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Abstract
Incrementally verifiable computation (IVC) is a cryptographic scheme that allows a prover to certify
the correctness of a long or ongoing computation in an incremental manner, by repeatedly updating
a proof certifying the computation so far. Updating the proof does not require access to the entire
trace of the computation, which makes the IVC prover memory efficient.

In this work we construct incrementally verifiable distributed computation, which allows a
distributed algorithm to efficiently certify its own execution using low memory and communication
overhead. Our primary motivation is massively-parallel computation (MPC), where memory efficiency
is make-or-break: the machines participating in an MPC algorithm usually cannot store the entire
trace of their computation. Thus, certifying MPC algorithms essentially requires distributed IVC.

At the heart of this work is a new abstraction, updatable batch arguments for NP (UpBARGs),
which we define and construct. Standard BARGs allow one to prove a batch of k NP-statements
using a proof whose length barely grows with k; however, the statements and their witnesses must
all be known in advance. In contrast, UpBARGs support adding statements and witnesses on the
fly, making them a flexible tool for constructing IVC across different computational models. We use
UpBARGs to construct IVC for streaming algorithms, for MPC algorithms, and for PRAM algorithms
in the exclusive-read exclusive-write (EREW) model.
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1 Introduction

Incrementally verifiable computation (IVC), introduced by Valiant [15], enables a prover to
generate a succinct proof that a long computation has been executed correctly, and update
the proof incrementally as the computation progresses: given a proof that the first t steps
have been executed correctly (for some t), the prover can update it to obtain a proof that
the first t + 1 steps have been executed correctly, without having to store in memory the
entire trace of the computation so far. This makes IVC a natural fit for scenarios where
long computations must be executed reliably over time: for example, resuming a paused
computation from an intermediate verified state, or continuously auditing the correctness of
outsourced computation performed by an untrusted server or cloud.

The incremental structure of IVC is particularly well-suited to computations that are
distributed or reactive in nature: where inputs arrive over time, or are jointly held by multiple
parties that collaborate to carry out the computation. In this work we extend the scope of
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IVC to encompass such distributed and reactive models of computation, bringing the benefits
of incremental verification to a setting that arguably stands to gain from it the most. We
construct IVC for massively parallel computation (MPC), streaming algorithms and PRAM.
Our main technical tool is updatable hash-and-BARG for NP(UpBARGs), a generic building
block that we believe is of independent interest: it allows us to construct IVC for models
where we can prove the correctness of a single computation step.

IVC for reactive and distributed computation. An IVC scheme consists of a prover and
a verifier. The prover is intended to run alongside the computation whose correctness it
proves, so it is important for the prover to have low overhead in terms of space, and for
distributed computations, also in terms of communication and rounds. At each point in
time, the prover holds a proof that the computation has executed correctly so far, and as the
computation proceeds, the prover updates the proof. The interface to the prover consists of
a proof update procedure that takes a proof πt reflecting some prefix of t computation steps,
alongside the current state of the computation stt, and returns a new proof πt+1 reflecting
t + 1 computation steps. The verifier is modeled as a sequential algorithm. Because the
input to the system could be very large (e.g., in streaming or MPC algorithms), we do not
assume that the verifier can store all of it, or even that the verifier can store a single global
state of the system in its entirety. Instead, the verifier is presented with hashes h0, ht of two
states st0, stt of the computation (respectively), a number of steps t, and a proof π, and it
checks whether π is a “convincing” proof that the computation indeed reaches stt after t

computation steps from st0. We use the short-hand notation “st0
t−→ stt” for this statement.

The notions of “states” and “computation steps” depends on the exact computation model
(e.g., it can mean synchronous rounds, or a single step of a process).

The fact that the verifier is given hashes h0, ht of the states st0, stt instead of plaintext,
presents some definitional subtleties, as one cannot reconstruct the original state from its
hash value; technically, given h0, ht and t, the verifier does not even know what statement
“st0

t−→ stt” is being asserted. To resolve this we adopt definitions analogous to the one used
for RAM delegation [11, 6], where the same issue arises. Informally, the distributed IVC
schemes that we design have the following essential properties:

Succinctness: the proof is short enough to store on a single machine.
Incremental completeness: for any system states st0, stt and stt+1 such that stt transitions
to stt+1 in one computation step, if the prover is given st0, stt and a proof πt such that
the verifier accepts πt as a proof for the statement st0

t−→ stt, then the prover produces
a proof πt+1 for the statement “st0

t+1−→ stt+1”, which is also accepted by the verifier.1
Computational soundness: no poly-size algorithm2 can generate values h0, ht, h′

t, a step
number t and two proofs πt, π′

t, such that ht ̸= h′
t, but the verifier accepts both the proof

πt with h0, ht, t and the proof π′
t with h0, h′

t, t. Intuitively, this means that the verifier
cannot be convinced of two “contradictory statements”, asserting that starting from some
initial state (reflected by the hash h0), after t computation steps the system ends up in
two different states (reflected by the hashes ht ̸= h′

t).

The main and most challenging model we handle in this work is massively parallel
computation (MPC) [7, 12], where n space-bounded machines collaborate to compute over
an input initially partitioned between them. Proving the correctness of MPC computations

1 Here, by “the verifier accepts πt for st0
t−→ stt” we mean it accepts (h0, ht, t, π) where h0, ht are the

respective hash values of st0, stt.
2 That is, an algorithm that can be represented as a circuit with a polynomial number of wires. This is at

least as strong as probabilistic polynomial-time Turing machines.
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almost requires IVC: non-incremental verification typically requires access to the entire trace
of the computation at once, which in the MPC model no single machine can store. Thus,
while efficient distributed provers have already been developed for other distributed models
[1, 2], no such construction is known for MPC, even if we do not insist on IVC and are
willing to settle for a non-incremental construction. Thus, our construction of IVC for MPC
addresses not only the problem of incrementality but also the more basic problem of proving
the correctness of massively parallel computation.

We consider two use cases. (1) Reliable cloud delegation: a user with input x outsources
a heavy computation to a server farm or cloud provider, which returns both the output and
a short correctness certificate. The user (a single weak machine) hashes x once, never rereads
it, and verifies the result in polylogarithmic time in |x|. (2) Internal MPC verification: the
network itself verifies correctness so far (e.g., to detect faulty machines). Our distributed
IVC maintains a short, continuously updatable certificate that any machine can use to
verify locally against its own input. This resembles proof labeling schemes [13] but with
polylogarithmic, rather than overall linear proof growth, and with each machine verifying
independently without communication.

Our framework for constructing IVC is modular and generic: we are able to construct
IVC for practically any model of deterministic computation for which we can prove the
correctness of a single computation step. We demonstrate this by constructing, in addition
to the IVC for MPC discussed above, IVC for streaming algorithms, where a low-space single
machine processes a stream of elements that arrive over time and cannot all be stored at
once, and for PRAM algorithms in the exclusive-read exclusive-write model (EREW), which
captures parallel algorithms in shared memory. While for streaming algorithms, proving the
correctness of a single computation step is trivial (as the step itself is represented succinctly
by the state transition and the stream element), for the PRAM and MPC models we use
cryptographic proof systems called succinct non-interactive arguments (SNARGs): essentially,
these are the non-incremental analog of IVC. Specifically, for PRAM we use the existing
SNARG for PRAM of [9]. For MPC, no such construction is known, so we first construct
a SNARG for one-round MPC, and then lift it into full-fledged IVC for MPC. Unlike some
commonly used heuristically sound SNARKs (SNARGs of knowledge) and IVC [3, 10], all of
our constructions are sound under standard cryptographic assumptions.

Our main building block: updatable hash-and-BARG for NP (UpBARGs). Proving that
a computation st0

t−→ stt is correct boils down to proving the conjunction of t statements:
“for each i = 0, . . . , t− 1, the system transitions from state sti to state sti+1 in one step”. In
existing constructions of (non-incremental) SNARG from standard cryptographic assumptions
[6, 16, 4], this is done using two cryptographic tools: batch arguments (BARGs) for NP
and hash families with local openings (e.g., Merkle trees). Informally, a BARG for an NP-
language L allows us to prove the conjunction of k statements, each of the form “xi ∈ L”,
using a proof whose length grows linearly with the length of a single NP-witness, and only
polylogarithmically with the number of statements k. A hash family with local openings
allows us to hash an n-sized vector v to a short hash value h, and in addition, given an index
i, to produce a short opening ρi to the i-th index. Given only (h, i, vi, ρ), one can verify that
xi is indeed the i-th entry of the vector whose hash is h.

In prior constructions, to prove (non-incrementally) that st0
t−→ stt, the prover hashes

the vector (st0, . . . , stt) using a hash with local openings to obtain a hash value h. Then it
constructs a BARG asserting that for each i = 0, . . . , t− 1, there exist states sti, sti+1 and
openings ρi, ρi+1 such that h opens to sti, sti+1 in positions i, i + 1 (respectively), and sti

transitions to sti+1 in one step. Here, the states sti, sti+1 and the openings ρi, ρi+1 serve as
an NP-witness for the statement “the i-th step is reflected correctly in the hash h”.
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When incrementally proving the correctness of a reactive or distributed computation, we
do not know in advance what statements the prover will need to prove, as the state that the
system will reach depends on the future inputs or messages. Thus, we cannot lay out the
entire computation trace in advance, hash it, and prepare a BARG proof. To overcome this,
we design a scheme we call updatable hash-and-BARG (UpBARG), which imitates the above
hash-and-BARG paradigm while allowing both the hash and the BARG to be constructed
incrementally, together. This scheme enables us to update a hash value and a proof for a
conjunction of NP-statements on-the-fly, without advance knowledge. To use our UpBARG to
construct IVC, we must overcome another difficulty, which is that without having the entire
trace in advance, we cannot compute the openings that serve as NP-witnesses even for the
entries we already have. We show that we can compute the required openings in hindsight,
using properties of tree-based hash families with local openings. Our techniques are inspired
by the recent works on IVC for sequential deterministic computation [14, 8].

2 Brief Preliminaries

The common reference string model and computational hardness. Our work is set in
the common reference string (CRS) model. In this model, all parties have access to a string
that is sampled randomly by a trusted setup process, denoted by Gen, which takes a security
parameter λ. (This can be viewed as public randomness.) The security parameter governs
the computational resources that must be invested to break the security of the protocol:
we say that a task that involves the CRS is computationally hard if given crs←Gen(1λ), no
poly-size (in λ) adversary can succeed in the task, except with negligible probability in λ.

Batch arguments for NP (BARGs). A batch argument (BARG) [5] allows a prover to
succinctly prove the conjunction of k NP statements, where the size of the proof barely grows
with k, and is similar to the size of one witness. The interface is as follows:
P(crs,M, x1, . . . , xk, w1, . . . , wk) → (π): takes a reference string crs, a machine M,
instances x1, . . . , xk, and witnesses w1, . . . , wk, and outputs a proof π.
V(crs,M, π)→ b: takes a reference string crs, a machine M, and a proof π and outputs
an acceptance bit b.

We say a BARG is somewhere extractable if it allows the extraction of one witness from a
convincing proof π, as follows:

The crs generation procedure Gen may be called in trapdoor mode. In trapdoor mode,
Gen takes as additional input an index i ∈ [k], called the binding index. It outputs a pair
(crs, tdi), where td is a trapdoor that can later be used to recover the i-th witness. In
trapdoor mode, the Gen procedure has a property called index hiding: given crs (without
tdi), it is computationally hard to find the binding index i.
The BARG has the somewhere argument of knowledge property: There exists an efficient
auxiliary extraction procedure, E(tdi,M, π)→ wi, which satisfies the following. Suppose
we call Gen in trapdoor mode with a binding index i, and obtain (crs, tdi). Given only
crs, it is computationally hard to find a proof π that is accepted by the verifier, such that
when we extract a witness wi using E(tdi,M, π), we have M(xi, w) ̸= 1.

3 Technical Overview

We give an overview of our distributed IVC constructions, with emphasis on the MPC model.
Our framework for constructing IVC is generic and quite simple once we have (1) a SNARG
for one-step computations in the model, and (2) an updatable hash-and-BARG scheme.
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3.1 Defining and Using Updatable Hash-and-BARG

An updatable hash-and-BARG (UpBARG) is defined with respect to some hash family with
local openings. It consists of three algorithms, (Gen,U ,V), where Gen is a standard CRS
generation algorithm, and U ,V are update and verification algorithms, respectively. The
syntax for the update and verification algorithms is as follows:
U(hk, crs,M, H, Π, x, w)→ (H∗, Π∗): takes as input a hash key hk, a common reference
string crs, a Turing machine M, a hash value H, a proof Π, and a new statement x and
witness w, and outputs a hash value H and a new proof Π∗.
V(hk, crs,M, H, Π) → b: takes a hash key hk, a common reference string crs, a Turing
machine M, a hash value H, and proof Π, and outputs an acceptance bit b ∈ {0, 1}.

Our UpBARG satisfies the standard succinctness and index hiding properties of BARGs
(see Section 2), but it has stronger completeness and argument of knowledge properties:

Incremental completeness: if V accepts (hk, crs,M, H, Π), and M(x, w) = 1, then it also
accepts (hk, crs,M, H∗, Π∗), where (H∗, Π∗) = U(hk, crs,M, H, Π, x, w).
Somewhere argument of knowledge: upon using the trapdoor version of Gen, with binding
index i, the extractor E extracts not only an instance-witness pair (x, w), but also an
opening ρ proving that H indeed opens to x in the index i.

Supporting consistency checks. Our IVC requires the ability to claim that two extracted
instances are consistent with each other, for a definition of “consistent” that is supplied by the
user. To that end, we extend the syntax above to feed the update and verification algorithms
additional inputs: a Turing machine C specifying the consistency check, and a “last instance”
x−. Our incremental completeness guarantee in this case holds whenever C(x−, x) = 1. The
extractor of the somewhere argument of knowledge guarantee now additionally extracts a
previous instance x− and a respective opening, such that: (1) H opens to x− in location
i− 1 and this is proved by said opening, and (2) C(x−, x) = 1.

From UpBARG to IVC. We now aim to incrementally certify the correctness of execution
of an ongoing computation, denote it by M, where we wish the proof updating procedure to
be done in the same model as M. Given a SNARG for M which prover’s run in the same
model, the UpBARG provides the required building block fairly directly. Let Gen,P,V be a
SNARG scheme in which we are able to prove (within the computation model) the correctness
of one step sti → sti+1. LetMV be the non-deterministic machine which verifies the SNARG
proof. That is, on inputs (x, w), MV interprets x as (sti, sti+1), and w as a SNARG-proof
π for the transition sti → sti+1, then it applies the SNARG verifier and accepts or rejects
accordingly.

The IVC prover runs alongside M and updates an UpBARG proof Π for the machine
MV , and whenever the algorithm transitions from state st to state st′, it uses P to prove
st→ st′ and then updates Π with the instance-witness pair ((st, st′), π). We use consistency
checks to ensure that every two consecutive statements overlap on their last and first states,
respectively, to prevent a situation where we correctly assert that “st1 → st2” and then
“st′

2 → st3”, but st2 ̸= st′
2, so we do not truly prove that st1

2−→ st3. Consistency checks
allow us to force st2 = st′

2, so that the conjunction of all statements together asserts the
correctness of the entire multi-step computation from the initial state to the current one.

DISC 2025
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3.2 SNARG for One-Round Massively Parallel Computation
Our generic “SNARG-to-IVC via UpBARG” method can lift a SNARG for one computation
step in a computational model into a full IVC for that model. However, for the MPC model,
no SNARG (even for a single round) was known prior to our work. We outline our construction
of such a SNARG, using UpBARGs again.

One MPC round as a RAM program. We observe that one round of MPC on n machines
can be described as a RAM program, which takes a vector of the machines’ initial states
(st(1), . . . , st(n)), and outputs the machines’ states in the end of the round ((st′(1), . . . , st′(n)).
Each state st(i) or st′(i) is an s-bit vector, where s is the space bound of an individual
machine. To construct a SNARG for one-round-MPC, we imitate a SNARG for the program
above. However, while a RAM program is executed on a single machine that can access any
place in its random-access memory, in the MPC model, the “memory” is partitioned across
the n machines. Fortunately, existing RAM SNARGs have the property that constructing
the proof does not require access to the entire memory configuration: it is enough to have
a hash with local openings of the memory, and openings to the locations that are accessed
by the algorithm in each step. Thus, to construct our desired RAM-SNARG-like proof for
the MPC model, we need to go through the following three stages: (1) Obtain a hash of
the state vector (st(1), . . . st(n)); (2) For each machine i ∈ [n], obtain openings of the above
hash value to the messages mi

1, . . . , mi
k (where k ≤ s) that machine i receives during the

round3; and (3) Using the openings, construct a SNARG proof which proves the transition
(st(1), . . . , st(n))→ (st′(1), . . . , st′(n)). The main challenge in this scheme is that each stage
must be implemented in the MPC network: we do not truly have random access to the state
assignments, because these are actual states of individual machines. For all three stages,
our solution is based on having the n machines simulate some process on a tree-structured
network. This network is an s-ary tree with n leaves which represent the states of the n actual
machines, and the rest of the nodes are virtual nodes, simulated by the n real machines.

Using a virtual tree-structured network. To obtain a hash of the state assignment
(st(1), . . . , st(n)), we aggregate the hash up the tree: the leaves send their state to their
parents, and each inner node, upon receiving values from its s children, hashes the values it
received and sends them up to its parent. The root of the tree then obtains a hash of the
entire state assignment. In order for each machine i ∈ [n] to obtain an opening to its state
st(i), we proceed this time down the tree, with each inner node receiving from its parent
a partial opening down to its index, extending it to an opening for each of its children’s
indices, and sending each extended opening to the corresponding child. Each inner node
is able to extend the opening because it is the one that hashed all of its children’s values
together. Eventually, each machine i ∈ [n] receives from its parent a complete opening
down to index i. Finally, we construct a SNARG proof for the alleged RAM computation
(st(1), . . . , st(n)) → (st′(1), . . . , st′(n)). To do so, we first observe that this transition is
defined by n separate computations, and for each i ∈ [n], we prove that when the network
state assignment is (st(1), . . . , st(n)), the next state of machine i is st′(i). Each such statement
can be proved by a SNARG computed at machine i, as follows. Let j be a machine that sends
message mi

j to machine i during the round. Recall that after the previous stage, machine j

3 We assume for simplicity that the messages each machine sends are stored as part of its state at the
beginning of the round.
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has an opening from the global hash to its state st(j). Machine j now computes an opening
from st(j) to mi

j and sends this opening to machine i.Each machine, upon receiving these
openings, uses a RAM SNARG to prove that its transition st(i)→ st(i + 1) is legal.

The remaining challenge is to aggregate the individual SNARG proofs of the machines into
one global succinct proof while maintaining soundness. To do this we use the virtual network
again: we proceed up the tree, with each node sending its current proof up to its parent.
Upon receiving the s proofs from its children, each inner node uses an UpBARG to obtain a
proof of the conjunction of its childrens’ statements. Finally, at the root of the tree, we obtain
our one succinct proof for the entire transition (st(1), . . . , st(n))→ (st+(1), . . . , st+(n)).
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