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Abstract
In response to the impossibility of solving the consensus problem in asynchronous systems subject
to failures, various relaxations of the consensus problem have been proposed, including approximate
agreement, crusader agreement, gather, and reliable broadcast. Some are interesting in their own
right while others are useful building blocks for solving other problems. We focus on message-passing
systems of n processes, up to f of which can experience malicious (Byzantine) failures. These
problems all require that n > 3f and they frequently have fairly simple and efficient algorithms when
n > 5f . Challenges arise when considering resilience between 3f + 1 and 5f . For instance, nearly
twenty years elapsed between the discovery of an approximate agreement algorithm for n > 5f [10]
and one for n > 3f [1]. A stumbling block could be too much focus on looking for algorithms
in a certain natural and intuitive form, which we call canonical (asynchronous) rounds. In such
an algorithm, each process repeatedly sends a message containing its entire state tagged with a
round number, then waits to receive n − f messages with that same round number, does some local
computation and proceeds to the next round number. The n > 5f approximate agreement algorithm
is in canonical round form but the n > 3f one is not.

For algorithms in canonical round form, an obvious way of measuring time is the number of
canonical rounds until the algorithm completes. However, this approach does not apply to other
algorithms, such as those in which processes wait to receive a certain number of messages that
have other properties besides simply having a certain round number. Attempts to rewrite these
latter algorithms in canonical round form can result in drastically increased round complexity. This
blow-up in the round complexity is inherent, as we show in this paper that for a wide set of problems,
there is no algorithm in canonical round form that has a finite upper bound on the number of rounds
if n ≤ 5f . In contrast, the standard way of measuring time results in constant time complexity.

We first show the impossibility of a bounded number of canonical rounds for a generic problem
that captures the key properties needed in the proof. The result then follows immediately for, most
notably, crusader agreement and flavors of approximate agreement. We then show via reductions
that the same result holds for reliable broadcast and gather, since there are crusader agreement
algorithms that use reliable broadcast and gather with no round overhead.
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1 Introduction

Modern geo-distributed systems are often modeled as a set of n asynchronous processes
that communicate by sending and receiving messages; the possibility of arbitrary failures is
captured by assuming that f of the processes might be malicious (Byzantine) and deviate
from their algorithms or even collude. While traditional consensus cannot be solved in this
model, even when f = 1 [14], relaxations of it are solvable, e.g., crusader agreement [9],
approximate agreement [10], reliable broadcast [5], and gather [1, 7]. Solutions for these
problems play a key role in Byzantine fault tolerance in asynchronous systems.

The resilience needed to solve a task in such a system is the relation between the total
number of processes, n, and the maximal number of Byzantine processes, f . It is known
that a resilience of n > 3f is necessary and sufficient for solving many consensus-related
problems. However, finding algorithms that have the optimal resilience can be challenging.
For example, the seminal paper defining the approximate agreement problem [10] proved
that n > 3f is a lower bound on the resilience but the algorithms in that paper only have
resilience n > 5f . Finding an algorithm with the optimal resilience, that is, an algorithm
that only assumes n > 3f , has taken about twenty years [1].

We believe that a stumbling block to obtaining these algorithms is the inclination to look
for algorithms that work in canonical rounds, a notion first mentioned by Fekete [11]. These
are full-information algorithms, in which a process always sends all the information it has
received so far, that proceed in asynchronous rounds. In each round r, a process p sends
an r-message with the information it has received so far. Then, process p waits to receive
r-messages from any n − f distinct processes, changes state and proceeds to round r + 1.
After some number of rounds S, process p decides on a value that is some function of the
information it has received, and stops sending or receiving messages.

Assuming this communication pattern seems innocuous; indeed, what else can a process
do? Fekete even claims that “this form of protocol is completely general” [12]. However,
several widely-used algorithms employ variations on this communication pattern, by waiting
to receive a certain number of messages that satisfy a certain property, not just any set of
n − f messages. For instance, in Bracha’s reliable broadcast algorithm [5], the sender sends
an initial message containing its input to all processes. Each process waits to receive an
initial message, or (n + f)/2 echo messages for a common value, or f + 1 ready messages for
a common value, and then sends an echo message for the value. Each process then waits to
receive (n + f)/2 echo messages for a common value or f + 1 ready messages for a common
value, and then sends a ready message for the value. Once a process has received 2f + 1
ready messages for the same value, it accepts that value.

Bracha’s algorithm can be restructured to use canonical rounds. Since processes must
move to the next round after receiving n − f messages for the current round, null messages
are sent as placeholders while waiting to receive enough messages of a required type. The
resulting algorithm reveals an interesting property: The number of canonical asynchronous
rounds required is unbounded. The reason is that, even with a correct sender, the sender’s
initial message can be delayed arbitrarily long, while canonical rounds consisting largely
of null messages continue to advance. In contrast, the canonical round version of Bracha’s
algorithm, like the original, has bounded (in fact, constant) time complexity, measured as the
maximum real time elapsed until termination assuming every message sent between correct
processes is delivered within one time unit [3,4]. The reason is that while Byzantine processes
are “rushing” the correct processes through many canonical rounds, messages between correct
processes are pending, and until they arrive less than one time unit can elapse.
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This undesirable behavior is not caused simply by a poor conversion into canonical rounds.
On the contrary, we prove in this paper that this behavior is inherent for a wide collection
of fundamental problems. First, we show that any algorithm for a generic problem among
n ≤ 5f processes has an execution with an unbounded number of canonical rounds. We then
show that crusader agreement, approximate agreement on the real numbers, and approximate
agreement on graphs are all special cases of the generic problem, which implies the same
impossibility result for these problems. In particular, this explains why the code for the
n > 3f approximate agreement in [1] cannot be structured in canonical rounds. We observe
that the approximate agreement algorithm for n > 5f in [10] and the crusader agreement
algorithm for n > 5f in [4] both employ a bounded number of asynchronous canonical rounds,
showing that requiring n to be at most 5f is necessary for the impossibility result.

To derive the same impossibility result for reliable broadcast and gather, we rely on the
fact that they can be used to solve crusader agreement with little to no overhead.

To summarize, our main contribution is proving that canonical round algorithms for
certain problems require an unbounded number of rounds, for Byzantine fault-tolerance
with resilience n ≤ 5f . The impossibility result holds for several important building blocks,
including crusader agreement, reliable broadcast and gather, as well as for approximate
agreement on the real line and on graphs. This points to the limitations of round-based
asynchronous algorithms, both as a design principle and as a way to measure time, at least
for resilience in the range [3f + 1, 5f ].

2 Canonical Round Algorithms have Unbounded Round Complexity

We assume the standard asynchronous model for n processes, up to f of which can be faulty,
in which processes communicate via reliable point-to-point messages (cf., e.g., [4]). We
consider malicious (or Byzantine) failures, where a faulty process can change state arbitrarily
and send messages with arbitrary content.

Informally, an execution is a sequence of alternating configurations (states of the processes
and in-transit messages) and events (WakeUp’s and message deliveries). If α and β are
executions and X is a set of processes, we say the executions are indistinguishable to X,
denoted α

X∼ β, if, for each process p in X, p has the same initial state and experiences the
same sequence of events in α as in β.

An algorithm for n processes, f of which may be faulty, is in canonical round format and
decides in S rounds if it operates as follows. Every message sent is labeled with the current
round number of the sender, starting with 1. When a process wakes up, it sends a message
containing its initial state to all the processes. Once a process receives n − f messages for the
current round, it increments its round counter and sends a message containing its initial state
and the sequence of messages it has received to all the processes. Once a process reaches
round S, it decides based on all the messages it has received.

Our result is proved for a nontrivial convergence problem in which there are at least
two possible input values x0 and x1 and at least two decision values d0 and d1, such that
if all correct processes have input xi, then all correct processes must decide di, for i = 0, 1
(validity), and if a correct process decides d0 in an execution, then no correct process can
decide d1 in the same execution (agreement).

▶ Theorem 1. For any canonical round algorithm that solves a nontrivial convergence
problem with n ≤ 5f and for any integer K ∈ N, there exists an execution and a correct
process that does not decide by round K.

DISC 2025



46:4 Communication Patterns for Optimal Resilience

Proof. Assume towards contradiction that there exists a nontrivial convergence canonical
round algorithm with n ≤ 5f and some K ∈ N such that in every execution, all correct
processes decide by the end of round K.

For simplicity, we assume n = 5f , and divide the processes into five disjoint sets of f

processes each: A, B, C, D, E. We consider the following initial configurations:
Denote by C0 the initial configuration such that processes in groups B, C, D, E are correct
and processes in group A are Byzantine. All correct processes begin with input 0.
Denote by C1 the initial configuration such that processes in groups A, B, D, E are correct
and processes in group C are Byzantine. All correct processes begin with input 1.
Denote by C2 the initial configuration such that processes in groups A, B, C, D are correct
and processes in group E are Byzantine. Processes in groups B, C begin with input 0,
and processes in groups A, D begin with input 1.

We construct three executions α0, α1, α2 starting at the initial configurations C0, C1, C2

respectively, such that α1
A,D∼ α2

B,C∼ α0. Each execution is constructed as follows:
α0: The execution begins with WakeUp events for all processes in A, B, C, E; call this
part of the execution α0

0. Next appear (n − f)2 receive events in which each of the n − f

processes in A, B, C, E receives the n − f round 1 messages sent by the processes in A,
B, C, E. Since |A ∪ B ∪ C ∪ E| = 4f = n − f , the processes complete round 1 and send
their round 2 messages. Call this part of the execution α1

0. Similarly, define α2
0 through

αK
0 , so that processes receive round r messages and send round r + 1 messages in αr

0
with the caveat that in αK

0 , processes decide instead of sending round K + 1 messages.
The processes in B, C, E, which are correct, send messages whose content is determined
by the algorithm; the contents of the messages sent by the processes in A, which are
Byzantine, are specified below. Note that processes in D take no steps in α0 even though
they are correct; consider them as starting late, after the other processes have completed
K rounds.
α1: This execution and its partitioning into α0

1 through αK
1 is defined analogously to α0,

but with processes in A, C, D, E exchanging messages, those in C being Byzantine, and
those in B starting late.
α2: This execution and its partitioning into α0

2 through αK
2 are similar to the previous

executions but with some key differences. α0
2 consists of WakeUp events for all the

processes. α1
2 consists of (n − f)2 + f receive events in which each of the n − f correct

processes receives a carefully selected set of n − f round 1 messages and each faulty
process takes a step in order to send a round 2 message. In particular, (correct) processes
in A, D receive round 1 messages from processes in A, C, D, E, while (correct) processes
in B, C receive round 1 messages from processes in A, B, C, E. Similarly, define α2

2
through αK

2 . The contents of the messages sent by the (Byzantine) processes in E are
defined below; unlike in α0 and α1, the round r messages sent to processes in A, D by a
faulty process are not the same as those sent to processes in B, C by that process.

We now specify the messages sent by the faulty processes in each round r, 1 ≤ r ≤ K,
of the three executions. In α0, a faulty process pi ∈ A sends the round r message sent by
the corresponding correct process pi in α2. In α1, a faulty process pi ∈ C sends the round r

message sent by the corresponding correct process pi in α2. Finally, in α2, a faulty process
pi ∈ E sends to the correct processes in B, C the round r message sent by the corresponding
correct process pi in α0, and to the correct processes in A, D the round r message sent by
the corresponding correct process pi in α1.
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Recall that αi = α0
i . . . αK

i for i = 0, 1, 2. Denote α0
i α1

i . . . αr
i by α0:r

i for i = 0, 1, 2 and
0 ≤ r ≤ K. Claim 2, implying that α0 and α2 are indistinguishable to processes in B, C

through round K, and Claim 3, implying that α1 and α2 are indistinguishable to processes
in A, D through round K, can be proved by induction.

▷ Claim 2. For each r, 0 ≤ r ≤ K, (a) α0:r
0

B,C∼ α0:r
2 and (b) the same set of messages are in

transit from A, B, C, E to B, C in the last configurations of α0:r
0 and α0:r

2 .

▷ Claim 3. For each r, 0 ≤ r ≤ K, (a) α0:r
1

A,D∼ α0:r
2 and (b) the same set of messages are in

transit from A, C, D, E to A, D in the last configurations of α0:r
1 and α0:r

2 .

From the validity property of the nontrivial convergence problem, by the end of α1,
correct processes in groups A, D must decide 1. Since α1

A,D∼ α2, the corresponding correct
processes in these groups must decide 1 by the end of α2. Similarly from validity, by the
end of α0 the correct processes in groups B, C must decide 0. Since α0

B,C∼ α2, processes in
groups B, C must decide 0 by the end of α2 as well. This is in contradiction to the agreement
property of the nontrivial convergence problem for execution α2. ◀

3 Applications of Theorem 1

Crusader agreement [9] with input set V ensures that if all correct processes start with
the same value v ∈ V , they must decide on this value, and otherwise, they may pick an
undecided value, denoted ⊥. If all correct processes start with v ∈ {0, 1} they must decide v,
and if a correct process decides v ∈ {0, 1}, the other correct processes decide either v or ⊥.
Therefore, crusader agreement is a nontrivial convergence problem with 0 and 1 being the
two distinguished inputs and the two distinguished decisions, which implies:

▶ Corollary 4. Any canonical round algorithm that solves crusader agreement with n ≤ 5f

has an execution in which a correct process does not decide by round K, for any integer
K ∈ N.

Crusader agreement is a special case of connected consensus [4], with parameter R = 1.
It is easy to see that connected consensus for any R ≥ 1 is a nontrivial convergence problem,
and as a special case, so is gradecast [13].

Approximate agreement on the real numbers with parameter ϵ > 0 [10] is defined
as follows. Processes start with arbitrary real numbers and correct processes must decide on
real numbers that are at most ϵ apart from each other. Decisions must also be valid, i.e.,
contained in the interval of the inputs of correct processes. To show approximate agreement
is a nontrivial convergence problem, choose any two real numbers whose difference is greater
than ϵ as the two distinguished inputs and two distinguished decisions. This implies:

▶ Corollary 5. Consider a canonical round algorithm that solves ϵ-approximate agreement
with n ≤ 5f . If the input range includes v0 and v1 such that |v1 − v0| > ϵ, then there is an
execution in which some correct process does not decide by round K, for any integer K ∈ N.

A similar result can be shown for approximate agreement on graphs [8], provided
that the graph has two vertices that are at distance 2 apart.

Reliable broadcast [5] and its weaker variant consistent broadcast [6] are defined
with one designated sender process s. The sender has an input value v that it wants to
broadcast. Processes may terminate by accepting a message from the sender. Consistent
broadcast ensures that if the sender s is correct then eventually all correct processes accept

DISC 2025
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s’s input (validity), and all correct processes that accept a value from sender s, accept the
same value (agreement). Reliable broadcast further ensures that if some correct process
accepts a value from s then eventually all correct processes accept a value from s (relay).

Consider the following algorithm for crusader agreement, assuming n > 4f , which uses n

concurrent instantiations of consistent broadcast. Each process consistently broadcasts its
input and then waits to accept values from n − f consistent broadcast instances. If it accepts
n − 2f copies of some value v, then it decides v, otherwise it decides ⊥. Validity for crusader
agreement is immediate since when all correct processes start with v, they all accept at least
n − 2f copies of v and thus decide v. To argue agreement, assume for contradiction that one
correct process accepts n − 2f copies of v and another correct process accepts n − 2f copies
of w ̸= v. By the agreement property of consistent broadcast, these messages are broadcast
by different processes, and so n ≥ 2(n − 2f), which implies n ≤ 4f , a contradiction.

Note that the algorithm simply waits for the termination of n − f out of n concurrent
invocations of consistent broadcast. Thus, a consistent broadcast algorithm that terminates
within K canonical rounds would yield a crusader agreement algorithm that terminates
within K canonical rounds, contradicting Corollary 4. This implies:

▶ Corollary 6. Any canonical round algorithm for consistent or reliable broadcast, with
n ≤ 5f , has an execution in which a correct process does not terminate by round K, for any
integer K ≥ 1.

Gather [1,2,7,13] is an extension of consistent broadcast in which all processes broadcast
their value, and accept values from a large set of processes. Beyond properties inherited from
consistent broadcast, most notably, that if two correct processes accept a value from another
process, it is the same value, gather also ensures that there is a common core SC of n − f

values that are accepted by all correct processes.
A very simple transformation shows that a gather algorithm can be used to solve crusader

agreement, with no extra cost: Process pi gathers the input values in a set Si, and if some
value v appears at least |Si| − f times in Si, then it decides on v; otherwise, it decides on
⊥. A counting argument shows that a value appearing |Si| − f times in a correct process
pi’s variable Si must appear at least n − 2f times in the common core SC . Since at most
one value can appear n − 2f times in SC , all correct processes that decide on a non-⊥ value
decide on the same value. Note that the transformation does not add any communication on
top of the gather submodule. Thus, a gather algorithm that terminates within K canonical
rounds would yield a crusader agreement algorithm that terminates within K canonical
rounds, contradicting Corollary 4. This implies:

▶ Corollary 7. Any canonical round algorithm for gather with n ≤ 5f has an execution in
which some correct process does not terminate by round K, for any integer K ≥ 1.

4 Discussion

We have shown that for many important building blocks for Byzantine fault-tolerance with
maximal resilience, canonical round algorithms require an unbounded number of rounds.
Given that every round requires all-to-all communication, this also means an unbounded
number of messages, although many of them are expected to be empty. For crash failures,
there is an approximate agreement algorithm [10] that works in a logarithmic number of
canonical rounds when n > 2f (which is the optimal resilience). Thus the anomaly of
requiring an unbounded number of canonical rounds when resilience is optimal does not
(always) occur with crash failures.
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