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Abstract
We study robust and efficient distributed algorithms for building and maintaining distributed data
structures in dynamic Peer-to-Peer (P2P) networks. P2P networks are characterized by a high level
of dynamicity with abrupt heavy node churn (nodes that join and leave the network continuously
over time). We present a novel algorithmic framework to build and maintain, with high probability, a
skip list for poly(n) rounds despite a churn rate of O(n/ log n), which is the number of nodes joining
and/or leaving per round; n is the stable network size. We assume that the churn is controlled
by an oblivious adversary that has complete knowledge and control of what nodes join and leave
and at what time and has unlimited computational power, but is oblivious to the random choices
made by the algorithm. Importantly, the maintenance overhead in any interval of time (measured
in terms of the total number of messages exchanged and the number of edges formed/deleted) is
(up to log factors) proportional to the churn rate. Furthermore, the algorithm is scalable in that
the messages are small (i.e., at most polylog(n) bits) and every node sends and receives at most
polylog(n) messages per round.

To the best of our knowledge, our work provides the first-known fully-distributed data structure
and associated algorithms that provably work under highly dynamic settings (i.e., high churn rate
that is near-linear in n). Furthermore, the nodes operate in a localized manner.

Our framework crucially relies on new distributed and parallel algorithms to merge two n-element
skip lists and delete a large subset of items, both in O(log n) rounds with high probability. These
procedures may be of independent interest due to their elegance and potential applicability in other
contexts in distributed data structures.

Finally, we believe that our framework can be generalized to other distributed and dynamic data
structures including graphs, potentially leading to stable distributed computation despite heavy
churn.
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1 Introduction

Peer-to-peer (P2P) networks underpin many modern distributed systems for resource sharing,
storage, messaging, and content distribution (e.g., Gnutella, Skype, BitTorrent, Signal). They
are highly dynamic: nodes join and leave continuously (churn), and links change arbitrarily,
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leading to frequent topological disruptions. Measurements of real-world P2P networks (see
for example [10]) show that up to 50% of peers may be replaced within an hour, yet network
size often remains relatively stable.

P2P systems support diverse tasks such as data storage and retrieval [16, 9], collaborative
filtering [7], spam and malware detection [8, 18], and privacy-preserving data management [11].
Efficient distributed data structures such as distributed hash tables (e.g., CAN, Chord, Pastry,
Tapestry) achieve good load balancing but offer little control over data placement and limited
resilience to failures. Structured overlays like Skip Graphs [1], SkipNets [14], Rainbow Skip
Graphs [12], and Skip+ [15] allow ordered search and have been formally shown to be resilient
to a limited number of faults (or equivalently small amounts of churn).

However, none of these data structures have theoretical guarantees of being able to work
in a dynamic network with a very high adversarial churn rate, which can be as much as
near-linear (in the network size) per round. This is a fundamental limitation for dynamic large-
scale P2P systems, where it is essential to (i) preserve structural integrity, (ii) update quickly
after joins and deletions, and (iii) answer queries reliably, all while keeping maintenance work
proportional to the churn. Rebuilding from scratch is too costly; maintaining robustness
under heavy churn without sacrificing simplicity or scalability remains an open challenge.

In this work, we address this gap by designing the first distributed skip list with rigorous
guarantees under near-linear churn, ensuring fast updates, query correctness, and resource-
competitive maintenance.

2 Preliminaries

Model: Dynamic Networks with Churn. We adopt the dynamic network with churn (DNC)
model [4, 3]: a synchronous message-passing network of fixed size n, controlled by an oblivious
adversary that may replace up to O(n/ log n) nodes per round after an initial B = β log n-
round bootstrap phase with no churn. Each node has a unique ID in [0, poly(n)], stores one
item, and can send/receive at most polylog(n)-bit messages over at most polylog(n) links per
round. New nodes are connected to distinct existing nodes to avoid congestion. The adversary
specifies a sequence (Vt)t≥0 with |Vt| = n for all t; joins and leaves are arbitrary subject to
the churn bound. Nodes may create/delete edges; a bidirectional link (u, v) exists if both
endpoints exchange invitation/acceptance messages, and is removed when either endpoint
leaves or sends a delete message. For clarity, we focus here on the fixed-n, single-item case;
in the full version, we generalize our algorithms to handle multiple items per node and a
network size that may vary over time [2].

Problem Statement. We aim to maintain an approximate distributed data structure storing
all items in the network, resilient to high adversarial churn. Insertions and deletions complete
in O(log n) rounds, and membership queries q(x, r, s) (initiated at source s in round r) must
be answered within Q = O(log n) rounds. A query returns “Yes” if x is present for the
entire interval [r, r + Q], “No” if absent for the entire interval, and may return either answer
otherwise. This relaxed consistency, or eventual correctness, allows scalability and liveness
under churn.

We require a dynamic formulation of resource-competitiveness [6]: the total work (number
of messages and edge addition/deletions) over any interval is within a polylog(n) factor of
the churn in that interval (allowing an O(log n) lookback to capture delayed effects).

We fist show how to maintain an approximate distributed skip list, and then we extend
our techniques to skip graphs and, in the full version, to general pointer-based distributed
data structures.
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3 Our Contribution

We first present our main result: the design and analysis of a churn-resilient distributed skip
list with provable guarantees under near-linear adversarial churn. We then show how our
techniques extend to more complex structures, including skip graphs, and, more generally, any
pointer-based distributed data structure; we refer to the extended version for full details [2].

Main Result. Our dynamic distributed skip list data structure is architected using multiple
“virtual networks” (see Figure 1). Each peer node can participate in more than one network
and in some cases more than one location within the same network. We use the following
network structures.
The Spartan Network S is a wrapped butterfly network that contains all the current nodes.

This network can handle heavy churn of up to O(n/ log n) nodes joining and leaving in
every round [5]. However, this network is not capable of handling search queries.

Live Network L is the skip list network on which all queries are executed. Some of the
nodes in this network may have left. We require such nodes to be temporarily represented
by their replacement nodes (from their respective neighbors in S).

Buffer Network B is a skip list network on which we maintain all new nodes that joined
recently.

Clean Network C is a skip list network that seeks to maintain an updated version of the
data structure that includes the nodes in the system.
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Figure 1 Schematic representation of the architecture and the Maintenance cycle described in
Algorithm 1. Colored nodes in L and C are nodes that have been removed by the adversary and
that are being covered by some committee of nodes (of the same color) in S.

Moreover, in all skip lists, when a node exits the system, it is operated by a selected group
of nodes. In the course of our algorithm description, if a node u is required to perform some
operation, but is no longer in the system, then its replacement node(s) will perform that
operation on its behalf. Note further that some of the replacement nodes themselves may
need to be replaced. Such replacement nodes will continue to represent u. The protocol
assumes a short (Θ(log n) round) initial “bootstrap” phase, where there is no churn1 and it

1 Without a bootstrap phase, it is easy to show that the adversary can partition the network into large
pieces, with no chance of forming even a connected graph.
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initializes the underlying network. More precisely, the bootstrap is divided in two sub-phases
in which we (i) build the underlying churn resilient network in O(log n) rounds and, (ii) we
build the skip lists data structures L and C (initially L = C) in O(log n) rounds; after this,
the adversary is free to exercise its power to add or delete nodes up to the churn limit and
the network will undergo a continuous maintenance process. The overall maintenance of the
dynamic distributed data structure goes through cycles. Each cycle c ≥ 1 in Algorithm 1
consists of four sequential phases. Without loss of generality, assume that initially L and C
are the same. We use the notation L(c) (resp. S(c), C(c),B(c)) to indicate the network L (resp.
S, C,B) during the cycle c ∈ N, when it is clear from the context we omit the superscript to
maintain a cleaner exposition.

Algorithm 1 Overview of the distributed skip list maintenance process.

1 Starting from a skip list L(1) = C(1)

2 foreach Cycle c ≥ 1 do
3 Phase 1 (Deletion): All the replacement nodes in C(c) are removed. Note that

nodes that leave the system during the replacement process may remain in C(c).
4 Phase 2 (Buffer Creation): All the new nodes that were churned into the

system since Phase 2 of the previous cycle join together to form B(c).
5 Phase 3 (Merge): The buffer B(c) created in Phase 2 is merged into C(c), i.e.,

C(c+1) ← C(c) ∪ B(c).
6 Phase 4 (Update): Update the live network L(c) with the clean network C(c),

i.e., L(c+1) ← C(c+1).
7 end

Each phase of Algorithm 1 requires O(log n) rounds w.h.p. In particular, the deletion and
merge phases implement two novel parallel and fully distributed protocols to delete a batch
of Θ(n) and merge two skip lists of Θ(n) elements in O(log n) rounds w.h.p, respectively.
This improves over prior O(k log n)-round bounds to perform these operation on a batch of
k elements in skip-lists. We believe that some ideas from our results could be used in the
centralized batch parallel setting to quickly insert batches of new elements in skip lists-like
data structures (see e.g.,[17]) and in the fully dynamic graph algorithms settings (see for
example the survey [13]) to perform fast updates of fully dynamic data structures. Indeed,
in principle (provided the right amount of parallelism), our deletion and merge algorithms
could be implemented in a parallel (centralized) setting and used to speed-up all kinds
of computations involving these specific data structures. Our major contribution can be
summarized in the following theorem.

▶ Theorem 1 (Main Theorem). Given a dynamic set of peers initially connected in some
suitable manner (e.g., as a single path) that is stable for an initial period of O(log n) rounds
(i.e., the so-called bootstrap phase) and subsequently experiencing heavy adversarial churn
at a churn rate of up to O(n/ log n) nodes joining/leaving per round, there exists a resilient
skip list, a distributed data structure that can withstand heavy adversarial churn at a rate of
up to O(n/ log n) nodes joining/leaving per round. We provide the following algorithms to
support this data structure.

An O(log n) round algorithm to construct the resilient skip list during the bootstrap phase,
a fully distributed algorithm that maintains the resilient skip list as nodes are inserted
into or deleted from the data structure with the guarantee that the data structure reflects
the updates within O(log n) rounds,
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and a membership query algorithm that any peer can invoke and can be answered with
efficiency parameter Q ∈ O(log n).

All nodes send and receive at most O(polylog(n)) messages per round, each comprising at
most O(polylog(n)) bits. Moreover, such a maintenance algorithm is dynamically resource
competitive. The maintenance protocol ensures that the resilient skip list is maintained
effectively for at least nd rounds with high probability, where d ≥ 1 can be an arbitrarily
chosen constant.

The above architecture and results extend to skip graphs and, to settings with multiple
items per node and variable network size.

▶ Corollary 2. Given a network with n nodes in which each vertex v possesses t = polylog(n)
elements in the skip list. Then maintenance protocol requires O(log n) rounds to build and
maintain a resilient skip list that can withstand heavy adversarial churn at a churn rate of
up to O(n/ log n) nodes joining/leaving per round.

▶ Corollary 3. The maintenance cycle described in Algorithm 1 can be adapted to support
skip graphs. In particular, the resulting data structure remains resilient to churn at a rate of
up to O(n/ log n) per rounds, and all operations complete within O(log n) rounds with high
probability, using at most O(polylog(n)) messages per node per round.

A General Framework for Churn-Resilient Structures. On a broader picture, the above
results can be unified under a single general framework for maintaining pointer-based data
structures under adversarial churn. Given a data structure D, we can “abstract away” the
ideas in Algorithm 1 and obtain the following abstract maintenance cycle for a generic data
structure D:
1. Delete Phase: Identify and remove corrupted, outdated, or disconnected regions of
D. Deletion ensures that inconsistencies caused by churn do not propagate through the
structure.

2. Creation Phase: Organize the set of newly arrived nodes into a provisional structure
B (the buffer data structure). The goal is to prepare these nodes for integration, typically
by arranging them into a sorted or partially structured form.

3. Merge Phase: Integrate the buffer network B into the main structure D using a
distributed merge protocol. This phase reconstructs the structure while respecting
existing invariants.

4. Update Phase: Perform any necessary local corrections, including pointer rebalancing,
level adjustments, or redundancy restoration, to finalize the integration.

Provided that we have O(T )-round distributed algorithms for each phase of the above
abstract maintenance cycle, we can maintain D against an adversarial churn rate of O(n/T )
per round.

▶ Theorem 4. Let D be a distributed pointer-based data structure maintained using our
four-phase cycle, and let T be the maximum number of rounds needed for any phase. Then
D can tolerate an adversarial churn rate of up to O(n/T ) nodes per round, while preserving
global correctness for at least nc rounds w.h.p., for any fixed constant c > 0.

Our abstract maintenance cycle allows to define classes of churn-resilient data structures in
the DNC model, where each class is characterized by the churn rate per round (thus the
maintenance cycle runtime) that the data structure can tolerate while still supporting efficient
update and query operations. Formally, let t be the maintenance cycle run time function.
We say that a distributed data structure D is t-maintainable if it can be successfully
maintained by a t-round maintenance cycle.

DISC 2025
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▶ Observation 5. Under the above general framework, every t-maintainable distributed data
structure tolerates an adversarial churn rate of O(n/t) per round.

In this brief announcment, we showed that Skip-Lists and Skip-Graphs are both O(log n)-
maintainable and that are robust against and oblivious adversarial churn rate of O(n/ log n)
per round. We conjecture that our bounds are tight, in the sense that log n is also a lower
bound for the maintenance cycles for these data structures. That is because, in order to beat
the Ω(log n) barrier we would need to solve distributed sorting faster than in log n rounds
while maintaining dynamic resource competitiveness.

This classification also raises a number of intriguing open problems. For example, it
remains unclear whether there exist distributed data structures in the DNC model that are
log log n-maintainable, and more generally, how to characterize the precise boundaries between
maintainability classes. A key challenge is to establish lower bounds on the maintenance
cycle time for fundamental distributed data structures. Do entirely new data structures need
to be designed to exploit faster maintenance cycles? We believe that our formulation of
maintainability classes in the DNC model opens up a rich landscape for further exploration.

4 Concluding remarks and discussion

In this work we proposed the first churn resilient skip list that can tolerate a heavy adversarial
churn rate of O(n/ log n) nodes per round. The data structure can be seen as a four networks
architecture in which each network plays a specific role in making the skip list resilient to
churns and keeping it continuously updated. Moreover, we provided efficient O(log n) rounds
resource competitive algorithms to (i) delete a batch of elements from a skip list (ii) create a
new skip list and, (iii) merge together two skip lists. This last result is the first algorithm
that can merge two skip lists (as well as a skip list and a batch of new nodes) in O(log n)
rounds w.h.p.. We point out that these algorithms can be easily adapted to work on skip
graphs [1, 12, 15].

In a broader sense, our technique is general and can be seen as a framework to maintain
any kind of distributed data structure despite heavy churn rate. The only requirement is
to devise efficient delete, buffer creation, merge, and update algorithms for the designated
data structure. Furthermore, this allows us to define complexity classes for the maintenance
of distributed data structure in the Dynamic Networks with Churn Model. Indeed, in this
work we showed that skip list and skip graphs belong to the class of data structure that can
tolerate a churn rate of O(n/ log n) per round.

Finally, given the simplicity of our approach, we believe that our algorithms could be
used as building blocks for other non-trivial distributed computations in dynamic networks.
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