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Abstract
The distributed Data Retrieval (DR) model consists of k peers connected by a complete peer-to-peer
communication network, and a trusted external data source that stores an array X of n bits (n ≫ k).
Up to βk of the peers might fail in any execution (for β ∈ [0, 1)). Peers can obtain the information
either by inexpensive messages passed among themselves or through expensive queries to the source
array X. In the DR model, we focus on designing protocols that minimize the number of queries
performed by any nonfaulty peer (a measure referred to as query complexity) while maximizing the
resilience parameter β.

The Download problem requires each nonfaulty peer to correctly learn the entire array X. Earlier
work on this problem focused on synchronous communication networks and established several
deterministic and randomized upper and lower bounds. Our work is the first to extend the study
of distributed data retrieval to asynchronous communication networks. We address the Download
problem under both the Byzantine and crash failure models. We present query-optimal deterministic
solutions in an asynchronous model that can tolerate any fixed fraction β < 1 of crash faults. In
the Byzantine failure model, it is known that deterministic protocols incur a query complexity of
Ω(n) per peer, even under synchrony. We extend this lower bound to randomized protocols in the
asynchronous model for β ≥ 1/2, and further show that for β < 1/2, a randomized protocol exists
with near-optimal query complexity. To the best of our knowledge, this is the first work to address
the Download problem in asynchronous communication networks.
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1 Introduction

1.1 Background and motivation
The Data Retrieval Model (DR) was first introduced in [2] to abstract the fundamental
process of a group learning from a reliable external data source, where the data source is too
large or it is too expensive to be learned individually (i.e., requires members of the group to
collaborate), and some members of the group might crash during execution or act in other
ways to deliberately sabotage the learning process. One key example of systems where this
process takes place is blockchain oracles [6, 7]. We address this Oracle data delivery process
in detail later and present a method for improving its performance using the DR model and
the protocols designed in this work.

The DR model contains two entities: (i) a peer-to-peer network and (ii) an external data
source in the form of an n bit array X. There are k peers, up to β fraction of which may
be faulty (and at least γ = 1− β fraction of which are nonfaulty). Each peer has access to
the content of the array through queries. The general class of retrieval problems consists
of problems Retrieve(f) requiring every peer to output f(X) for some computable function
f of the input array X. In this work, we focus on the most fundamental retrieval problem,
Retrieve(fid) where fid(X) = X, referred to hereafter as the Download problem1, where every
peer needs to learn the entire input X.

In [2] it is shown that deterministic Download in synchronous systems with Byzantine
faults requires Ω(βn) queries, for every β < 1. This implies that in the presence of Byzantine
faults, one cannot attain the ideal query complexity of n

γk without using randomization.
In this work, we consider Download protocols in the asynchronous setting for both the

crash and Byzantine fault models. In the asynchronous Byzantine fault setting, we prove
that, unlike the synchronous setting, where randomization can overcome the deterministic
lower bound, Ω(n) queries per peer are required when β ≥ 1/2, even for randomized protocols.
We complement this lower bound with a protocol for the β < 1/2 regime that achieves a
query complexity of Õ

(
n

(γ−β)k

)
, which, for a constant γ − β , is within log factors of the

generic lower bound of Ω(n/γk).
Turning our attention to the more benign setting of crash faults (i.e., where all peers

are honest but some β fraction may stop functioning), the picture is brighter. For this
model, it turns out that even in the asynchronous setting, one can get efficient deterministic
Download protocols that achieve the optimal query complexity of O

(
n

γk

)
, for any fraction

β < 1 of crashes.

1.2 The Model
In the Data Retrieval (DR) model, the system consists of two components. The first is a
collection of k peers, each equipped with a unique ID from the range [1, k], connected by a
complete communication network (or clique). The network provides peer-to-peer message
passing, namely, every peer can send at time t a (possibly different) message of size at most
ϕ bits to each other peer.

1 It is fundamental since every retrieval problem Retrieve(f) can be solved by first performing download
and then locally computing f(X).
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The second component of the DR model is an external data source. The source stores
an n-bit input array X = {b1, . . . , bn}. It provides the peers with read-only access, allowing
each peer to retrieve the data through queries of the form Query(i), for 1 ≤ i ≤ n. The
answer returned by the source would then be bi, the ith element in the array. This type of
communication is referred to as source-to-peer communication.

We consider asynchronous communication, where any communication (both among peer-
to-peer and source-to-peer) can be delayed by any finite amount of time. For randomized
protocols, we use the following notion of cycles.

Cycles. In the asynchronous model, there is no global notion of rounds, as each peer operates
at a different pace. Nevertheless, to describe our protocols and analyze their performance, it
is convenient to divide the local execution of each peer µ into (varying time) cycles. Each
such local cycle consists of the following stages.

Sending (0 or more) queries and getting answers.
Sending (0 or more) messages.
Waiting to receive messages.

We assume that local computation takes 0 time and can be performed at any point in a
cycle. Moreover, when waiting for messages, after every message is received, the peer can
adaptively decide whether to keep waiting for an additional message or continue to the next
cycle. Note that the local cycle r of peer µ might coincide with a different local cycle r′ of
another peer µ′.

In the absence of global time units, it is convenient to break the time axis into “virtual
blocks” by defining tr, for integer r ≥ 1, as the first time any peer started its local cycle r.

Every message is of size at most ϕ bits, where ϕ is a system parameter. Note that
throughout the paper, we either set ϕ to a specific value, or leave it as a parameter, in which
case increasing the message size parameter ϕ would result in faster protocols.

The adversary. Our analysis uses the notion of an adversary, representing the adverse
conditions in which the system operates, including the asynchronous communication and the
possibility of failures.

The adversary has two types of operation. First, it can fail up to βk peers, under the
restriction that it can only fail a peer between its cycles (or before the first cycle), meaning
that a peer can make random decisions in its current cycle without the adversary being able
to react until the end of the cycle. Second, it can set the time tr

µ,µ′ it takes a message sent
by peer µ in its local cycle r to reach peer µ′, under the restriction that it must set the time
tr
µ,µ′ for every pair of peers µ, µ′, before time tr. In other words, the adversary must set the

latency of each message sent during a cycle r before any peer starts cycle r. The adversary
can also decide when every peer starts its execution (i.e., we do not assume a simultaneous
start). Note that in the case of deterministic protocols, the notion of cycles is irrelevant, and
we consider a standard adversary that can fail a peer at any point of the execution and can
delay messages for any finite amount of time.

The adversary A selects the input data and determines the failure pattern of the peers.
In the crash failure model, the adversary’s power is limited to crashing some of the peers
in every execution of the protocol. Once a peer crashes, it stops its local execution of the
protocol arbitrarily and permanently. This could happen in the middle of operation, e.g.,
after the peer has already sent some, but perhaps not all, of the messages it was instructed by
the protocol to send out at a given point in time. In contrast, in the Byzantine failure model,
a failed peer can deviate from the protocol in arbitrary ways. We assume that the adversary

DISC 2025
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can fail at most βk peers, for some given2 β ∈ [0, 1). We let γ = 1− β, so there is (at least)
a γ fraction of nonfaulty peers in every execution. Denote the set of faulty (respectively,
nonfaulty) peers in the execution by F . (resp., H). We assume that the adversary knows
the protocol and hence can simulate it (up to random coins).

We concentrate on the following complexity measures.
Query Complexity (Q): the maximum number of bits queried by a nonfaulty peer during

the execution.
Time Complexity (T ): the time it takes for the protocol to terminate.
Message Complexity (M): the total number of messages sent by nonfaulty peers during

the execution.

We assume that queries to the source are the more expensive component in the system,
so we focus mainly on optimizing the query complexity Q. Measuring the maximum cost
per peer (rather than the total cost) gives priority to a balanced load of queries over the
nonfaulty peers.

Let us now formally define the Download problem. Consider a DR network with k peers,
where at most βk can be faulty, and a source that stores a bit array X = [b1, . . . , bn]. Each
peer is required to learn X. Formally, each nonfaulty peer µ outputs a bit array resµ, and it
is required that, upon termination, resµ[i] = bi for every i ∈ {1, · · · , n} and µ ∈ H.

In the absence of failures, this problem can be solved by sharing the task of querying all n

bits evenly among the k peers, yielding Q = Θ(n/k). The message complexity isM = Õ(nk),
assuming small messages of size Õ(1), and the time complexity is T = Õ(n/k) since Ω(n/k)
bits need to be sent along each communication link when the workload is shared.

1.3 Contributions
We present the Download problem in asynchronous communication networks, under both
crash and Byzantine failures settings. In the crash-fault setting, our deterministic results
are optimal w.r.t. to the resilience (for any β < 1) and query complexity. Notice that this
optimality also holds for randomized algorithms. In the Byzantine failure setting, we provide
deterministic and randomized lower bounds as well as upper bounds. The main results are
the following (more details can be found in [3]).
(1) Deterministic Download in Crash-Fault: We present a deterministic protocol for

solving Download problem in the asynchronous setting with at most f < k crash faults
(γ = 1 − f/k) with Q = Θ( n

γk ), T = O
(

n
ϕ + logk/f (ϕ)

)
and M = O(nk2) where ϕ is

the message size. Our result achieves the optimal query complexity for any fraction of
crash fault, β < 1.

(2) Deterministic Lower Bound in Byzantine Fault: We show that for β ≥ 1/2,
every deterministic asynchronous Download protocol that is resilient to Byzantine faults
requires Q = n.

(3) Deterministic Download in Byzantine Fault: We show that for β < 1/2, there
exists a deterministic asynchronous protocol that solves Download with Q = O(βn),
T = O

(
βn
ϕ

)
and M = O(f · n).

(4) Randomized Lower Bound in Byzantine Fault: We show that for any randomized
asynchronous Download protocol where β ≥ 1/2, there does not exist any execution in
which every peer queries less than or equal n/2 bits.

2 We do not assume β to be a fixed constant (unless mentioned otherwise).
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(5) 2-cycle Randomized Download in Byzantine Fault: We present a 2-cycle asyn-
chronous randomized protocol for Download with Q = O

(√
n

γ−β + n log n
(γ−β)k

)
and M =

O(k2) where β ≤ 1/2, and the message size is ϕ = O( n
γk ).

(6) Randomized Download in Byzantine Fault: We present a O
(

log
(

γk
ln n

))
-cycle

protocol that computes Download whp in the point-to-point model having expected
query complexity Q = O

(
n log n
(γ−β)k

)
and M = O

(
log

(
γk

ln n

)
k2

)
where β ≤ 1/2, and the

message size is ϕ = O(n).

To the best of our knowledge, this work is the first to study retrieval problems in the Data
Retrieval (DR) model under asynchronous communication. The DR model has previously
been explored in synchronous networks, most notably in [2] and the companion paper [4]. In
particular, [2] introduced the Download problem, motivated by practical applications such as
Distributed Oracle Networks (DONs), which form a crucial component of blockchain systems
and employ protocols like OCR and DORA[6, 7].

2 Application: Efficient Blockchain Oracles

Blockchain systems [8] have seen a rise in popularity due to their ability to provide both
transparency and strong cryptographic guarantees of agreement on the order of transactions,
without the need for trusted third-party entities. More general computational abilities have
also been well sought out for blockchains. Smart contracts [10] fulfill that need by providing
users of the blockchain a way to run programs on the blockchain that ensures reliable and
deterministic execution while providing transparency and immutability of both the code of
the program and its state(s). Note that since the execution is required to be deterministic,
i.e., every node must produce the same result, smart contracts are restricted to accessing
on-chain data (that has been agreed upon), as off-chain data may introduce non-determinism
to the execution.

Blockchain oracles [1, 5, 9] are components of blockchain systems that provide multiple
services that support and extend the functionality of smart contracts (and other on-chain
entities). The most important and fundamental service a blockchain oracle provides is bridging
between the on-chain network and off-chain resources [6, 7], providing smart contracts access
to external data without introducing non-determinism into their execution. We focus on this
service and artificially consider it to be the sole responsibility of a blockchain oracle. In the
remainder of this section, we explain in detail a possible application of the DR model and
the Download problem for improved query efficiency within the context of blockchain oracles.

Blockchain oracles general structure. Blockchain oracles consist of an on-chain component
and an off-chain component. The off-chain component encompasses the different data sources
that store the required external information (e.g., stock prices, weather predictions) and the
network of nodes in charge of retrieving that information and transmitting it to the on-chain
component. The on-chain component can be thought to be (but is not necessarily) a smart
contract that is responsible for verifying the validity of the report, making the information
public on the blockchain it is hosted on, and using it for its execution.

Formally, the off-chain component consists of two parts: an asynchronous3 oracle network,
with peers (nodes) vi, i ∈ [1, k], capable of exchanging direct messages among themselves, and
data sources DSj , j ∈ [1, m], each storing an array Xj of n variables in which the on-chain

3 The network is sometimes assumed to be partially synchronous in blockchain oracles.
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component is interested. Each peer can read the i-th cell from the j-th data source DSj by
invoking Query(i, j). A fraction of up to βt ≤ 1/3 of the peers may be Byzantine, and a
fraction of up to βd ≤ 1/2 of the m data sources may be Byzantine. Denote the on-chain
component by SC.

The goal of blockchain oracles, as mentioned above, is to pull information from external
sources and push a final value on-chain. There are a few difficulties that may arise when
trying to develop such a system. First, it might be the case that different data sources report
slightly different values (e.g., prices of a specific stock), even if all of them act honestly.
Moreover, corrupted data sources might provide false and even inconsistent values (providing
some nodes with value α and another with α′). The system needs to pick a final value in a
way that (1) represents the range of honest values pulled from honest data sources and (2)
malicious players (both data sources and peers) cannot force the system to pick a final value
that does not represent the range of honest values.

The Oracle Data Delivery (ODD) problem. Denote by Hds the set of honest data sources.
Let hmin(i) = minj∈H{Xj [i]} and hmax(i) = maxj∈H{Xj [i]}. The honest range of i is the
range σ(i) = [hmin(i), hmax(i)]. The ODD problem requires the on-chain SC to publish an
array of values res to the target blockchain such that res[i] ∈ σ(i), for every i ∈ [n].

A blockchain oracle protocol can generally be split into three distinct steps: (1) collecting
data, (2) reaching an agreement on the collected data, and (3) deriving and publishing a
final value. Note that this abstraction is the minimum required abstraction to capture the
operation of blockchain oracle protocols such as OCR [6] and DORA [7]4.

We now show how our Download protocols can be used to significantly reduce the cost of
the Oracle Data Collection (ODC), i.e, step (1) of blockchain oracles.

Improving ODC by blockchain oracles via Download. Current protocols perform the data
collection step by the following ODC process:
For every node:

Pick 2mβd + 1 data sources into a set ADS.
Perform oi,j ← Query(i, j), for every i ∈ [1, n] and j ∈ ADS.
Calculate the median oi ← median({oi,j | j ∈ ADS}) and proceed to step (2).

The results of [6, 7], cast in our abstract formulation, yield the following result.

▶ Theorem 1. [6, 7] The ODC process guarantees that oi ∈ σ(i) for every i ∈ [1, n] and has
total query cost O(mnk) and worst case individual query cost Q = O(mn).

Instead, we propose utilizing the guarantees of Download protocols, namely, that for an
honest data source DSj , the output of each peer is exactly Xj , to construct the following
modification of the ODC steps.

For every node, pick 2mβd + 1 data sources into a set ADS.
For every data source j ∈ ADS, run a Download protocol (denote the result for cell i

from data source j by oi,j).
Calculate the median oi ← median({oi,j | j ∈ ADS}) and proceed to step (2).

4 These protocols have many additional technical aspects, different structures, and different ways of
handling steps (2) and (3). As our focus is on improving step (1), we may w.l.o.g. assume the abstract
structure.
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It is easy to verify that this modified construction yields the following.

▶ Theorem 2. The Download-based ODC process guarantees oi ∈ σ(i) for every i ∈ [1, n]
and takes Õ(mn) total queries and Q = Õ(mn/k) w.h.p.

Note that the Download protocol presented in this paper assumes a binary input array, but
this can be extended to numbers via a relatively simple extension. However, it is important
to note that our solution relies on the following restrictive assumption. For two honest peers
v, v′, if both v and v′ issue the query Query(i, j), then they get the same result, for every
i ∈ [1, n] and honest data source j (i.e., the data does not change if queried at different
times). Getting rid of this assumption and solving the problem efficiently for dynamic data
is left as an open problem for future study.
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