulty by other replicas. A newer breed of protocols, typified by HotStuff [41], employ
extremely lightweight view-change logic that supports frequent leader rotation. Frequently
rotating leaders can be beneficial for multiple reasons, for instance, to increase fairness
when block production comes with rewards (e.g., maximal extractable value), or to increase
censorship resistance.

In this work, our aim is to unite and improve the state-of-the-art in these key dimensions,
and to do so while keeping the protocol as simple as possible.

Our contribution. We present KuDzu': a fast and high-throughput atomic broadcast

protocol that is remarkably simple compared to its predecessors. KUDzU is the first BFT

protocol that combines an optimistic 2§ latency fast path integrated into a 36 latency slow

path, with high-throughput data dispersal, as well as lightweight view change logic that

supports frequent leader rotation. We provide a detailed description of the protocol and

rigorously prove its security.

1. Fast path. In a network of n = 3f 4 2p + 1 replicas, KUDZU achieves finalization latency
of 20 if at most p replicas are corrupt.

2. Simultaneous slow path. If more than p replicas fail, KUDZU maintains the best
possible finalization latency of 3§ by running a slow path alongside the fast path.

! Kudzu is an insidious, fast-growing vine, also known as Mile-a-Minute.
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3. High throughput. High throughput is achieved by KUDZU using erasure codes to ensure
that the leader can disseminate large blocks with low and well-balanced communication
complexity.

4. Lightweight view change. KUDZU employs an extremely simple and efficient view
change logic that allows for frequent leader rotation.

Kubzu is the first atomic broadcast protocol to satisfy all of these properties simultaneously.

It also enjoys other properties, such as optimistic responsiveness (the protocol proceeds as

fast as the network will allow, with no artificially introduced delays), and a block time (the

delay between successive honest leaders proposing a block) of just 20.

Technical Intuition. Inspired by DispersedSimplex [34], KuDzU introduces the minimal
changes to that protocol required to incorporate a fast path. A designated leader in Kubzu
distributes the block data by sending erasure coded fragments to all other replicas. In turn,
these replicas then broadcast the fragments themselves, together with a first-round vote on
the cryptographic hash identifying the block. The voting logic carefully incorporates a rule
that makes sure that a block can already be finalized given n — p first-round votes. As a
result, replicas can already reassemble the block and finalize it in 20 latency in the good
case where the network is well behaved, the leader is honest, and at most p replicas are
corrupt. Another vote-counting rule is used to finalize the block on a slower, 3§-latency path,
if more than p replicas are corrupt. To avoid getting stuck altogether, a replica may also
vote for a couple of other blocks than the one it initially received from the leader, including
a special “timeout” block. The main innovation of our paper is the logic for determining
when these “extra” votes are cast — this logic is deceptively simple, but carefully maintains a
very delicate balance between liveness and safety. With this innovation, we avoid intricacies
such as “progress certificates”, complex view changes, and speculative execution as found in
other protocols (such as Banyan [38], SBFT [22], Kuznetsov et al. [28], and HotStuff-1 [23]).

2 Related Work

2.1 Fast Path Protocols

A long line of work proposes consensus protocols with a fast path, typically called “fast”,
“early-stopping” or “one-step” consensus [9, 27, 18, 36, 32, 21]. FaB Paxos [32] introduces
a parametrized model with 3f + 2p + 1 replicas, where p > 0. The parameter p describes
the number of replicas that are not needed for the fast path. These protocols can terminate
optimally fast in theory (25, or 2 network delays) under optimistic conditions. The papers
[18, 28, 2] point out that the lower bound of 3f + 2p + 1 actually only applies to a restricted
type of protocol. The papers present single-shot consensus protocols that use only 3 f +2p* —1
replicas, with p* > 1, and prove the corresponding lower bound.

2.2 Simultaneous Slow Path Protocols

Interestingly, in practice, these fast path protocols might increase the finalization latency,
as the fast path requires a round of voting between n — p replicas, which could be slower
than two rounds of voting between n — f — p replicas that are concentrated in a geographic
area. Banyan [38] performs the fast path in parallel with the 3§ mechanism, which is
optimally fast if more than p replicas are faulty or exhibit higher network latency. However,
Banyan can exhibit unbounded message complexity when there is a corrupt leader. Kupzu
addresses this drawback, shares the same optimistic latency properties, improves throughput
through balanced dispersal, benefits from a simpler design, and better properties during
leader rotation (see Section 2.4).

42:3
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2.3 High-Throughput Protocols

Leader-based protocols such as PBFT [14], HotStufft [41] and Tendermint [10] suffer from
a bandwidth bottleneck, as in these protocols the leader is responsible for disseminating
transactions to all replicas. As mentioned above, this bottleneck has been well known
for quite a while [37, 33, 16]. One way to alleviate this bottleneck is to move away from
leader-based protocols to a more symmetric, leaderless protocol design where all replicas
disseminate transactions. Such an approach was already taken in [37, 33, 24, 16]. These
protocols typically have worse latency than leader-based protocols, and moreover, since
many replicas may end up broadcasting the same transactions, the supposed improvement
in throughput can end up being illusory (note that [37] actually tackles this duplication
problem head on).

Kubzu follows a different approach to address the leader bottleneck, which makes use of
erasure coding [39, 20]. By splitting blocks into smaller, erasure-coded shares, the leader can
transmit less data, leading to a balanced utilization of resources. This line of work shines by
providing high throughput and low latency [34, 30]. Alpenglow [25] is a recent proof-of-stake
protocol being deployed for the Solana blockchain that showcases the appeal of this line of
work in practice. Alpenglow and KUDZzU are intimately related in their voting logic.

2.4 View Changes

Some atomic broadcast protocols are notorious for having complex view changes, especially in
the presence of a fast path [4]. In the case of Zzyzzva [26] and UpRight [15], safety errors were
later pointed out [1]. Arguably SBFT [22] was the first to correct these mistakes. SBFT [22]
avoids the all-to-all broadcast that occurs in KuDzU, but this results in higher finalization
latency. Moreover, SBFT does not address the above-mentioned leader bottleneck.

3 Model and Preliminaries

We consider a network of n replicas Py, ..., P, called replicas. Up to f replicas can be
Byzantine, i.e., deviate from the protocol in arbitrary ways, such as collude to attack the
protocol. The remaining replicas follow the protocol and are referred to as honest. We aim
to provide better latency if only up to p replicas do not cooperate. In other words, n — p
honest replicas including the leader are enough for the fast path to be effective.

To prove the security of KUDZU we assume

n>3f+2p+1, 1)

where f > 1 and p > 0. Moreover, to prove concrete bounds on message, communication,
and storage complexity, we assume

n<3(f+p+1). (2)

Assumption (2) is not a real restriction. Indeed, if n > 3(f +p+1) = 3f + 3p + 3, then
we can always increase p appropriately, leaving n and f alone, so that both (1) and (2) are
satisfied. This only increases the overall performance of the protocol.

3.1 Network Assumptions

We will not generally assume network synchrony. However, we say the network is §-
synchronous at time T if every message sent from an honest replica P at or before time T'
to an honest replica @ is received by @ before time T' 4+ §. We also say the the network is
d-synchronous over an interval [a, b+ 4] if it is d-synchronous at time T for all T’ € [a, b].
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While our protocols always guarantee safety, even in periods of asynchrony, liveness
will only be guaranteed in periods of d-synchrony, for appropriately bounded § (and this
synchrony bound may be explicitly used by the protocol). Thus, we are essentially working
in the partial synchrony model of [19]. However, instead of assuming a single point in time
(GST) after which the network is assumed to be synchronous, we take a somewhat more
general point of view that models a network that may alternate between periods of asychrony
and synchrony.

Replicas have local clocks that can measure the passage of local time. We do not assume
that clocks are synchronized in any way. However, we do assume that there is no clock skew,
that is, all clocks tick at the same rate (but we could also just assume the skew is bounded
and incorporate that bound into the protocol’s synchrony bound).

3.2 Problem Statement

The purpose of state machine replication is to totally order blocks containing transactions,
so that all replicas output transactions in the same order. Our protocol orders blocks by
associating them with natural numbered slots. Some leader replica is assigned to every slot.
For every slot, either some block produced by the leader might be finalized, or the protocol
can yield an empty block. The guarantees of our protocol can be stated as follows:
Safety: If some honest replica finalizes block B in slot v, and another honest replica
finalizes block B’ in slot v, then B = B’.
Liveness: If the network is in a period of synchrony, each honest replica continues to
finalize blocks for slots v =1,2,...
In addition to liveness and safety, we support a fast path:

Fast Termination: If the network is in a period of synchrony, n — p replicas behave
momentarily honestly, and an honest leader proposes a block B at time t, then every
honest replica finalizes B at time ¢ + 2.

3.3 Cryptographic Assumptions
3.3.1 Signatures and certificates

We make standard cryptographic assumptions of secure digital signatures and collision-
resistant hash functions. We assume all replicas know the public keys of other replicas.

We use a k-out-of-n threshold signature scheme. We refer to a signature share and a
signature certificate: signature shares from k replicas on a given message may be combined
to form a signature certificate on that message. This can be implemented in various ways,
e.g., based on BLS signatures [8, 7, 6]. The security property for such a threshold signature
scheme may be stated as follows.

Quorum Size Property: It is infeasible to produce a signature certificate on a message m,
unless k — f’ honest replicas have issued signature shares on m, where f/ < f is the
number of corrupt replicas.

For ease of exposition and analysis, we assume static corruptions, so the adversary
must choose some number f’ < f replicas to corrupt at the very beginning of the protocol
execution, and then does not corrupt any replicas thereafter. That said, we believe all of our
the protocols are secure against adaptive corrupts, provided the threshold signature scheme
is as well.

As we will see, we will need a one k-out-of-n threshold signature scheme with k& = n— f —p,
and another with k =n — p.

42:5
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3.3.2 Information Dispersal

We make use of well-known techniques for asynchronous verifiable information dispersal
(AVID) involving erasure codes and Merkle trees [13].

Erasure codes. For integer parameters k > d > 1, a (k, d)-erasure code encodes a bit string
M as a vector of k fragments, f1,..., fr, in such a way that any d such fragments may
be used to efficiently reconstruct M. Note that for variable-length M, the reconstruction
algorithm also takes as input the length g of M. The reconstruction algorithm may fail
(for example, a formatting error) — if it fails it returns L, while if it succeeds it returns a
message that when re-encoded will yield &k fragments that agree with the original subset of
d fragments. We assume that all fragments have the same size, which is determined as a
function of k, d, and S.

Using a Reed-Solomon code, which is based on polynomial interpolation, we can realize a
(k, d)-erasure code so that if |M| = 3, then each fragment has size ~ §/d. In our protocol,
the payload of a block will be encoded using an (n, f + p + 1)-erasure code. Such an erasure
code encodes a payload M as a vector of fragments f1,..., fn, any f + p+ 1 of which can be
used to reconstruct M. This leads to a data expansion rate of at most roughly 3; that is,
Yulfil=n/(f+p+1)-|M| < 3|M|, where last inequality follows from assumption (2).

Merkle trees. Recall that a Merkle tree allows one replica P to commit to a vector of
values (v1,...,vx) using a collision-resistant hash function by building a (full) binary tree
whose leaves are the hashes of vq,..., v, and where each internal node of the tree is the
hash of its two children. The root r of the tree is the commitment. Replica P may “open’
the commitment at a position i € [k] by revealing v; along with a “validation path” ;,
which consists of the siblings of all nodes along the path in the tree from the hash of v; to
the root r. We call m; a wvalidation path from the root under r to the value v; at position .
Such a validation path is checked by recomputing the nodes along the corresponding path in
the tree, and verifying that the recomputed root is equal to the given commitment r. The
collision resistance of the hash function ensures that P cannot open the commitment to two
different values at a given position.

)

Encoding and decoding. For a given payload M of length 3, we will encode M as a vector
of fragments (f1,..., fn) using an (n, f + p + 1)-erasure code, and then form a Merkle tree
with root r whose leaves are the hashes of fi,..., f,. We define the tag 7 := (5, 7).

For a tag 7 = (8, r), we shall call (f;, ;) a certified fragment for T at position i if

fi has the correct length of a fragment for a message of length 3, and

m; is a correct validation path from the root under r to the fragment f; at position 1.

The function Encode takes as input a payload M. It builds a Merkle tree for M as above
with root r (encoding M as a vector of fragments, and then building the Merkle tree whose
leaves are the hashes of all of these fragments). It returns

(7'7 {(fiaﬂ'i)}ie[n] ),

where 7 is the tag (3,7), 3 is the length of M, and each (f;, m;) is a certified fragment for 7
at position q.
The function Decode takes as input

( 7, {(fis ™) Yiez )7

where 7 = (3, r) is a tag, Z is a subset of [n] of size f + p+ 1, and each (f;, ;) is a certified
fragment for 7 at position i. It first reconstructs a message M’ from the fragments {f;}icz,
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using the size parameter 8. If M’ = 1, it returns L. Otherwise, it encodes M’ as a vector of
fragments (f7,..., f}) and Merkle tree with root 7/ from (f1,..., f,). If ¥’ # r, it returns L.
Otherwise, it returns M’.

Under collision resistance for the hash function used for the Merkle trees, any f +p+ 1
certified fragments for given tag 7 will decode to the same payload — moreover, if 7 is the
output of the encoding function, these fragments will decode to M (and therefore, if the
decoding function outputs L, we can be sure that 7 was maliciously constructed). This
observation is the basis for the protocols in [17, 31, 40]. Moreover, with this approach, we do
not need to use anything like an “erasure code proof system” (as in [3]), which would add
significant computational complexity (and in particular, the erasure coding would have to be
done using parameters compatible with the proof system, which would likely lead to much
less efficient encoding and decoding algorithms).

4 Kudzu Protocol

Kubzu iterates through slots, where in each slot there is a designated leader who proposes a
new block, which is chained to a parent block. Leaders may be rotated in each slot, either in
a round-robin fashion or using some pseudo-random sequence. The slot leader disseminates
large blocks in a way that keeps the overall communication complexity low and avoids a
bandwidth bottleneck at the leader. The communication is balanced, meaning that each
replica, including the leader, transmits roughly the same amount of data over the network.
We describe our protocol as a few simple subprotocols that run concurrently with each other:

Vote and Certificate Pool: data structure managing the votes and certificates;
Complete Block Tree: data structure storing the reconstructed blocks;
Main Loop: loop issuing votes that makes sure some blocks become notarized and finalized.

Notarized blocks can be reconstructed by all replicas and are added to the Complete
Block Tree. Finalized blocks are ordered and output by the protocol.

4.1 Protocol Data Objects

» Definition 1 (block). A block B is of the form Block(v, T, hy), where

(i) ve{1,2,...} is the slot number associated with the block (and we say B is a block for
slot v),

(ii) 7 4s the tag obtained by encoding B’s payload M,
(iii) hy is the hash of B’s parent block (or h, = L by convention if B’s parent is a notional
“genesis” block).

We also call a certified fragment for the tag T a certified fragment for B. The block Bfimeout —
Block(v, L, 1) is a special timeout block.

» Definition 2 (votes and certificates). A notarization vote from P, for block B is
an object of the form NotarVote(B,o;, fi,m;), where o; is a valid signature share from P;
on the object Notar(B), and (f;,m;) is either a certified fragment for B at position i, or
(fi,mi) = (L, L) if B = Bjmeosr,

A notarization certificate for B is an object of the form NotarCert(B,c), where o is
a valid (n — f — p)-out-of-n signature certificate on the object Notar(B). The notarization
vote on the timeout block is also called the timeout vote, and the notarization certificate for
the timeout block is called the timeout certificate.

42:7
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A first wvote from P; on block B is an object of the form
FirstVote(o}, NotarVote(B, o;, fi,m;)), where o) is a walid signature share from P; on
the object First(B), and NotarVote(B, o, fi,m;) is a notarization vote from P; on block B.

A fast finalization certificate for B # BImeout js an object of the form FirstCert(B, o),
where o is a valid (n — p)-out-of-n signature certificate on the object First(B).

A finalization vote from P, on block B is an object of the form FinalVote(B, o;),
where o; is a valid signature share from P; on the object Final(B).

A finalization certificate for B is an object of the form FinalCert(B, o), where o is a
valid (n — f — p)-out-of-n signature certificate on the object Final(B).

4.2 Vote and Certificate Pool

Each replica maintains a pool with votes and certificates. For every slot, the pool stores votes
and certificates associated with the slot.

As we will see, by design, for any one slot, a honest replica can send only 1 first vote,
1 timeout vote, and 1 finalization vote. As we will also see later (in Section 5.3), for one
slot a honest replica can only send at most 3 (non-timeout) notarization votes. Any votes
exceeding this bound can only result from misbehavior and are not added to the pool. For
example, if a replica receives more than three notarization votes for a given slot from some
replica P, the replica can ignore these votes and conclude that P is corrupt. In particular,
only one first vote per replica can be observed by the protocol loop in Protocol 1. When a
first vote is added to the pool, also the contained notarization vote is added to the pool.

Whenever a replica receives enough votes, and it does not already have a corresponding
certificate, it will generate the certificate, add it to the pool, and broadcast the certificate
to all replicas. Similarly, whenever a replica receives a certificate, and it does not already
have a corresponding certificate, it will add it to the pool, and broadcast the certificate to
all replicas. For one slot it is impossible that the pool would receive or create more than: 1
timeout certificate, 1 fast finalization certificate, 1 finalization certificate, and 5 notarization
certificates. The first bound is immediate, since there can be only one timeout certificate per
slot. The second and third bounds follow from the safety analysis below. The fourth bound
follows from the analysis in Section 5.3.

4.3 Complete Block Tree

Each replica also maintains a complete block tree, which is a tree of blocks rooted at a notional
genesis block at slot 0. We will show that the number of blocks for a given slot is bounded
by 5. A block B = Block(v, 7, h,) is added to the tree if each of the following holds:

the certificate pool contains a notarization certificate for B and B # Bfimeout,
hp, = L or the complete block tree contains a parent block with the hash h,;

the replica has received enough (i.e. f + p 4+ 1) notarization votes to reconstruct the
effective payload M of B as

M < Decode(, {(fi, ™) }iez),

where {(fi, ;) }iez is the corresponding collection of certified fragments for 7;
M # 1 and satisfies some correctness predicate that may depend on the path of blocks
(and their payloads) from genesis to block B.

A replica does not broadcast anything in addition to adding a block to the block tree.
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4.4 Finalization

We say that a block B for slot v is explicitly finalized by replica P if the complete block tree
of P contains B and the certificate pool of P contains either a fast finalization certificate for
B or finalization certificate for B. In this case, we say that all of the predecessors of block B
in the complete block tree are implicitly finalized by P. The payloads of finalized blocks may
be then transmitted in order to the execution layer of the protocol stack of a replicated state
machine.

4.5 Generating Block Proposals

The logic for generating block proposal material B, (f1,71),. .., (fn, ) in slot v in line 16
of Protocol 1 is as follows:
build a payload M that validly extends the path in the complete block tree ending at a
block Bj, with hash h,;
compute

(7, {(fis ™) Yien)) = Encode(M);

set B := Block(v, 7, hp).

4.6 Validating Block Proposals

To check if BlockProp(B, f;,m;) is a valid block proposal in slot v in line 18 of Protocol 1,
replica P; checks that the following conditions holds:

the proposal is signed or otherwise authenticated by the leader,

B is of the form Block(v, T, h;),

(fj,mj) is a certified fragment for 7 at position j,

the complete block tree contains a block with the hash k), in a slot v" < v;

the pool contains timeout certificates for slots v/ +1,...,v — 1;

These last two conditions might not hold at a given point in time, but may hold at a later

point in time, and so might need to be checked again when blocks or certificates are added.

4.7 Main Loop

The main protocol for P; is described in Protocol 1. In the description, leader(v) denotes the
leader for slot v — as mentioned, leaders may be rotated in each slot, either in a round-robin
fashion or using some pseudo-random sequence.

As mentioned in Section 4.2, each replica only considers only one first vote that it receives
from any other replica. To make this explicit in the protocol, we use a map firstVote from
replicas to blocks to record these votes for the current slot. The protocol also uses simple
helper functions on this map.

allVotes(first Vote): the total number of first votes for slot v contained in the pool,

maxVotes(first Vote): the maximal number of first votes on some non-timeout block B for

slot v contained in the pool,

manyVotes(firstVote): returns the set of non-timeout blocks in slot v on which the pool

contains at least f 4+ p + 1 first votes.

For example, if the pool contains 1, 2, 3, 4 first votes on blocks By, By, Bs, BimeUt respectively
(and f+p+ 1 = 2), then allVotes = 10, maxVotes = 3, and manyVotes = { B, Bs}.

The protocol also uses a subprotocol ReconstructAndNotarize(v, B), defined in Protocol 2.

42:9
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Each replica P; moves through slots v = 1,2,.... In each slot, it will enter a loop in
which it waits for one of several conditions to trigger an action. These conditions are based
on the objects in its pool and its complete block tree, as well as local variables.

Lines 9-11 present the logic for the replica successfully exiting the slot by finding a block

B for that slot in its complete block tree. In addition, if the replica did not broadcast a

notarization vote for any other block (including the timeout block) for that slot, it will

also broadcast a finalization block for B.

Lines 12-13 present the logic for the replica unsuccessfully exiting the slot by obtaining a

timeout certificate for that slot.

Lines 14-17 present the logic for the replica proposing a block for that slot if it is the

leader for that slot. It generates the block proposal as in Section 4.5, extending the path

in the complete block tree ending at B;,. Here, By, is either the genesis block or the block
that it found in its complete block tree the last time it successfully exited a slot (other
choices of By, are possible).

Lines 18-21 present the logic for the replica broadcasting a first vote for a non-timeout

block B. It will do so only if B is a valid block proposed by the leader (as in Section 4.6)

and has not already first voted. Recall that a first vote for B also includes a notarization

vote for B.

Lines 22-25 present the logic for the replica broadcasting a first vote for the timeout

block for this slot. It will do so only if a sufficient amount of time has passed since it

entered the slot and has not already first voted.

Lines 2627 present the logic for updating the map first Votes. No other actions are taken.

Lines 28-31 present the logic for the replica taking a “second look” at a block B, if it has

received sufficiently many first votes for B. It will do so only if it has already first voted

(and has not already taken a second look at B). If it can reconstruct a valid payload for

B, it will broadcast a notarization vote for B (if it has not already done so); otherwise, it

will broadcast a notarization vote for the timeout block.

Lines 32-35 present the logic for the replica broadcasting a timeout vote under special

circumstances. It will do so only if it has already first voted and

allVotes(first Vote) — maxVotes(firstVote) > f +p+ 1.
We note that the quantity
allVotes(first Vote) — maxVotes(first Vote)

cannot decrease as we add entries to firstVote. That is because, when we add an entry,
the first term increases by 1 and the second either decreases by 1 or remains unchanged.

5 Protocol Analysis

We start by proving some helpful properties.

» Lemma 3 (Validity Property). Suppose that a block B for some slot v is added to the
complete block tree of some replica. If the leader for slot v is honest, B must have been
proposed by that leader.

Proof. By the Quorum Size Property (see Section 3.3.1) for notarization certificates, at least
n — 2f — p honest replicas must have broadcast notarization shares for B. Since we are
assuming n > 3f + 2p + 1, it follows that n — 2f — p > 0, so some honest replica P must



V.

Shoup, J. Sliwinski, and Y. Vonlanthen

Algorithm 1 KubzU main loop for replica P;.

1:
2:

10:
11:

12:
13:

14:
15:
16:
17:

18:
19:
20:
21:

22:
23:
24:
25:

26:
27:

28:
29:
30:
31:

32:
33:
34:
35:

© ®

B, < genesis > parent of the next block
forv=1,2,... do
Titart < clock() > slot-local initialisation
done, proposed, first Voted <+ false
notarized + {} > blocks already notarized
secondLook + {} > blocks already reconsidered
firstVote < {} > map P; — B for their first vote

while —~done wait until either

there exists a block B for slot v in the complete block tree =
B, < B; done + true
if notarized C { B} then broadcast FinalVote(B, o)

the pool contains a timeout certificate for v =
done < true

—proposed A leader(v) = P; =
proposed < true
generate block proposal material B, (f1,71),..., (fn, ™) extending block B,
for all ¢ € [n]: send BlockProp(B, f;,m;) to P;

—firstVoted A received valid BlockProp(B, f;,7;) from leader(v) =
firstVoted < true
broadcast FirstVote(o”;, NotarVote(B, o, f;,7;))
notarized < notarized U { B}

—firstVoted A clock() > Tstart + Atimeout =
firstVoted < true
broadcast FirstVote(o’, NotarVote(By™ ", o, 1, 1))
notarized < notarized U { Btimeout}

received valid FirstVote(_, NotarVote(B, )) from P; and firstVote[P;] = L =
firstVote|P;] < B

firstVoted A 3B € manyVotes(firstVote) \ secondLook
and B’s parent is in the complete block tree =
secondLook + secondLook U { B}
ReconstructAndNotarize(v, B)

firstVoted A (allVotes(firstVote) — maxVotes(firstVote) > f +p+ 1)
and Bimeout ¢ notarized =
broadcast NotarVote(Bfimeeut o, | 1)
notarized < notarized U { Bfimeout}
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Algorithm 2 ReconstructAndNotarize(v, B).

reconstruct payload for B

if reconstruction succeeds A payload valid then
if B ¢ notarized then

broadcast NotarVote(B, 0, fj, ;)

. notarized < notarized U {B}

else
if Bfimeeut ¢ notarized then

broadcast NotarVote(Bfimeeut o, | 1)
notarized <+ notarized U { Bimeout}

have broadcast a notarization share for B. This could happen either at line 20 or at line 31.
In the first case, B must be the block that P received as a proposal from the leader. In the
second case, since P received f + p + 1 first votes for B, one of these must be a first vote for
B from some honest replica (), and so B must be the block that @ received as a proposal
from the leader. |

» Lemma 4 (Completeness Property for Certificates). If a certificate X appears in the vote
and certificate pool (so X is a notarization, finalization, or timeout certificate) then X (or its
equivalent) will eventually appear in the corresponding pool of every other replica. Moreover,
if X appears in a replica’s pool at a time T at which the network is §-synchronous, it will
appear in every replica’s pool before time T + 6.

Proof. This is clear, since a certificate appearing in the vote and certificate pool is broadcast
immediately. |

» Lemma 5 (Completeness Property for Blocks). If a block B appears in the complete block
tree, then B will eventually appear in the corresponding tree of every other replica. Moreover,
if B appears in a replica’s tree at a time T at which the network is §-synchronous, it will
appear in every replica’s tree before time T + 9.

Proof. We are relying on the Quorum Size Property (see Section 3.3.1) for notarization
certificates: when a notarization certificate for a block B is added to the certificate pool, at
least n — 2f — p honest replicas must have already broadcast notarization votes for B, which
contain B as well as fragments sufficient to reconstruct B’s payload, since n — 2f —p >
f+p+1 <

5.1 Safety

» Lemma 6 (Fast Finalization Implication). Suppose a block B is fast finalized by some honest
replica, then the number of honest replicas that first vote for anything other than B is at
most p.

Proof. Let f’ < f be the actual number of corrupt replicas. If some honest replica fast
finalizes B, then — by the Quorum Size Property (see Section 3.3.1) for fast finalization
certificates — at least m — p — f/ honest replicas first voted for B. So the number of honest
replicas that first vote for anything other than B is at most (n — f') —(n—p—f') =p. <«

» Lemma 7 (Uniqueness of Fast Finalization Property). If an honest replica receives f +p+1
first votes for a block B in slot v, then no block different from B can be fast finalized in slot
v by any honest replica.
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Proof. Suppose towards contradiction that and some replica P receives f 4+ p + 1 first votes
for a block B but a block C' # B is fast finalized by some honest replica (). By the previous
lemma, at most p honest replicas could first vote for anything other than C. Therefore, P
can receive at most f + p first votes for B, a contradiction. <

» Lemma 8 (Absence of Fast Finalization Property). If the inequality allVotes(firstVote) —
maxVotes(firstVote) > f+p+1 holds for a replica in slot v, then no block can be fast finalized
in slot v by any replica.

Proof. Suppose towards contradiction that a replica P fast finalized block B while for replica
@ the inequality holds. By Lemma 6, at most p honest replicas fast vote for anything other
than B. Therefore, @ can receive at most f 4 p fast votes for anything other than B. Let
countp denote the number of first votes for B received by Q. It follows that, at any point in
time, for replica @, we have

allVotes(first Vote) — maxVotes(first Vote) < allVotes(firstVote) — countg < f + p,

a contradiction. |

» Lemma 9 (Incompatibility of Notarization and (Fast) Finalization Property). Suppose that
a valid block B for some slot v is (fast) finalized by some replica. If any replica obtains a
notarization certificate for a block C in slot v, then C' = B. (In particular, no other block for
slot v can be added to the complete block tree of any replica and no timeout certificate can be
obtained for slot v.)

The proof of Lemma 9 is deferred to the appendix.
We can now easily state and prove our main safety lemma:

» Lemma 10 (Safety). Suppose a replica P explicitly finalizes a block B for slot v, and a
block C' for slot w > v is in the complete block tree of some replica Q. Then B is an ancestor
of C' in Q’s complete block tree.

Proof. By the Incompatibility of Notarization and (Fast) Finalization Property (Lemma 9),
no timeout certificate for slot v can be produced. Let C’ be the parent of C and suppose w’
is the slot number of C’. Since C’ is in )’s complete block tree, a notarization certificate
for ¢’ must have been produced, which means at least one honest replica must have issued
a notarization vote for C’, which means v < w’ < w. The inequality v < w’ follows from
the fact that there is no timeout certificate for slot v, and an honest replica will issue a
notarization share for C' only if it has timeout certificates for slots w’ +1,--- ,w — 1. If
v =w’, we are done by the Incompatibility of Notarization and (Fast) Finalization Property
(Lemma 9), and if v < w’, we can repeat the argument inductively with C’ in place of C. <«

5.2 Liveness

Liveness follows from the following lemmas. The first lemma analyzes the optimistic case
where the network is synchronous and the leader of a given slot is honest, showing that the
leader’s block will be committed.

» Lemma 11 (Liveness I). Consider a slot v > 1 and suppose the leader for slot v is an
honest replica Q. Suppose that the first honest replica P to enter the loop iteration for slot v
does so at time Ty. Suppose that the network is §-synchronous over the interval [Ty, To + 46)
for some & with Atimeous = 20. Then, Q will propose a block for slot v by time T < Ty + 0.
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Each honest replica will finish the loop iteration before time T 4+ 26 by adding Q’s proposed
block B to its complete block tree. Moreover, if n — p replicas are honest, each honest replica
will finalize B by time T + 2. If more than p replicas are corrupt, each honest replica will
finalize B by time T + 39.

Proof. By the Completeness Properties (Lemma 4 and Lemma 5), before time Ty + 0, each
honest replica will enter slot v by time Ty + §, having either a timeout certificate for slot
v — 1 or a block for slot v — 1 in its complete block tree. Before time T < Ty + §, the leader
Q@ will propose a block B that extends a block B’ with slot number v’ < v. By the logic
of the protocol, we know that () must have timeout certificates for slots v’ +1,...,v — 1
at the time it makes its proposal, as well as a notarization certificate for B’. Again by the
Completeness Properties, before time T + ¢, each honest replica will have B’ in its complete
block tree and all of these timeout certificates in its certificate pool. Each honest replica will
receive B before this time, and because Atimeout > 20, will broadcast a first vote for B by
this time. Because all honest replicas broadcast a first vote for B, each such replica will only
see ever see at most f first votes for any other block. It follows that each honest replica will
only ever see

manyVotes(first Vote) C {B}, and

allVotes(first Vote) —maxVotes(first Vote) < allVotes(first Vote)— countp < f, where countp

is the number of of first votes for B that it sees.
Therefore, honest replicas will not broadcast a notarization votes in slot v for anything other
than B. Before time T + 2§, each honest replica will have added B to its complete block
tree and broadcast a finalization vote on B. If n — p replicas are honest, each honest replica
will have added a fast finalization certificate to its pool by time T + 26 as well. Otherwise,
if more than p replicas are corrupt, each honest replica will finalize B before time T + 34,
when adding the finalization certificate for slot v to its pool. |

The second lemma analyzes the pessimistic case, when the network is asynchronous or
the leader of a given slot is corrupt. It says that eventually, all honest replicas will move on
to the next slot.

» Lemma 12 (Liveness Il). Suppose that the network is §-synchronous over an interval
[T, T + Atimeout + 39], for an arbitrary value of §, and that at time T, some honest replica is
in the loop iteration for slot v and all other honest replicas are in a loop iteration for v or a
previous slot. Then, before time T + Agimeous + 39, all honest replicas exit slot v.

Proof. By the Completeness Properties (Lemma 4 and Lemma 5), every honest replica will
enter the slot v before time T + 6. By time T 4+ § + Atimeout, €very honest replica will
broadcast a first vote either for a block proposal, or for Bfimeout,
Consider two cases:
(a) At least f + p+ 1 honest replicas broadcast a first vote for the same non-timeout block
B.
(b) No set of f + p+ 1 honest replicas broadcast a first vote for the same non-timeout block
B.
Case (a). Since f + p + 1 replicas cast notarization votes for B, some honest replica did
so. Since this replica had to have B’s parent in its complete block tree, by Completeness
Properties (Lemma 5) each honest replica will have B’s parent in its complete block tree by
time T 4+ Agimeout + 20. All honest replicas observe all first votes from other honest replicas
before time T+ Atimeout +29, and so each honest replica will call ReconstructAndNotarize(v, B)
before that time, unless it has already exited slot v. If some honest replica has exited slot v
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before that time, the by Completeness Properties (Lemma 4 and Lemma 5), all honest
replicas will exit the slot before time T+ A¢imeout + 30. Otherwise, assume no honest replica
has exited before time T + Atimeout + 20. Whenever ReconstructAndNotarize(v, B) is called
by some honest replica, it has received at least f+ p+ 1 first votes for B, and so can attempt
to reconstruct B. If it fails to reconstruct B’s payload or finds that it is invalid, then it and
all honest replicas will do so and issue a timeout vote (this follows from collision resistance of
the hash function and the fragment decoding logic). Otherwise, each honest replica will issue
a notarization vote for B. Therefore, before time T + Agimeout + 39, each honest replica will
either add B to its complete block tree or the timeout certificate to its pool, and proceed
exit the slot.

Case (b). Consider some honest replica P. By time T + Atimeout + 20, P will have observed all
votes of other honest replicas. If the only entries in firstVote are those from honest replicas,
then the inequality allVotes(firstVote) — maxVotes(firstVote) > f + p + 1 must hold. To see
this, if f/ < f is the number of corrupt replicas, then

allVotes(first Vote) — maxVotes(firstVote) > (n — f') — (f + p)
>n—2f—p
>f+p+1 (sincen>3f+2p+1).

As we have already observed, the quantity allVotes(firstVote) — maxVotes(first Vote) cannot
decrease as we add entries to first Vote. Therefore if P has not cast a timeout vote in slot v
yet, it will do so by time T + Atimeout + 20, unless it has already exited slot v by that time.
In either case, all honest replicas will exit slot v by time T + Atimeout + 39. <

5.3 Boundedness

We prove some simple results that allow us to bound message and storage complexity. Here,
we are assuming both (1) and (2).

Let us consider notarization votes on non-timeout blocks. An honest replica sends a first
vote for at most one such block. Any notarization vote for some other non-timeout block B
requires that the replica found B € manyVotes(firstVotes). In other words, the replica has
seen at least f 4+ p + 1 other replica’s first votes for B. At most one first vote per replica is
considered when computing manyVotes(first Votes). Therefore, an honest replica can cast at
most |n/(f+p+1)] notarization votes beyond the first vote, and by (2), [n/(f+p+1)| <2,
for a total of 3 notarization votes for non-timeout blocks.

Suppose there are f’ < f corrupt replicas, and so n — f’ honest replicas. The honest
replicas therefore issue at most 3(n — f') notarization votes for non-timeout blocks per slot.

Now, to construct a notarization certificate for a non-timeout block B, we require that
(n— f —p— f') honest replicas cast a notarization vote for B. Therefore, by the result in
the previous paragraph, there can be at most

N=1Bn-f)/n—-f-p-f)] (3)

distinct blocks for which a notarization certificate can be constructed.

We claim that N < 5. To see this, first note that the derivative of (3(n—f"))/(n—f—p—f")
with respect to f’ is positive, and therefore the right-hand side of (3) is maximized when
f =/, and so

N<[Bn—=1)/(n=2f-p)]
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So it suffices to show that (3(n — f))/(n — 2f — p) < 6. This is easily seen to follow by a
simple calculation using (1).
So to summarize, we have shown that in any slot,
1. each replica casts a notarization vote for at most 2 non-timeout blocks besides its first
vote, and
2. there are at most 5 distinct blocks for which a notarization certificate can be constructed.
This immediately gives us bounds on the message and storage complexity of the protocol per
slot.

5.4 Complexity

Based on the concrete bounds in Section 5.3 (and the preliminary discussion in Section 4.2),
it is easily seen that the message complexity per slot is O(n?). Based on the properties of
erasure codes and Merkle trees discussed in Section 3.3.2, the communication complexity per
slot is O(Bn + n?log(n)k + n?)\), where 3 is a bound on the payload size, k is the output
length of the collision-resistant hash, and A is a bound on the length of any signature share
or certificate. Moreover, the communication is balanced, in that every replica, including the
leader, transmits the same amount of data, up to a constant factor. It is also easily seen that
each replica needs to store O(5 + nlog(n)k + n\) bits of data.

6 Protocol Variations

Our protocol can be adapted to the setting of n > 3f + 2p* — 1, where p* > 1 [2], with the
insight that if honest replicas vote for different blocks in the same slot, the leader has to be
corrupt. The liveness analysis can leverage the fact that, in this case, honest replicas will
observe at least n — f votes from non-leader replicas, as is done in [38]. We plan to analyze
a variation of KuDzU with this adaptation in follow-up work.

A variation of DispersedSimplex [34] features segments of consecutive slots with the same
leader. Such stable leader assignment is beneficial for the throughput of the protocol. The
same technique can be applied to our protocol, and we plan to analyze a variation of KuDzU
featuring stable leaders in follow-up work.
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A Proof of Lemma 9

Proof. We first prove the Incompatibility of Notarization and Fast Finalization. Suppose
towards contradiction that for slot v a fast finalization certificate exists for block B and a
notarization certificate exists for block C, with C' # B. By the Quorum Size Property (see
Section 3.3.1) for notarization certificates, this implies that an honest replica broadcast a
notarization vote for C.
On the one hand, suppose that the notarization vote for C' was sent by the protocol
on line 31. Due to the condition on line 28, this means that f + p + 1 first votes were
received for a block D. Note that D is a non-timeout block. Moreover, by the logic of
ReconstructAndNotarize, either C' is a timeout block or D = C. By the Uniqueness of
Fast Finalization Property (Lemma 7) we know that D = B. Since B is assumed to be
valid, C' cannot be a timeout block, so we also have B = D = C, a contradiction.
On the other hand, suppose that the notarization vote for C' was sent on line 34. By
the Absence of Fast Finalization Property (Lemma 8), this implies that no block is fast
finalized, again a contradiction.

The Incompatibility of Notarization and Finalization Property follows from a standard
quorum intersection argument, based on the fact that in each slot an honest replica issues a
finalization vote only for a block only if it did not send a notarization vote for a different
block in that slot (see line 11). Suppose towards contradiction that for slot v a finalization
certificate exists for block B and a notarization certificate exists for block C, with C' # B. By
the Quorum Size property (see Section 3.3.1) for finalization and notarization certificates, if
f’ < f is the number of corrupt replicas, then at least n — f —p — f/ honest replicas broadcast
finalization votes for B, and a disjoint set of at least the same number of honest replicas
broadcast notarization votes for C'. This implies that there are at least 2(n — f — p — ')
distinct honest replicas. However, under the assumption that n > 3f + 2p + 1, we have
2(n—f—p—f") > n— f 41, a contradiction. <
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