Brief Announcement: Synchronization in
Anonymous Networks Under Arbitrary Dynamics

Rida Bazzi &
School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA

Anya Chaturvedi &
School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA

Andréa W. Richa &
School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA

Peter Vargas &
School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA

——— Abstract

We present the §-Synchronizer, which works in non-synchronous dynamic networks under minimal
assumptions. Our model allows for arbitrary topological changes without any guarantee of eventual
global or partial stabilization and assumes that nodes are anonymous. This deterministic synchronizer
is the first that enables nodes to simulate a dynamic network synchronous algorithm for executions
in a semi-synchronous dynamic environment under a weakly-fair node activation scheduler, despite
the absence of a global clock, node ids, persistent connectivity or any assumptions about the
edge dynamics (in both the synchronous and semi-synchronous environments). We make the
following contributions: (1) we extend the definition of synchronizers to networks with arbitrary
edge dynamics; (2) we present the first synchronizer from the semi-synchronous to the synchronous
model in such networks; and (3) we present non-trivial applications of the proposed synchronizer
to existing algorithms. We assume an extension of the PULL communication model by adding a
single 1-bit multi-writer atomic register at each edge-port of a node. We show that this extension
is needed and that synchronization in our setting is not possible without it. The J-Synchronizer
operates with memory overhead at the nodes that is asymptotically logarithmic on the runtime
of the underlying synchronous algorithm being simulated — in particular, it is logarithmic for
polynomial-time synchronous algorithms.
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1 Introduction

Modern distributed systems, such as wireless sensor networks, mobile peer-to-peer systems,
and biologically inspired swarm networks, often exhibit constantly changing and unpredict-
able communication dynamics that make achieving coordinated behavior between agents
challenging, even for simple tasks. Achieving coordinated behavior in such a setting can be
further compounded by asynchrony and agent anonymity (no identifiers). To simplify the
design of distributed algorithms, researchers developed synchronizers that can transform
algorithms designed under strong synchrony assumptions into algorithms that work correctly
under weaker assumptions [2, 19, 15]. Previous work on synchronizers considers systems in
which agents have unique identifiers and the network is either static or is dynamic for some
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time but eventually stabilizes. In contrast, this paper considers a system of anonymous agents
that communicate through a network with arbitrary dynamics, i.e., with no restrictions on
topological changes, including no assumptions on eventual (local or global) stabilization.

In such networks, three different synchrony models are considered [13]. In the synchronous
model, time is divided into stages and all nodes are active in every stage. In the semi-
synchronous model (see, e.g., [14]), time is also divided into stages, but some nodes might
not be active in a given stage. In both models, an active node executes one action — which
involves communication with their neighbors and a bounded amount of computation — per
stage, and topology changes occur only at the beginning of a stage. In other words, the semi-
synchronous mode is one where time is synchronous but nodes are activated asynchronously.
In the asynchronous model, there is no synchronization of time nor node activations, so
actions can take an arbitrary bounded amount of time to execute, and topological changes
and node activations can happen at arbitrary times.

In this paper, we introduce our Arbitrary-Dynamics Synchronizer, or d-Synchronizer
for short. The §-Synchronizer is the first deterministic synchronizer that allows algorithms
designed for a synchronous anonymous network with arbitrary adversarial dynamics to execute
correctly in a semi-synchronous anonymous, arbitrary dynamics network under a weakly-fair
node activation scheduler. Specifically, our 6-Synchronizer transforms any algorithm Agyn.
designed for a synchronous dynamic network under arbitrary edge-dynamics given by a
time-varying graph Geyne into an algorithm Agem; that correctly simulates Asyne under a
weakly-fair scheduler in a semi-synchronous dynamic network under arbitrary edge-dynamics
given by a time-varying graph Gsem;-

Unlike other synchronizers that assume eventual stabilization and for which one can
compare executions of the original algorithm and the transformed algorithm on the same
stabilized network, in our setting, there is no guarantee that the network ever stabilizes and
there is no guarantee that Gsyn. and Ggem; are identical, which should not be surprising.
This necessitates a non-triviality requirement on synchronizers for networks with arbitrary
dynamics. The overall requirements for such synchronizers are captured by the following
three general conditions (in bold), which we then indicate how they are satisfied by our
0-Synchronizer. We formalize our guarantees in Section 4.

(Correctness) The simulated synchronous execution is valid: We show that for

any Gsems and i > 0, there exists a Gyyne such that the state of each node at the end

of phase i (where phases are maintained by the synchronizer) of the semi-synchronous
execution of Ageni under Ggem; and a weakly-fair scheduler is equal to the state of each

node at the end of i-th step of a synchronous execution of Agyn. under Ggype. (Theorem 1)

(Non-triviality) Every possible outcome of a synchronous execution can be

simulated: We show that for any G,yn. and i > 0, there exists a Gsemq such that the

state of each node at the end of step ¢ of the synchronous execution of Agypn under Gyype,
is equal to the state of each node at the end of phase i in a semi-synchronous execution

of Asems under G and a weakly-fair scheduler. (Theorem 2)

(Finite termination) If the synchronous algorithm always terminates in finite

time, so do the simulated executions: We show that the synchronous execution of

Agyne terminates in finite time for Gy if and only if the semi-synchronous execution of

Ajsem: terminates in finite time for Gsepmi, which implies the condition. (Theorem 3)
While the non-triviality requirement rules out trivial solutions, e.g., in which Ggep; always
contains no edges regardless of the actual dynamics, our transformation actually satisfies a
strong non-triviality requirement: Any edge (u,v) that persists long enough for both
nodes u and v to be activated at least once during a phase ¢ > 0 of the semi-synchronous
execution must be part of Gy, during the i-th step of the synchronous execution. In
particular, if Geem, is static, then the simulation guarantees that Gsyne = Gsemi-
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Table 1 Comparison to other synchronizers.

Protocol Year Mapping Network Dynamics Anonymous
a, 8,v-Synchronizers [2] 1985 Sync to Async static No
Afek et al. [1] 1987 Sync to Async dynamic with eventual-quiescence No
Awerbuch and Sipser [5] 1988 Sync to Async dynamic with ¢r-stabilization No
Awerbuch and Peleg [4] 1990 Sync to Async static No
Awerbuch et al. 3] 1992 Sync to Async dynamic with eventual-quiescence No
¢-Synchronizer [20] 1994 Sync to Async static No
11,72, 0-Synchronizers [19] 1994 Sync to Async static No
o-Synchronizer [17] 2020 Sync to Async complete, static No
Ghaffari and Trygub [15] 2023 Sync to Async static No
d-Synchronizer (this paper) 2025  Sync to Semi-sync Arbitrary Dynamics Yes

We assume the PULL model of communication (see, e.g., [9]), with the addition of a
disconnection detector, as in [12], and a 1-bit multi-writer atomic register at each edge-port.
The §-Synchronizer operates with an asymptotic memory overhead that is logarithmic on
the number of nodes provided that the underlying synchronous algorithm terminates in
polynomial time [7]. We present applications and discuss future work in Section 5, and
summarize the most relevant related work in Table 1.

2 Model

We consider an edge-dynamic network that we formalize using a time-varying graph [10].

A time-varying graph is represented as G = (V, E, T, p) where V is the set of nodes, F
is a (static) set of undirected pairwise edges between nodes, with a lifetime 7" C N. A
presence function p : E x T — {0,1} indicates whether or not a given edge exists at a
given time. We define a snapshot of G at time ¢ as the undirected graph G;(V, E;), where
E, ={e € E :p(e,t) = 1}. At any time, we denote the neighborhood of a node u € V by
N(u). For t > 0, the t-th stage lasts from time ¢ to the instant just before time ¢ + 1; thus,
the communication graph in stage t is G;.

We assume that each node is equipped with a mechanism to detect disconnections on its
ports [12, 16, 18]. When an edge connected to a node u is disconnected, the disconnection
detector adds the corresponding port label to a temporary set D. The set D is reset to () at
the end of each activation of u. To ensure anonymity among nodes and their neighbors, each
node u associates with its neighbors through port labels £, noting that different nodes may
connect to u through the same port over time, and that a node may connect at different
ports of u over time (respecting that at most one node is connected to any port at any point
in time). Each edge (u,v) is assigned specific ports at both nodes u and v. For convenience,
we use u.z to denote the value of variable x at node w.

An algorithm, including the synchronizer, is composed of multiple actions of the form
(label) : (gquard) — (operations). An action is enabled if its guard (a boolean predicate)
evaluates to true, and a node is said to be enabled if it has at least one enabled action. The
scheduler controls the stages when an enabled node is activated and picks exactly one enabled
action at the node to execute at the given stage. Our synchronizer algorithm will ensure
that we only have one enabled action per node at any stage t.

We assume the PULL model of communication (see, e.g., [9]), where every time a node u is
activated at a stage ¢, u can pull the state information of a neighboring node v. In [7], we show

that the classic PULL (or PUSH) model is not powerful enough to support synchronization.

Thus, we further equip the PULL model with a 1-bit multi-writer atomic register at each
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edge-port, and allow an activated node u at stage t to perform one atomic write onto each
multi-writer register of any neighbor node v such that (u,v) € E; during the stage. Each
action follows the Read-Compute paradigm, where these two components are executed in

this order in lockstep (and writes occur within the compute cycle).

We focus on semi-synchronous concurrency, where in each stage, any (possibly empty)

subset of enabled nodes is activated concurrently, under arbitrary topological changes. To
model this, we assume two adversaries, an adaptive adversary that controls the edge presence

function at each stage (i.e, controls the edge dynamics), and the scheduler adversary — or

simply the scheduler — that controls when nodes are activated. We assume a weakly fair

scheduler that activates nodes such that any continuously enabled node is eventually activated

(or equivalently, that every enabled node will be activated infinitely often).

Algorithm 1 §-Synchronizer.
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. HANDSHAKE: (synch = 0)V (3¢ € P\ D | £.block = 0) —

if synch = 0 then > If this is the initialization stage of synchronization
for ¢ € N(u) do > for a phase i, pull information from all neighbors
X (£) + PuLL(¢) > and initialize D, the set of disconnected ports in
D+ ¢ > the current phase to the empty set.
P+ {{ & N(u)| > Valid neighbors of u to be considered in phase i’s simulation are:
[(X(¢).phase < phase)] V> (1) neighbors that will catch up with phase i, or

X(0).
[(X(¢).phase = phase) A (2) neighbors simulating phase ¢ that have either
(X(¢).synch =0) V > (2a) not initialized their valid neighbors, or
(X (£).port € X(£).P\ (X(€).DU X(£).D)))]} > (2b) also consider u as a valid
> persistent (i.e., not disconnected) neighbor in phase .

synch =1 > Flag end of the initialization stage for phase 7 of the simulation.
else > If u has finished initialization stage of the simulation of phase i,
for £ € P\ (DUD) do > For every persistent valid neighbor in the phase:

if X (¢).phase < phase then > (a) Pull updated state from neighbors that are

X (¢) + PuLL(¥) > running behind and not yet simulating phase 7.

else > Otherwise, they must be simulating phase i, so

X (£).ack < PuLL({).ack > (b) pull only neighbor’s ack value for phase i.

D« DuD > Add disconnections since last activation to the set D.

> After pulling state and ack information, attempt edge agreement.

for £ € (P\ D) | [(X(¢).phase = phase) A (£.block = 0)] do
if X(¢).ack =1 then > If a neighbor has already initiated edge agreement, block
BLoCK({) > the edge by simultaneously setting the block flag on neighbor’s port
{block =1 > as well as on own port connected to edge to 1.
else > Otherwise, indicate that state information for neighbor’s
lack =1 > simulation of phase i has been pulled.

: EXECUTESYNCH: (synch = 1) A (£.block =1,V € P\ D) —
F < {¢ € P| (£.block = 1)} > F represents the final set of agreed neighbors of u in phase ¢
Run enabled action of (synchronous) algorithm Asyn. with respect to {X(¢) | £ € F'}

phase = phase + 1
synch =0 > Clean up variables
for ¢ €{0,...,A} do > for new phase.

{.ack = £.block =0
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3 Algorithm

The §-Synchronizer (Algorithm 1) consists of two actions, HANDSHAKE and EXECUTESYNCH,
with exactly one of them being enabled for a node at any stage. Recall that the synchronizer
works by showing the equivalence between a semi-synchronous execution of 6(Agyy,.) under
an arbitrary dynamic network Gsemi = {Go, G1, ...} and a synchronous execution of Agy.
under a (potentially different) arbitrary dynamic network Geyne = {Ho, Hy,...}.

Each node u keeps a local counter, u.phase, of the phase number it is simulating and
updates it when the simulation of the phase completes and an action of A,yn. is executed
(Lines 27-28). During the handshake for the simulation of phase i, a node u maintains a set
of potential neighbors (identified by the ports to which they are connected) to be included
as neighbors in the simulated execution, which is initially equal to the set u.P of all valid
neighbors at the start of the handshake, when u.synch = 0. The set of potential neighbors
can “lose” elements in other stages of the handshake for phase ¢ due to edge disconnections,
but does not gain new elements. The crucial property to maintain is edge consistency: At
the end of the simulation of phase i, the final set of neighbors of u, u.F', which is a subset of
u.P, contains node v if and only if the set v.F' contains node u. The sets u.F', for all nodes
u € V, determine the set of (undirected) edges in the simulated graph H; for phase .

Initially, the set u.P contains the following nodes:

1. (Running behind) Neighbors that have not yet started simulating phase i. These nodes
can be included because node u will wait for them to catch up during the next stages in
u’s handshake for phase 7 (unless they disconnect from node w),

2a. (Concurrent nodes in initialization stages) Neighbors that have started simulating phase
7 but have not yet finished the initialization stage of the handshake. These nodes will also
be able to see that node u has not yet finished its initialization stage of the simulation.

2b. (Concurrent nodes past initialization stages) Neighbors that completed the initialization
of the simulation of phase ¢ and are still considering node u as a neighbor in their
handshake of phase i. These nodes must have started the handshake of phase i before

node u but have not detected a disconnection in the edges linking them to node u.

To calculate the set u.P, a node pulls information from its neighbors and determines which
nodes fall into one of the categories above (Lines 7-10). At the end of the first stage of the
handshake, node u sets its synch flag to 1 to signal the end of its initialization for phase 3.

To ensure edge consistency, each node u keeps track of all ports that have experienced a
disconnection since the start of the simulation of phase 7 in its set u.D (initially empty). All
neighbors connected through ports in w.D are removed from consideration to be included
in the simulated graph H;. Indeed, if there is a disconnection of an edge (u,v) in a given
stage, then nodes u and v will each add the respective port connected to edge (u,v) to its
own set D in the first stage in which the node is active after the disconnection, and the
edge (u,v) will not be included in the simulated graph H; by either node. Since nodes are
anonymous, any edge that later connects to the port of either w or v earlier connected to
(u,v) — including, potentially, a reconnection of w and v — will be ignored in phase 1.

A node u checks if the neighbors running behind in the simulation have caught up to
phase ¢ (Line 14) or, if the neighbor v has caught up, v only needs to update the respective
ack value (since it already pulled the state information from v for phase i the last time it
pulled from v in Line 15). Note that when the check is done in Line 14, if the neighbor is not
behind, it must be simulating the same phase: The reason is that if the node was previously
behind it could not have advanced beyond phase i without first executing the ack/block
exchange and the first (and only) time that is done is when the two nodes are in phase i.

49:5
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A node u completes the handshake of phase ¢ when it determines that all edges linking it
to a tentative neighbor in u.P \ u.D are blocked (Line 25), implying that such an edge (u, v)
will be considered to be in H; by both v and v. The blocking of such an edge (u,v) can be
initiated by wu itself or by node v, but in either case it will result in the block flags on the
respective ports at u and v being set to 1 during the current stage (while the edge is up).
Whichever node blocks the edge-ports, say u, must have detected that the other node (v) set
its ack to 1 (Lines 20-22), acknowledging that u and v are both simulating phase 4, and that
v has pulled u’s phase 7 state information prior to the blocking (u has also pulled v’s phase i
state during the current stage). Note that there are blocked edges in phase 7 that disconnect
later in the phase: Those edges will be in the respective sets F' and thus also in H;.

4  QOur Results

Theorems 1-3, whose proofs appear in [7], ensure that the §-Synchronizer satisfies the three
conditions outlined in Section 1. The Agyp.-state of node u consists of the variables of u that
directly pertain to the state variables of Agyne.

» Theorem 1 (Correctness). For any semi-synchronous execution of 0(Async) under an
arbitrary dynamic graph Ggem; and a weakly-fair scheduler, there exists a dynamic graph
Gsync such that the Agync-state of each node u at the end of each phase i of the execution of
5(Async) under Gsems 15 equal to the state of u at the end of step i in a synchronous execution
of Agyne under Goyne, for all i > 0.

» Theorem 2 (Non-triviality). For any synchronous execution of Asyn. under an arbitrary
dynamic graph Gsync, there exists a dynamic graph Ggems such that the state of each node u
at the end of each step i of the synchronous execution of Async under Goyne is equal to the
Agync-state of u at the end of phase i in the execution of 6 (Async) under Gsems, for alli > 0.

» Theorem 3 (Finite termination). Our synchronizer ensures liveness: Any node progresses
in finite time to phase i, for any finite i > 0. Thus, all synchronous executions of Agyne
terminate in finite time if and only if all semi-synchronous executions of § (Async) also do.

5 Applications and Extensions

Designing algorithms for highly dynamic networks without any assumptions on edge dynamics
or eventual stabilization is challenging, even in synchronous settings. On the other hand,
scenarios with high and unpredictable network dynamics are getting increasingly more
common in practice, and practitioners are looking at the benefits of time synchronization in
order to better manage the dynamics (see, e.g., [11]). This work aims to bridge this divide.
In a classic application of our §-synchronizer, we extend the applicability of the synchron-
ous algorithm for maintaining a spanning forest that approximates the minimum possible
number of spanning trees in arbitrary dynamic networks of [6] to semi-synchronous environ-
ments (after adapting the algorithm from the PUSH to PULL model). Another application is
in the context of minority dynamics [8], a stateless protocol in which each node samples a
random subset of neighbors and adopts the minority opinion observed. The impact of our
synchronizer is not about enabling synchronous algorithms in semi-synchronous environments,
but about providing an exponential speed-up in runtime when doing so, as we describe in [7].
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In future work, we plan to investigate whether we can extend the J-Synchronizer also to

work in asynchronous environments, determine its overhead in terms of runtime and bits

exchanged, and investigate whether it can work under certain classes of (non-stabilizing)

network dynamics (e.g., edge recurrent, snapshot connected, etc.).
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