Weight Reduction in Distributed Protocols: New
Algorithms and Analysis

Anatoliy Zinovyev &2 a
Boston University, MA, USA

—— Abstract

We study the problem of minimizing the total weight of (potentially many) participants of a
distributed protocol, a necessary step when the original values are large but the scheme to be
deployed scales poorly with the weights. We assume that o fraction of the original weights can be
corrupted and we must output new weights with at most 8 adversarial fraction, for a < . This
problem can be viewed from the prism of electing a small committee that does the heavy work, a
powerful tool for making distributed protocols scalable. We solve the variant that requires giving
parties potentially multiple seats in the committee and counting each seat towards the cost of the
solution. Moreover, we focus on the “deterministic” version of the problem where the computed
committee must be secure for any subset of parties that can be corrupted by the adversary; such a
committee can be smaller than a randomly sampled one in some cases and is useful when security
against adaptive corruptions is desired but parties in the sub-protocol speak multiple times.

Presented are new algorithms for the problem as well as analysis of prior work. We give two
variants of the algorithm Swiper (PODC 2024), one that significantly improves the running time
without sacrificing the quality of the output and the other improving the output for a reasonable
increase in the running time. We prove, however, that all known algorithms, including our two
variants of Swiper, have worst case approximation ratio 2(n). To counter that, we give the first
polynomial time algorithm with approximation factor n/ log? n and also the first sub-exponential
time exact algorithm, practical for some real-world inputs. Of theoretical interest is another polytime
algorithm that we present, based on linear programming, whose output is no worse than an optimal
solution to the problem with slightly different parameters.

We implemented and tested previous and new algorithms, comparing them on the stake distribu-
tions of popular proof-of-stake blockchains, and found that our second variant of Swiper computes
solutions extremely close to the optimal, confirmed by our exact algorithm.
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1 Introduction

Committee selection is an essential tool for making large-scale distributed protocols scalable.
The idea is that, instead of all n parties doing the work, the protocol is run within a smaller
committee, decided by the larger protocol; the participants outside the committee simply
learn the result. To spread the work evenly or to achieve better security, multiple different
committees can be created.

We are mainly interested in byzantine fault tolerant / cryptographic protocols where
parties have some assigned weights w; and the adversary can corrupt parties up to some «
fraction of the total weight in the system. For example, in a proof-of-stake blockchain parties
own some amount of money in the system (stake) and the assumption is that the adversary
controls, say, at most 20% of all the stake. We would like to compute a “small” committee
where the adversary controls less than some larger 3 fraction, say 1/3, of the total weight.
Specifically, our goal is to assign each party a new non-negative integer weight ¢; such that
we minimize the total new weight > ", ¢;. This is useful when the protocol in question
doesn’t scale well with the weights such as in secret sharing, threshold signatures or secure
multiparty computation. Additionally, we focus on “deterministic” committee selection that
must output a committee secure against any set of parties that the adversary is allowed to
corrupt. Formally, the new weights ¢1, ..., ¢, must satisfy

n n

VA C [n] with sz SaZwi, Zti <thi

€A =1 €A i=1

(here A denotes the set of parties controlled by the adversary). This property is useful when
one requires security against an adversary that performs adaptive corruptions throughout the
protocol execution with full knowledge of (¢4, ...,t,) — for example, when the members of the
committee need to speak multiple times and thus reveal themselves after the first message.
Moreover, committees of this flavor can be smaller than traditional “randomized” committees,
as explained in section 2. As demonstrated in [38], they also yield a convenient way to
transform a wide range of unweighted protocols to their weighted version. We note that
“deterministic” committee selection cannot be usefully instantiated in the unweighted setting
since any committee would have to have (n) members (otherwise, the adversary can corrupt
the whole committee). In contrast, when parties have weights distributed non-uniformly, we
can often compute a committee with the total new weight much smaller than n.

1.1 Prior work

The “deterministic” committee selection problem has a short history. To the best of our
knowledge, the recent Swiper paper [38] by Tonkikh and Freitas was the first and only to
study it in isolation. Near-simultaneously, other works [4, 23, 22] attempted to solve it in the
context of their larger protocols. All four papers consider different variants of the problem
although all aim to minimize the total new weight > ", ¢;.

Swiper defines a problem they call weight restriction that is only slightly different from the
one we consider: given ws, ..., w, as input, output ¢1,...,t, € Z>o such that for all A C [n]
with 37,0, wi < ad i w;, we have Y., t; < 8> ;"; t;. The only distinction is that the
inequality containing « is non-strict in our paper.

The authors of Swiper prove that the problem admits an efficiently computable solution
of cost 3.1 t; < O(n) (assuming o and 3 parameters are constant). Such a solution can be
found by linearly scaling down the vector (wy, ..., w,) and rounding each w; to an integer
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according to a simple rule. Swiper goes a step further and tries to compute a solution as
small as possible by running a binary search on the scaling factor and testing the correctness
of a vector (t1,...,t,) at each iteration. Its time complexity is O(n?logn).

We note that Swiper defines two more weight reduction problems. Their overview and
the overview of the other works [4, 23, 22] that consider deterministic committee selection
can be found in the full version of our paper [42, Appendix A].

1.2 Our contribution and paper outline

Section 2 gives background information on committee selection and how the problem we

consider relates to other variants. In section 3 we formally define the problem and notation.

Section 4 provides a detailed overview of the Swiper algorithm, useful for reading the following
section.

Section 5 presents our new variants of Swiper called faster Swiper and extended Swiper.

The first variant improves the time complexity of Swiper from O(n?logn) to O(n+ R?) where
R < O(n) is the total weight in the output. This improves the running time by a logn factor
in the worst case, but given that the cost of the output R is often much smaller than n, the
improvement is much larger as demonstrated by our numerical evaluations. For low latency
applications, our optimizations would be highly desired. Importantly, faster Swiper doesn’t
alter the quality of the output of Swiper. Our second variant extended Swiper improves the
output quality by replacing the binary search with a linear search. Although the idea is
simple, the algorithm has non-trivial time complexity of O(n + R*®). Numerical evaluations
demonstrate a sizable reduction in the total new weight over Swiper and faster Swiper, since
the two can get stuck in a local minimum; in fact, the cost of extended Swiper’s output is
extremely close to optimal in our tests. At the same time, its running time is comparable
and often even smaller than that of Swiper. Both variants rely on two optimizations: 1)
carefully bounding the running time in terms of the output cost R and 2) reusing dynamic
programming computations.

We, however, prove in section 6 that all previously known algorithms, as well as our two
Swiper variants, suffer from (n) approximation ratio in the worst case. Our lower bound
applies to a class of linear scaling based solutions which contains all but one known algorithm
(which is also based on linear scaling but requires a different argument). Despite faster Swiper
and extended Swiper being great “heuristic” schemes, we would still like to find an algorithm

with better theoretical guarantees. We make some progress with this in subsequent sections.

Section 7 proves several facts about our weight reduction problem useful in the rest of the
paper. Of particular importance is a new observation that assuming the weights wy, ..., w, in
the input are sorted, there exists an optimal solution t1, ..., ¢, that is also sorted. In section 8
we show that this fact yields the first polynomial time algorithm with approximation factor
n/ (c log? n), for any ¢ > 0, and the first exact (approximation factor 1) solution with time

complexity O(n + R3/2€C\/§), where R is the cost of an optimal solution and C =~ 2.57.

Given that R is often much smaller than n, our exact algorithm turns out to be practical
for some real-world weight distributions, as shown by numerical evaluations. We believe it
makes sense to use it in production when the optimal solution is expected to be small, in
combination with a fallback scheme if the exact algorithm takes too long. It can also be very
useful for research purposes, for example, to test some hypothesis about the problem.
Section 9 contains numerical evaluations comparing old and new algorithms in terms
of the total weight in the output and the running time. It confirms our claims about the

improved running time of faster Swiper and the improved output quality of extended Swiper.

It also proves our sub-exponential time exact algorithm to be somewhat practical.
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Finally, Appendix A describes a polynomial time algorithm based on the standard
approach of representing an optimization problem as an integer linear program, relaxing it
to allow fractional solutions, running an LP solver and rounding the solution to an integer
vector in a problem specific manner. When denoting the cost of an optimal solution by
OPT<q,<p, our algorithm guarantees a solution of cost at most OPT<, <(1_4)5 for any
arbitrarily small constant 6 > 0. In the full version of our paper [42, Appendix B] we,
however, prove that this can be (n) times larger than the optimal solution. Nevertheless, we
believe the algorithm presents theoretical interest useful for future research. Moreover, such a
guarantee can be meaningful when the protocol relying on committee selection can work with
a continuous range of the final adversarial fractions 8. Take for example Approximate Lower
Bound Arguments [16] that allow one to create short threshold signatures. Its decentralized
version uses committee selection and presents a configurable tradeoff between the size of
the committee and the size of the final proof (e.g., a threshold signature) where the proof
size would be some monotone function of 5 in our notation. Their committee selection
algorithm is agnostic to the weight distribution, but suppose we replace it with theoretically
smallest committees for any given § and plot the resulting tradeoff with the committee size
on the horizontal axis and the proof size on the vertical axis. We would like to achieve this
tradeoff, but since the optimal committee selection is likely infeasible, we are forced to use an
approximation and get a worse curve. Using algorithms approximating the committee size
for a fixed f3, such as the one in subsection 8.2, would shift the tradeoff graph to the right
while algorithms approximating § for a fixed committee size, such as the one in Appendix A,
would shift the graph up. In the absence of a good approximation on the committee size, the
second transformation could even be superior.

2 General overview of committee selection

The idea of selecting small committees can be seen as far back as [9]. It has since been
used in constructing many efficient protocols for consensus [35, 36, 34, 10, 7]. For example,
the proof-of-stake blockchain protocol Algorand [30, 17] modifies a classical setting O(n?)
byzantine fault tolerant consensus protocol to run on committees created by selecting each
unit of stake with some probability, which makes communication complexity per party
independent of the number of parties. Additionally, each step of the BFT sub-protocol uses
a newly sampled anonymous committee that reveals itself only when the members of the
committee speak, thus achieving security against an adaptive adversary. Such an adversary
can corrupt participants at any time of the protocol based on the information he possesses
thus far, up to some threshold of total corrupted stake.

Committee selection can also be seen in communication efficient threshold signatures
[15, 16, 24], leader election [37, 33|, secure multiparty computation [8, 5, 19, 6, 18], and
distributed key-generation [12].

Schemes utilizing committees typically possess a gap between the absolutely necessary
requirement on the fraction of adversarial power and the smaller fraction assumed by the
protocol. For instance, solving consensus in an asynchronous environment requires adversarial
weight to be strictly less than 1/3 of the total weight while Algorand assumes that at most
1/5 of the total stake is controlled by the adversary. Motivated by proof-of-stake blockchains,
we are interested in constructing small committees in the weighted setting. Given original
weights wy, wa, ...,w, € N for n parties such that the adversary controls parties of total
weight at most « Z?zl w;, we need to compute new weights t1,ts,...,t, € Z>g such that the
adversary can control strictly less than 8 ., t; of new weight.
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There are at least two dimensions of interesting variants of this problem. One is the
definition of the objective function. A party in Algorand sends out one vote per step of
the protocol even if it has multiple units of stake on the committee. Thus, for Algorand,
we are interested only in the number of distinct parties on the committee or, equivalently,
the number of non-zero ¢;. On the other hand, there are schemes that cannot efficiently
aggregate weights, say Shamir secret sharing. For such protocols, it may be necessary to
use “virtualization” — essentially, giving w virtual identities to a party with weight w € Z>(
and running this many copies of the protocol. This can be prohibitively expensive when
weights are large (e.g., in proof-of-stake blockchains weights can be on the order of 264), and
thus, for such protocols we are interested in constructing committees with ZLI t; as small
as possible — the goal we pursue in this paper. We note that there have been many works

trying to make cryptographic protocols scale better with the weights [3, 4, 27, 20, 15, 16, 24].

Still, protocols such as those in [22] only improve the dependence on weights for the verifiers
while the provers’ running time is still linear in the weights, and protocols such as those
in [26] only improve complexities to O(W) down from O(W - \), for a total weight W and
security parameter .

Another configuration knob for the problem of committee selection is, what kind of
security do we require? Traditionally, especially in a setting where the adversary is static,
meaning he chooses parties to corrupt before the start of the protocol, a random committee
is chosen such that the (unknown) corrupted set of parties owns only a small fraction of the
elected weight. More formally, the security requirement of this “randomized” variant is that

V(wy, ...y wy), YA C [n] with sz < aZwZ,
i€A
1)
Zt < BZt (t1,...,tn) < ComputeCommittee(ws, ..., wy)| is large
i€EA

(we assume that o and 5 are constants). Instead, this work considers a stronger security
notion where the computed committee must be secure for any subset of the parties that can
be corrupted. A more formal statement of this “deterministic” version of the problem is as
follows.

YV(wy, ..., wy), if (t1,...,t,) = ComputeCommittee(ws, ..., w,) then

VA C [n] with ZwlgaZw,, Zt <ﬁzt @

€A €A

(where ComputeCommittee is now deterministic). When the weaker security notion is
sufficient, it is great news since selecting each unit of weight with some equal probability is a
simple and efficient scheme yielding an expected constant size committee; this is generally
impossible for a deterministic algorithm (since n parties with equal weights must elect
a committee of size Q(n), lest the entire committee be corrupted). On the other hand,
deterministic committee selection makes it easy to maintain security against an adversary
who is allowed to corrupt parties adaptively throughout the protocol execution since any
corrupted set will have less than § fraction of new weight in the committee. While simple
quorum systems can get away with using random committees with VRF as a source of secret
randomness, other problems are less trivial and require intricate protocols and arguments of
security [17, 29, 14, 11, 1]. The security against adaptive corruptions has been recognized
important by the community, and in fact, is the reason why [22, 21] has been deployed in
the Aptos blockchain in combination with a deterministic committee selection scheme (from
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private communication with the authors). Moreover, there is evidence that a deterministic
scheme can produce smaller committees than a randomized one. Take, for example, the
standard randomized procedure of selecting each unit of weight with some equal probability.
As the requirement on how large the probability in Equation 1 must be increases, the expected
number of selected units of weight approaches infinity and the expected number of elected
parties approaches n. Thus, for a sufficiently large mandated success probability, the chosen
committee would be worse than that of a deterministic algorithm. Another example is the
randomized schemes presented in [28] called Fait Accompli that include larger parties in
the committee deterministically to either reduce the number of parties in the committee
or their total new weight. From their formulas and plots, one can see that as the required
probability of failure decreases, the committee must grow. Indeed, it seems inherent that
when we require ) ;. 4 ; in Equation 1 to be increasingly concentrated, its expectation must
approach infinity; it would be a good exercise to prove that as the probability of failure goes
to 0, whenever at least one ¢; is non-deterministic, E[ > 7", ¢;] must approach infinity and
E[[{i : t; > 0}|] must approach or exceed the number of parties in an optimal deterministic
committee.

In our work, we focus on the “deterministic” flavor of committee selection with the
objective to minimize the total weight Y7, #;, and believe this problem is important for the
reasons outlined above. Our paper can be viewed as a continuation of the Fait Accompli
work [28] by Gazi, Kiayias and Russell and the Swiper work [38] by Tonkikh and Freitas
that frame committee selection as an optimization problem with parties’ weights in the
input. Fait Accompli shows randomized schemes that optimize either >, ¢; or |[{i : ¢; > 0}|,
while Swiper describes algorithms for the same problem we consider, and in fact, we directly
extend some of their results. Despite both works numerically showing impressive results
on real-world, far from uniform, weight distributions, they say nothing about the quality
of their algorithms’ output compared to the best possible solution. The golden standard
in approximation algorithms is to provide one that yields solutions of the cost within a
certain multiplicative factor of the cost of an optimal solution [40], or otherwise bounded by
some other “interesting” function of the input (as in [32] for ECSS). We make some progress
towards this.

Finally, we note that there is no reason to require algorithms satisfying the stronger
security notion in Equation 2 to be deterministic. The use of randomness in optimization
often helps [40], but all algorithms in this paper are in fact deterministic.

3 Problem definition

Let n € N be the number of parties, wy, ..., w, € N be their (original) weights, and let a and
B be constants independent of n with 0 < @ < 8 < 1. Borrowing notation from [38], for
the new weights ¢1, ..., ¢, € Z>(, we say party i gets t; tickets and call (¢1,...,t,) a ticket
assignment. We call (t1, ..., t,) valid if and only if ., t; < 8.7 t; whenever I C [n] and
Sierwi < ad i w;. Our goal is to find a valid ticket assignment that minimizes the total
number of tickets Y1, ¢;. We call this the (< a, < 3)-weight reduction problem and denote
OPT<q,<g((w1,...,w,)) to be the smallest total number of tickets Y, #; in a valid solution
(t1,...,t). We can also formulate the problem using the following integer linear program.

n
minimize E t;
i=1
n

subject to Zti < ﬂzm VI C [n] s.t. Zwl < aiwi
1

el i=1 el =
t; € Zzo Vi € [n]
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We note that the formulation in [38] uses a strict inequality where « is involved. For
simplicity, especially when dealing with linear programming, we use a non-strict inequality.
However, we still keep a strict inequality where S is involved since we are typically interested
in solutions where the adversary controls strictly less than 1/2 or 1/3 of the total number of
tickets and formulating the problem using a strict inequality simplifies asymptotic analysis
where n approaches infinity. We call the variant in [38] the (< «, < 3)-weight reduction
problem with optimum OPT <, <5((w1,...,wy,)), and also similarly define (< a, < f)- and
(< o, < B)-weight reduction problems that have an additional requirement » ", ¢; > 1.

We also note that we do not allow zero weights w; in the input, but it does not change
the problem since it is always optimal to set ¢; := 0 for such 1.

4 Detailed overview of Swiper

We now give a more detailed overview of the Swiper algorithm from [38, 39] since we will be
modifying it later in section 5.

It works by linearly scaling down the weights and rounding to an integer according to a
rule. Specifically, given weights w1, ..., w, as input, Swiper outputs t1, ..., t, such that for all
i, either t; = |sw; +c¢] or t; = |sw; +c¢] — 1, where ¢ is a constant to be defined later. Swiper
first runs a binary search on s to find a local minimal value for which the ticket assignment
with all ¢; = [sw; + ¢| is valid. Then the algorithm considers those ¢ for which (sw; + ¢) is
an integer, or equivalently those i for which ¢; decreases when s is decreased by any value;
call this borderline set of indices B. Finally, Swiper runs a binary search on k € N to find a
local minimal value in [|B|] for which the ticket assignment remains valid when all but &
arbitrary indices from B lose one ticket.

From a slightly different perspective, Swiper defines a set of potential solutions t , ty e
with 321" | (£;), = j and finds a local minimal j for which ; is a correct solution but #;_7 is
not.

The authors observe that starting some index M € O(n), all 37, ta141, ... are valid. In
particular, when ¢ = «, we have M = [%n + 1J (for the (< a, < ) weight reduction
variant of the problem). By making M the right threshold of the search, Swiper always
outputs a solution with at most this many tickets, though a much better solution is usually
found for real-world weight distributions.

Each iteration of a binary search needs to test whether some ticket assignment (¢y,...,t,)
is valid. This is done precisely by solving the knapsack problem where weights are w; and
profits are ¢;. Since Swiper only tests ticket assignments of size at most M = O(n), the

knapsack problem can be solved in time O (n S ti) =0 (n2) using dynamic programming

that for each 0 < ¢ < Y | t; computes the smallest possible weight that achieves ¢ tickets.

The total time complexity of Swiper is O(n?logn).

5 Improving Swiper

In this section we present two variants of Swiper, one that improves the running time of the
algorithm and the other that improves the output at the cost of a reasonable increase to the
running time.

5.1 Faster Swiper

We first show a new algorithm named faster Swiper that improves the asymptotic running
time of the original Swiper algorithm without semantically changing the output. Like the
original Swiper, faster Swiper finds a ticket assignment ¢ such that
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T is valid, equals a linear scaling of the weights according to Swiper rules (see section 4),
and ), (T)l satisfies the O(n) bound of the original Swiper;

there exists a ticket assignment ¢’ with one fewer ticket such that it equals a linear scaling
of the weights according to Swiper rules but is not valid.

The stated time complexity of Swiper in [38] is O(n?logn) where n is the number of
weights in the input. Our algorithm faster Swiper has time complexity O(n + R?) where R is
the cost of the output (i.e., if the output is ¢, R = > (T)Z) Note that R is always O(n)
but at the same time, R can be much smaller than n in practice, and thus, looking at the
asymptotic complexity in terms of two variables n and R can be useful.

It will be convenient to have access to the input weights vector sorted in the descending
order. Let us assume such sorted input (wq, wa, ..., w,). We first explain how to achieve
running time O(R?log R) and then improve it further to O(R?). In subsection 5.3 we will
explain how to remove the assumption.

5.1.1 O(R?log R) time complexity

For all ¢ > 0, let #; be the vector with 7 tickets in total constructed according to Swiper rules
such that for any 1, t; and tl_Jrf have the same values for all indices except for one; when
multiple indices could be incremented in the transition from t; to ﬂl’ , choose the lowest
index. The (uniquely defined) sequence {t_:} has a property that if (t_;)J > 0 then (t_;)k >0
for all £ < j. This in turn implies that if the cost of t_; is ¢, only the first ¢ indices of t_; can
be non-zero. Thus, if an algorithm only ever considers ticket assignments of cost at most
O(R), it only needs to query the first O(R) elements of the (sorted) weight vector.
We make use of this fact. To get time complexity O(R?log R), we run binary search on i
to find a value for which #; is a valid ticket assignment but iy is not, roughly as follows.
I+ 0;r«1;
while t_; is not valid do
L lr;r+<2-r;
while r — [ > 1 do
m< (I+71)/2;
if En’ is valid then
‘ T 4—m;
else
L l < m;
return t:;
This requires O(log R) iterations of binary search, unlike in the original Swiper that does
binary search on the scaling factor s potentially requiring Q(logn) iteration. Each iteration
needs to solve a knapsack problem using dynamic programming to determine whether some
t_; is valid. The time required to do this is at most the total number of tickets times the
number of non-zero entries in t_;, since the zero entries cannot help the adversary. Both are at
most i. Hence, the first loop will run in time O(R?) and the second loop in time O(R? log R).
We are left to describe how to efficiently calculate t.(; , t.{ s oo tan. We use a mutable data
structure called gen with a single method gen.next() such that if the é-th invocation of

gen.next() returns index, then (E) = (ﬂ)index + 1 (and all other indices stay the same).

index
Such a data structure can be constructed using a binary heap as a priority queue defining
the order of the produced indices by gen.next(). The heap initially contains only the first
index — the index of the largest weight. When gen.next() outputs some index, this index is

reinserted in the heap; if index has never been produced before, index 4+ 1 is additionally
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inserted. Therefore, during the k-th call to gen.next(), the heap contains at most 2k elements
and thus, the call takes time O(log k). Our Swiper variant needs to query gen at most 2R
times, and hence, will add O(Rlog R) to the time complexity.

5.1.2 O(R?) time complexity

To improve the running time of faster Swiper further, we notice that iterations of the binary
search can reuse some of the dynamic programming (DP) computations. The structure of the
binary search remains the same as in the O(R? log R) version, and we only need to optimize
its main phase (the second while loop) since the initial phase already runs in time O(R?).

We need a data structure called DP containing (partial) DP computations for the
knapsack problem. Specifically, it will have methods DP.apply(w,t) and DP.get() such that
after running DP.apply on a sequence (w1, t1), ..., (wg, tg), DP.get() reports the maximum
number of tickets that the adversary can get ), g t; provided > ;. gw; < aW (W =3 w;
being the total number of tickets in the input). Since the binary search only tests ticket
assignments t; of cost at most 2R, DP.apply will always run in time O(R). Additionally, a
complete DP computation requires calling DP.apply the number of times at most the number
of non-zero elements of t_; which is at most 2R.

The idea is to reuse some DP computation to have each iteration of the binary search
(second loop) run in time O(R(r —1)). Since (r —1) halves each iteration, the entire algorithm
will be O(R?).

The loop will have the following invariants holding at the beginning of the loop.

tickets_I: array containing the non-zero prefix of o

deltas: array containing the indices from gen.next() to generate tlv_ﬁ, et

dp_ head: DP data structure with applied (wi, (E)l) for all i ¢ deltas.

Essentially, dp__head will have indices applied whose values are not going to change anymore.

Then testing the validity of £ Tequires computing it in time O(R) and applying the missing
indices, contained in deltas, to a copy of dp__head in time O(R(r —1)). After that, the loop
iteration needs to update the variables to maintain the invariants: tickets_| in time O(R),
deltas in constant time and dp__head in time O(R(r — [)) by applying a subset of indices
from deltas.

5.2 Extended Swiper

We will now present a variant of Swiper that we call extended Swiper which replaces the
binary search on the number of tickets in the solution with a linear search.

14 1;

while t.; is not valid do

L 141+ 1;

return E;
The linear search sometimes significantly improves the output in practice since the binary
search gets stuck in a “local minimum”. Although the idea is trivial, our contribution is an
algorithm that runs the linear search in time O(R?*®) instead of the easy O(R?), assuming
the input weights are sorted.

The idea is to reuse DP computation as in subsection 5.1. We check the validity of E; in

batches. The batch number j > 1 will be (f;,41, ..., t;,,,) where iy = 0 and i1 = i;+0(1/%;).

The batch j will be processed in time O (i3 + (ij41 — i5)* - ij41) = O(i3).
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Before describing the batch algorithm, we briefly argue why the time complexity of the
whole algorithm is O(R??). Take any d € NU {0} and let j be the largest integer such that
1+ 1< 2¢ and k the smallest integer such that i, > 2%t1 — 1. The batches 7, ..., (k—1),
©(2%2) in total, will each be processed in time O(2%¢) and thus together in time O(2%°%).

Hence, the whole algorithm works in time O( ZQE% gl 22'5d) = 0(2%518 ) = O(R*9).
We now describe the batch algorithm. For batch j, collect indices from gen.next() that

generate t;,11,...,t into an array deltas. Create a DP data structure dp__head and call

——
L1

dp__head.apply on (wk, (t_l;)k) for all k ¢ deltas, this takes time O(z?) Now for each index

in deltas, apply it to get the next t; and test its validity by applying (wk, (E) k) for distinct

k € deltas to a copy of dp_head. This takes time O((ij41 — 4;) - ij41 - (ij41 — i;)). Hence,
the batch algorithm has running time O(z? + (41— 15)% - 1)

5.3 Arbitrarily ordered weights

We previously assumed that the weights vector in the input is sorted. We will now explain
how to remove this assumption for an additive cost of O(n + Rlog R).

We need a mutable data structure that we call sorted_ weights that has a single method
sorted_ weights.next() returning the next largest weight from the input. We require that
initializing sorted_ weights takes time O(n) and that the first m calls to sorted_ weights.next()
take cumulative time O(mlogm). This is sufficient since our algorithms would query
sorted_ weights.next() only O(R) times.

Such a data structure can be constructed using a binary max-heap initialized in time
O(n) to contain all the weights and an auxiliary max-heap initially containing the reference
to the main heap’s root. sorted_ weights.next() returns the root of the auxiliary heap and
inserts in the auxiliary heap the references to the two children of the returned element in the
main heap. [25]

5.4 A note on reducing time complexity further

Swiper [39] explores using a quasilinear time approximate knapsack solver in lieu of the
quadratic time exact algorithm. Numerical evaluations by the authors show that this reduces
the quality of the output only by a little. While we do not explore this modification, it
could be interesting to employ it to potentially reduce the running time of faster Swiper and
extended Swiper to O(n) + O(R) and O(n) + O(R"®) respectively.

6 Analysis of linear scaling based algorithms

We are interested in analyzing the approximation factor of known algorithms solving the
(< a, < B)-weight reduction problem, meaning how many times larger can the computed
solution be compared to an optimal solution. We notice that all previously known algorithms
use linear scaling with rounding to compute ticket assignments (¢1, ...,¢,) and prove that
all have worst case approximation factor Q(n). We start with the following theorem that
applies to a class of linear scaling based solutions.

» Theorem 1. Let o, € R and r,s € N such that 0 < a < < 1 and 5 <B<r/s<l.
Also let 0 < ¢ < 1, m € Zxg, and suppose an algorithm solving the (< o, < B)-weight
reduction problem on input (w1, ..., wy,) always outputs (t1,...,t,) with the property that there
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exists 6 > 0 such that for all i,
[ow; +c] —m < t; < [dw; + ¢].

Then for infinitely many n there exists a weight vector W = (w1, ..., wy,) such that
OPT<a,<p(W) =5 +1

but the algorithm outputs a solution with the number of tickets

an—1r—1
>(1_C)7"/37—04_m8

The worst case approximation factor of the algorithm is thus

(1-o)a
> ———~—n—0(1).
(s+1)(r/s—«) (1)
Proof. Define @ = (w1, ..., w,) where w; =wy = ... =w,_s=land w, 411 = ... = W, = w
where

- — 3)

r—as r—as

{om - asJ an — as

w =

for some 0 < & < 1. The total weight is Y., w; =n — s 4+ sw and the adversary is allowed
to corrupt the following weight.

2 022
Wa = |aW ] = |an — as + asw| = {an—as—l—w—asaJ =

r—as

:7—0485—5/

arn —ars arn — ars
—— — (S¢€
r—as

T — Qs

for some 0 < &’ < 1.

Then Wa — rw = (r — as)e —e’. We would like to identify an infinite sequence of n
such that Wa = rw. Since r — as > 0, we have Wp — rw > —1. If r — as < 1, then also
Wa —rw < 1 and we are done. Otherwise, only consider n = s + [k - ==2] for k € N. Then

«
n=s+k- = +¢" for some 0 <" < 1and a(n—s) = k(r — as) + ac”. From Equation 3,

an — as k(r —as) + ag” ag”
£ = 77w:—*w:k*w+ .
r—as r—as r—as

Since k—w e€Z,0<e<land0< ?‘f‘f; < 1, we have ¢ = Tofl;,s Tjas. Hence, Wa —rw < 1
and W = rw.

Consider a ticket assignment T = (t1,...,t,) where t; = ... = t,_s—1 = 0 and ¢, =
... = t, = 1. Since the adversary can only corrupt r parties that have a ticket, the total
number of tickets is s + 1 and r < 3(s+ 1) by an assumption in the theorem statement, this
is a valid solution of cost s 4+ 1. Clearly, no better solution is possible since the adversary
can always corrupt r tickets (assuming they exist) to get adversarial ratio > r/s. Hence,
OPT§a7<ﬁ(@’) =s+ 1

We will now prove a lower bound on the cost of algorithm’s output. Take any valid ticket
assignment T = (t1,...,t,) and notice that at least one of ¢y, ..., t,_s must be non-zero;
otherwise the adversary can corrupt r parties with the largest number of tickets to get
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adversarial ratio > r/s. Since the algorithm chooses 6 > 0 and for all ¢ outputs ¢t; < |dw; +c],
we must have 6 > 1 — c¢. Hence, the algorithm outputs a ticket assignment of cost at least
s(lA=cw+ec]—m)>s((1—cw+c—1—m) >
an—as—1 an—r—1
l—¢)———— —(1—¢)— = l—¢)————— — =
s(( c) —— ( c) m> s<( c) — m)
—r—1
(1 - c) an—re o ms. <
r/s—a
When S is rational, simply set r and s such that 8 = r/s to apply the lower bound.

Otherwise, we need to find r, s such that < B <% <1or, equivalently, 1 < 2 < % < %

T
Setting s = [1/5] and r = 1 satisfies thesi+nlequality.

We now discuss particular weight reduction algorithms. By a simple modification of an
argument in [39], we know that Swiper that solves the (< a, < f)-weight reduction problem
always outputs a solution with at most ag%_aa)
bound on its approximation factor. Since Swiper outputs solutions (¢1, ..., t,) such that for
each i, t; = |[dw; + « or t; = |[dw; + | — 1, by Theorem 1, the worst case approximation

factor of Swiper is %n — O(1) (for appropriate r and s). Notice, that for some

«@
s+1)
values of 3, this is very close to the upper bound; for instance, when 8 = 1/2, it is a factor 3
away from the upper bound. The same analysis applies to faster Swiper and extended Swiper.

We now discuss the gcdWR algorithm from [23] (also see an overview in the full version

n + 1 tickets. Thus, this is also an upper

of our paper [42, Appendix A]). It is quite similar to Swiper in that it outputs a ticket
assignment (t1,...,t,) of the form ¢; = [dw; + ¢|; here, 6 = 1/ ged and ¢ = 1/2. Theorem 1
gives approximation factor lower bound of mn — O(1). We conclude that the
worst case approximation factor of gcdWR is O(n).

Finally, we discuss the algorithms in [21, v1] and [4]. Even though they solve other
variants of the weight reduction problem, we can still see what approximation factor they
would give if solutions of the same form were to be used for the (< «, < )-weight reduction
problem. [21, v1] outputs solutions of the form ¢; = |dw; + 1/2]. By Theorem 1, its worst
case approximation factor exceeds mn — O(1) (for appropriate r and s).

[4] outputs solutions of the form ¢; = [dw;]. Since each w; is positive, each ¢; also is
and thus the algorithm always outputs a solution of cost at least n. We are left to find an
example where the optimal solution is small. If there exists a weight w; large enough that
the adversary cannot corrupt it, then the optimal solution has one ticket in total. Hence, the
worst case approximation factor is at least n.

7 Useful facts

In this section we present several facts that will be useful in the rest of the paper. We start
with a (new) characterization of optimal solutions.

» Theorem 2. Assume wy < wo < ... < w,. There exists an optimal solution (tq,...,tp)
such that t1 <to < ...<t,.

Proof. Let (¢1,...,t,) be an optimal solution such that ¢; > ¢; for some i < j. We will show
that (t),...,t,) = (t1, .., tic1, 5, tit1, - tj—1, tis tjt1, -..Ep) is also an optimal solution (i.e., ¢;
and t; are swapped). This has the same cost, we just need to show that it is a valid ticket
assignment.

Let I C [n] such that Y, ., wp < )"} wi. Consider the following cases.

PEL G ET Y erth = D perte < B pmrt = B th
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i€l j el Yperthe =2 herte < BYhorte =B X1 ths
PELJET Y sty < Pperth < B o1t =B py s
i¢ L jel:let I'=T\{j}U{i}, e th = Dner te < B peite = B> py l}, where
the inequality holds since Y, o wp < > ey wp < Y )| wg.
Hence, (t,...,t),) is a valid assignment.

Therefore, we can sort all ¢; using, for example, insertion sort to get an optimal sorted
assignment (t1, ..., tp,). <

We also prove a slightly stronger statement.

» Theorem 3. Assume wy < wy < ... < w,. There exists an optimal solution (ti,...,tn)
such that t; <ty < ... < t, and, moreover, for any i,j with w; = w;, [t; —t;| < 1.

We present the proof on page 24 of the Appendix.

We will also find useful the following, first mentioned in [39, v2 appendix C]. Similarly
to the definition of OPT<, (W) from section 3, define OPTE’LKB(ﬁ) to be the smallest
maximum number of tickets that the adversary can obtain in a valid solution:

OPTZA w) = min max U
SO‘7<5( ) (t17~--7tn)ez§0 IC[n]A Z 7

is valid Zie[ wi; <o Z:;l w; el
» Theorem 4. For all0 < a < B3 <1 and W € N, we have

OPT™A _ (W@
OPT—o <5(W) = {SO‘;"()J +1; OPTZ (@) = [5. OPTSQ,@(wﬂ 1.

Proof. Denote T = OPT<q <4() and Ta = OPTZA, _, ().

We first prove that T'= |Ta/8| + 1. Let (t1,...,tn) be a valid ticket assignment where
the maximum total number of tickets the adversary can obtain is Ta. Decrease all ¢; as
much as possible as long as Ta < 8>, ¢;; call the resulting ticket assignment (¢, ..., t,,),
which must be valid. Then 7' < " |t = [Ta/B] + 1. Now take a valid ticket assignment

(t1, ..y tn) with >0 | &; = T. We have

Th < t; < BT
AS e D <P

S wigay w S

and thus T > |Ta/B] + 1. Hence, T = |Ta/B] + 1.

We will now prove that Ta = [8T] — 1. Since T = |Ta/S] + 1, T > Ta/S which implies
Ta < BT which implies Ta < [BT] — 1. Also since T = |Ta/B8| + 1, T — 1 < Ta/$ which
implies Tpa > T — > Ta > [BT]| — 1 — 8 which implies Tp > [8T] — 1. <

Similarly, we have the following for the (< a, < 8)-weight reduction problem.
» Theorem 5. For all0 < a< B3 <1 and W € N”, we have

OPTQQS 5(T)

OPTSQ7§5(E) max{l, ’V 6

w}; OPTZ, _,(i0) = {5'0/’79,313(@'”-
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8 Optimized bruteforce

Given that all previously known weight reduction algorithms have a worst case approximation
factor Q(n), we seek algorithms with improved approximation. In this section we present the
first sub-exponential exact algorithm that is practical for some real-world weight distributions,
as well as the first polynomial time algorithm with approximation factor at most n/ (clog2 n)
for any ¢ > 0.

8.1 Sub-exponential time exact solution

In this section we show an algorithm that solves the (< a, < )-weight reduction problem
exactly (i.e., that finds an optimal solution) in time O(n + R3/2BC\/E) where C' = 7v/6/3 ~
2.57 and R < O(n) is the cost of the output (i.e., the optimal total number of tickets). Given
that R is often relatively small and definitely smaller than n, this algorithm is sometimes
practical for real-world distributions, as the numerical evaluations in section 9 show. Thus,
when a small solution is expected, it might make sense to run the exact algorithm for a
number of steps and switch to a fallback scheme if necessary. The algorithm could also be
very useful for research purposes, for example, to test some hypothesis about the problem.

Assume the weights in the input are sorted. Using the characterization of optimal solutions
in Theorem 2, the algorithm for each i = 1,2, ..., enumerates all sorted ticket assignments
with total number ¢ and for each, checks its validity using the knapsack algorithm. It outputs
the first found valid ticket assignment.

The number of sorted ticket assignments with total number 7 is bounded by the number
of ways p(i) to represent i as a sum of positive integers, where p is called partition function®.

) Also, the knapsack algorithm checks the validity

It is known that p(k) ~ 4fk exp (
of a ticket assignment in time O(i?) since the ticket assignment has at most i non-zero entries.
Hence, the running time of this algorithm is O( Zil izp(i)) which is O (R3/2€C\/E> by the

following lemma.
» Lemma 6. For any ¢ > 0, Zle jeeVi = O(k3/26“/%).

We present the proof on page 24 of the Appendix.

We note that it might be possible to reduce this time complexity by a factor of R/2 by
reusing dynamic programming computations as in section 5. Lastly, see subsection 5.3 on
how to handle unsorted inputs for an additive running time increase of O(n + Rlog R).

8.2 O(n/log® n)-approximation in polynomial time

Using the idea in subsection 8.1 we can similarly construct an algorithm with approximation

a(l a)
factor "> and polynomial running time O(n Yo Velogey, log>n+n ) for any ¢ > 0.
g n
The algorithm works by trying all sorted ticket assignments with total number at most L, to
be defined below, and if no valid assignment was found, proceeding to using faster Swiper as
fallback.
a(l—a)

By [39], Swiper always finds a solution with cost at most B = o nt 1. By setting

2
L= [%—‘ — 1, the approximation factor of the algorithm is at most ;=5 +1 < Clog —.

! nttps://en.wikipedia.org/wiki/Integer_partition
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Similarly to subsection 8.1, the running time of the bruteforce is at most

O(” + L% ?exp (Tﬁ)) = O(n + log® n - exp (?ﬁlognﬁ)) -

while the running time of faster Swiper is O(nQ).

9 Numerical evaluation

We implemented algorithms from this paper and from the literature in the Rust programming
language and evaluated them based on the total number of tickets in the output and the
running time. The stake distributions of Algorand, Aptos, Filecoin and Tezos blockchains
were used as inputs, borrowed from the original Swiper implementation’s git repository?;
they were used for evaluations in the Swiper paper [38, 39].

The implemented algorithms from our work are faster Swiper (subsection 5.1), extended
Swiper (subsection 5.2) and the exact algorithm from subsection 8.1. The implemented
algorithms from the literature are Swiper and gcdWR. Even though the original implemen-
tation of Swiper is publicly available, it is written in Python, a much slower programming
language. To make the comparison fair, we reimplemented Swiper in Rust with the two
implementations having identical output and almost identical logic; the only difference is that
we did not implement the quasilinear time approximate knapsack solver that Swiper runs
before invoking the full solver, but [39] states that this optimization improves the running
time only by a factor of 3 and only when the number of tickets in the output is large. We
include both implementations of Swiper in our evaluations. The original implementation in
Python was slightly modified to solve the (< a, < §)-weight reduction problem instead of the
variant where the inequality involving « is strict. The LP based algorithm from Appendix A
was not implemented due to its impractically large time complexity and the unavailability
of an ellipsoid method implementation with a separation oracle, and the general technical
complexity of such an implementation.

All our implementations, as well as the original Swiper code in Python, are single-threaded.
We assume sorted weights in the input, and thus our faster Swiper implementation has time
complexity O(R?) as opposed to O(n+ R?) in the full version of the algorithm, with a similar
difference for the extended Swiper and exact schemes. Even though, we didn’t implement
subsection 5.3 to handle unsorted inputs, we believe it does not significantly affect the
measured running times since the stake distributions used all have less than 43000 entries.
Our code is publicly available?.

We ran the tests on AMD Threadripper PRO 7955WX. Tables 1, 2, 3 and 4 have two
values for each evaluation: the total number of tickets and the running time. The exact
algorithm was modified to search for a solution with the total number tickets up to 143. In
case a solution wasn’t found, the tables have a blank cell for the total number of tickets and
the running time reported is the time duration before the search terminated.

2 https://github.com/DCL-TelecomParis/swiper
3 https://github.com/tolikzinovyev/weight-reduction
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9.1 Discussion

In Table 1 we indeed see that our faster Swiper algorithm is faster than the original Swiper.
The speedup on Algorand’s stake distribution ranges from 17x when the cost of the output
is large to 13000x when the output cost is small. The huge efficiency gap in the small output
case can be attributed to expensive rational number arithmetic when linearly scaling weights
down in Swiper (time complexity O(nlogn)), which can dominate even the total cost of
knapsack (time complexity O(n?logn)). In contrast, our faster Swiper implementation does
only O(Rlog R) rational number operations (inside gen.next() — see subsection 5.1). The
cost of the output is comparable between Swiper and faster Swiper, but not exactly the same,
as one or the other can get stuck in “local minimums” depending on luck.

Next, we observe that our extended Swiper algorithm sometimes significantly improves
the quality of the output over Swiper. For instance, for Aptos’ stake distribution (Table 2),
Swiper outputs 85 tickets for parameters o = 1/4, 8 = 1/3 whereas extended Swiper outputs
58; for « = 3/10,8 = 1/3, Swiper and faster Swiper output 346 tickets whereas extended
Swiper outputs 277. It is guaranteed that the output of extended Swiper is never worse than
that of Swiper and faster Swiper; moreover, in our measurements it is always better than that
of gcdWR and is always within 6% of the optimal solution (based on the exact algorithm
when it is feasible). Where the gap between « and S is not too small, the running time of
extended Swiper is not significantly larger than even that of faster Swiper.

Finally, it is worth noting that while the exact algorithm has sub-exponential running
time, it can nonetheless be practical when the optimal solution is small (e.g., in the case
of Aptos). It could thus be used in conjunction with a fallback scheme when the optimal
solution turns out larger than a threshold.

10 Conclusion

In this paper we made further progress in solving the problem of deterministic weight reduction.
On the practical side, faster Swiper is a very efficient algorithm with time complexity O(n+ R?)
that outputs solutions comparable to the optimal on real-world inputs while extended Swiper
outputs solutions extremely close to optimal in a reasonable time O(n + R?-%). Both would
be great candidates for deployment in, e.g., proof-of-stake blockchains.

On the theoretical side, we proved that all known algorithms based on linear scaling
suffer from Q(n) approximation ratio in the worst case. We presented the first polynomial
time algorithm with approximation factor n/(clog?n), for any ¢ > 0, and the first exact
algorithm with sub-exponential running time O (n + R¥2¢“VE). Given that R is often much
smaller than n, our exact algorithm can also be practical for production or research purposes.
Finally, our linear programming based algorithm could be useful in the context of future
research.

It could be interesting to try integrating a quasilinear time approximate knapsack solver,
as done in the quasilinear mode Swiper [39], to decrease the exponent of R by one in the
time complexity of faster Swiper, extended Swiper and the exact scheme. Additionally, we
would like to know if there exists an algorithm with approximation factor o(n/log?n). The
answer is likely yes, but more exploration is required.

Finally, it would be good to investigate the related variants of committee selection where
we require the weaker (“randomized”) security from Equation 1 or where the goal is to
minimize the number of distinct committee members (see section 2). [28] makes progress in the
“randomized” setting presenting schemes performing very well in practice, but, unfortunately,
nothing is said about their approximation factor. It would be interesting to prove that a
fully deterministic solution can be optimal when the weaker security is required.
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A Linear programming based polynomial time approximation

In this section we show that for any constant 0 < § < 1 — «/ there exists a polynomial time
approximation algorithm that returns a solution with cost at most

TA TA
OPTga,<(176)ﬁ T1=|(1-4)- OPTga,<(176)5 +1<
B (1-0)B - (4)

{(1 —0)- OPTS&,<(175)BJ +1 < OPT<qy <(1-5)8s

where the first inequality is due to Theorem 4.
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Table 1 Evaluation on the Algorand stake distribution.

 B=1/3 B=1/2
a=02 a=02a=03 a=03a=035 a=04 a=045
Swiper | 235 745 22393 | 203 383 1203 | 17591
 (Python) | 4755 | 5.14s 6.25s | 4.32s | 5.15s 4.74s | 5.70s
Swiper | 235 745 22393 | 203 383 1203 | 17591
(Rust) 1.10s 1.21s 1.77s 1.03s 1.14s 1.18s 1.64s
Cfaster 232 745 22660 | 203 387 1205 | 17949
i Swiper 84.21s 51618 63.4ms | 108us 272ps 1.90ms | 97.2ms
extended | 232 745 22384 | 201 383 1171 | 17581
‘ Swiper 98.911s 84911s 3.48s 136718 497ps 4.56ms | 4.52s
gchR 1180 | 6237 178906 | 223 407 1180 | 17648
3 3.09ms | 2.85ms 2.42ms | 3.29ms | 3.27ms 3.11lms | 2.66ms
exact 6.26h | 4.50h 445h | 872h | 8.74h 8.70h | 9.25h
Table 2 Evaluation on the Aptos stake distribution.
B=13 s=12 |
a=02a=02 a=03 a=03 a=035 a=04 a=045
Swiper | 22 85 346 23 29 95 279
(Python) | 537ms | 7.32ms | 6.94ms | 4.87ms | 6.19ms | 6.76ms | 7.06ms
Swiper | 22 85 346 23 29 95 279
(Rust) 1.6lms | 2.07ms | 1.97ms | 1.40ms | 1.87ms | 1.80ms | 1.98ms
Cfaster 22 58 346 23 31 95 279
‘ Swiper 7.93ps 13.7ns 120ps 8.02ps 8.34ps 32.81s 160ps
extended | 22 58 277 23 29 95 241
‘ Swiper 5.17us 13.7ps 102ps 5.22ps 8.14pus 32.6ps 147ps
o 138 246 579 34 34 138 321
" gcdWR
7.9611s 7.8518 7.8611s 8.4611s 8.6811s 7.981s 7.981s
o 22 55 23 29 91
. exact
| 140ps | 130ms | 4.46h | 227ps | 1.14ms | 47.5s | 8.75h
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Table 3 Evaluation on the Filecoin stake distribution.

B=1/3 B=1/2
a=02a=02a=03 a=03a=035 a=04 a=045
Swiper | 1282 | 3091 10288 | 1149 | 1835 3533 | 8133
(Python) | 281ms | 324ms 388ms | 287ms | 301ms 322ms | 430ms
Swiper | 1282 | 3091 10288 | 1149 | 1835 3533 | 8133
(Rust) 29.6ms | 40.2ms 98.2ms | 31.7ms | 35.8ms 49.8ms | 129ms
Cfaster 1282 | 3088 10288 | 1149 | 1837 3533 | 8139
Swiper 2.72ms | 8.2lms | 65.lms | 3.46ms | 4.52ms | 11.8ms | 37.9ms
extended | 1279 | 3088 10282 | 1147 | 1835 3527 | 8133
Swiper 3.52ms | 23.4ms 305ms 5.15ms | 18.2ms 67.5ms | 399ms
gchR 3700 | 6516 17425 | 1289 | 1882 3700 | 8190
166ps 162ps 158ps 169ps 170ps 166ps 162ps
exact 449h | 448h | 449h | 85lh | 9.05h | 8.56h | 8.57h

Table 4 Evaluation on the Tezos stake distribution.

' B=1/3 ' B=1/2 |
a=02 a=02 a=03'a=03a=035 a=04 a=045
Swiper 49 133 589 37 75 143 455
(Python) | 28 5ms | 28.3ms | 31.3ms | 20.1ms | 29.2ms | 25.8ms | 28.9ms
Swiper 49 133 589 37 75 143 455
(Rust) 3.35ms | 3.79ms | 4.59ms | 2.72ms | 3.97ms | 3.43ms | 4.26ms
faster 49 133 589 41 77 145 455
Swiper 11.9ps 55.01s 3831s 12.9ps 29.7us 66.81s 188ps
extended | 37 127 523 35 75 143 427
Swiper 6.25ps | 36.4ps 533us | 6.77ps | 21.8ps 54.0ps | 597ps
148 333 1331 46 87 148 470
gcdWR
13.7ps 12.7ps 11.3ps 14.7ns 13.7ps 13.7ns 12.2ps
37 127 35 75 139
exact
6.44ms | 1.05h 5.07h 5.36ms | 6.64s 6.33h 8.62h

DISC 2025



43:22

Weight Reduction in Distributed Protocols: New Algorithms and Analysis

The algorithm is based on the standard approach of representing an optimization problem
as an integer linear program, relaxing it to allow fractional solutions, solving the relaxed
LP in polynomial time and rounding the solution to an integer vector in a problem specific
manner [40]. We will use the ellipsoid method to solve an LP with exponentially many
constraints. In this mode of operation, we are required to implement a “separation oracle”
that the ellipsoid method will invoke. On input some vector @ € Q" in the multidimensional
space, the separation oracle either reports that 7" satisfies all LP constraints or returns some
violated constraint. Whenever the separation oracle is implemented by a polynomial time
algorithm, the ellipsoid method also runs in polynomial time; in particular, its running time
is independent of the number of LP constraints. See [40, section 4.3] for an overview of the
ellipsoid method with a separation oracle.

For our problem, however, we face an issue that we cannot implement a polynomial time
separation oracle that calculates the prescribed output exactly. The input will be a vector
T € Q" and we need to check if it satisfies the criteria of a valid ticket assignment. While
we can test a ticket assignment (t1,...,t,) € Z%, fs)r validity in time O(n -7, t;), we do
not know how to efficiently do so for a fractional ¢. We first present a sketch of our weight
reduction algorithm that uses an inefficient separation oracle and in subsection A.2 we show
how to get around this issue.

A.1 Sketch

Assume w; < wy < ... < w, and define k = [1/§]. We first efficiently bruteforce the set of
indices ¢ with ¢; = g for each 0 < g < k — 2, having Theorem 2 in mind. Now consider the
following satisfiability LP with some constant 7', some ¢; fixed by the “guess” and the other
t; constrained to be at least & — 1.

minimize 0

n
subject to Zti =T
i=1

Zti < |(1=1/k)BT| VI C [n] s.t. Zwl < aiwi

el el i=
ti = ¢g; Vi:1<i<j
> k-1 Viij<i<n

For each T' € {1,2, ..., B}, where B = O(n) is a bound on OPT<, ~(1_1/)s from [39], if there
is a solution (¢}, ...,%,,) to this LP, round it down to get (t1,...,tn), let Ta = [(1 — 1/k)BT |,
reduce all ¢; as much as possible as long as Th < 52?:1 t; to get (tf, ..., t) and record
(tf,...,t;}) as the best result for the current guess (gi,...,gj—1). At the end of the algorithm,
return the smallest result across all guesses.

We will now prove the bound in Equation 4 on the cost of the returned solution. By
Theorem 2, fix an optimal solution (¢7, ..., t%) with ¢7 < t5 < ... <t¥ to the (< a, < (1-1/k)f)-
weight reduction problem. By definition, > 7" | tf = OPT<, <(1—1/1)8 < OPT<o c1—1/k)5-
Let (g1,.,9j-1) €{0,...,k — 2}7~" be the guess such that (g1,...,g;—1) = (t},...,t;_;) and
tf>k—1fori>j.

For this guess, the algorithm will terminate the search on some 7" at most OPT <, <(1-1/1)8-
This is because if T' = OPT<, <(1-1/k)s, then (t],...,£;,) is a valid solution to the above
LP. Therefore, the algorithm will find a solution (¢/,...,t],) to the LP with " | ¢, =T <

OPT<a <(1-1/k)8-
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For any I C [n] that the adversary is allowed to corrupt,

ot i< |[(1-1/k)BT] = {1—1% ﬁZtJ (1—1/k) ﬁZt <ﬁth,

iel iel
where the last inequality holds by the assumption that every ¢} is either an integer or at least
k — 1, and that at least one t’ is non-zero. Therefore, (t],...,t;}) is a valid solution to the
(< a, < B)-weight reduction problem. Moreover, T < [(1 —1/k)p - OPTga,g(l—l/k)ﬂJ =

OPTEQ <(-1/k)p < OPTEGZ <(-8) where the equality is due to Theorem 5. Hence,

OPT
Z# { J+1 {WJH.

A.2 Full algorithm

We now show how to circumvent the issue that we cannot construct a polynomial time
separation oracle for the LP in Equation 5. We utilize the round-or-cut framework [13, 2]
where at each iteration of the ellipsoid method, we either produce a separating hyperplane
between the candidate feasible solution ¢ € Q™ and the polytope or return another point t
that is slightly different from ¢ but that will suffice for our weight reduction algorithm.
Configure the ellipsoid method with the LP in Equation 5 (see details in [31]) and
implement the separation oracle as follows. On input (1, ...,t,) € Q™, check the constraints
in lines 1, 3 and 4 in Equation 5 as usual; instead of the constraints in line 2, check relaxed

constraints
Mt < [(1=1/k)BT| VIC [n] s.t. Zwl<oézwz
el i€l

using knapsack in polynomial time. If some check failed, we return one of constraints from
the original LP in Equation 5 as a separating hyperplane; otherwise, we terminate the search
and return (t1, ..., t,) as the solution.

The result of this search will be either a point (¢4, ...,t,) that satisfies

i=1

S [t < |(1=1/k)BT] VIC [n] s.t. ZwlgaZwl

el i€l
ti=g; Vi:1<i<j
t; > k—1 Vi:j<i<nm

or an error certifying that the LP in Equation 5 has no solution. The rest of the algorithm
and the proof of correctness remains the same.
A.3 Time complexity

We briefly argue that the algorithm runs in polynomial time. Using Theorem 2, bruteforcing
the set of indices i with ¢; = j for each 0 < j < k — 2 takes time O(n*~!). Bruteforcing T’

adds another factor of O(n) by construction. Finally, solving the LP takes polynomial time.

Despite this, the algorithm is completely impractical since for reasonable parameters, the
running time would be Q(n!?).
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A.4 Approximation factor discussion

We have already proved that the algorithm finds a solution with cost at most

T
OPT<Aa ,<(1-9)B
—— | + L
g
Using Theorem 4, the approximation factor for the total number of tickets is at most
OPT<a <(1— é)[iJ Ta
S <S(1—0)P + 1 OPTiu, (1— Ta
{ i Tl OPTS caas B
\‘OPTZQ <BJ +1 OPT;a <8 OPTZZ ,<B OPTZZ ,<B
While 5/ OPTZA <p can be made as small as 1/ log? n by subsection 8.2, in the full version
of our paper [42, Appendix B] we show that, unfortunately, OPT< <(- 5)ﬁ/OPT<a <p can
be Q(n) in the worst case.
B Proofs
Proof of Theorem 3. Let (t1,...,t,,) be any solution and take any i, j such that w; = w;

and t; +2 < t;. Define (#},...,t;) such that t; =t; + 1, #; =t; — 1 and ¢}, = t;; for all other
k. We will show that this is also a valid solution.

Let I C [n] such that >, ., wp < a)_;_; wy and consider the following cases.

P LG ET Yerth = perth < Blporth =B k=1 tis

i€l j el Yoty = Lperth < B Xjorth = Bk s

i¢ LT Ypert < Lperte <BYhorth = B35y ths

iel,je¢l:let I' =T\ {i} U{j}, Yperth < Zrperte <BXpeithk =8> p_; by, where

the inequality holds since Y, cp Wi = ey Wk < @D p_; Wk
Hence, (t},...,t),) is a valid assignment.

By Theorem 2, take an optimal solution (¢1, ..., t,) with t; <ty < ... <t,. One can see
that we can iteratively achieve |t; —t;| < 1 for any block of indices {/,{+1,...,r} with equal
weight, while preserving the sortedness of the whole array. |

Proof of Theorem 6.

k i k+1
Ziec‘ﬂ < / 2V dz [=]
i=1 1

letting y = ¢/,

y=cVk+1 c\/k+ 2
_ Y\ 42y duy —
= ( ) () 2
) cvVk+1 2 /y evEk+1
y=

al yle¥ dy = i d(e¥) [=]
letting z = e¥, for sufficiently large k,
ecm ec\/m
[—]3 Wz dz = 2 (In®z—3In*z+6nz—6) <
=la/. n”z dz = = (z(In" 2 n*z nz . <

3
2 eCVRELL (c k—i—l) = 2. (/ﬂ—l—l)?’/2~e“’“rl = O(k?’/Qec‘/E).
c
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