DAG It Off: Latency Prefers No Common Coins

Ignacio Amores-Sesar &2 &
Aarhus University, Denmark

Viktor Grgndal &

Aarhus University, Denmark

Adam Holmgard &

Aarhus University, Denmark

Mads Ottendal =

Aarhus University, Denmark

—— Abstract

We introduce Black Marlin, the first Directed Acyclic Graph (DAG)-based Byzantine atomic
broadcast protocol in a partially synchronous setting that successfully forgoes the reliable broadcast

and common coin primitives. Black Marlin achieves the optimal latency of 3 rounds of communication
(4.25 with Byzantine faults) while maintaining optimal communication and amortized communication
complexities. We present a formal security analysis of the protocol, accompanied by empirical
evidence that Black Marlin outperforms state-of-the-art DAG-based protocols in both throughput
and latency.

2012 ACM Subject Classification Security and privacy — Distributed systems security
Keywords and phrases Atomic broadcast, DAG-based, Partial synchrony

Digital Object Identifier 10.4230/LIPIcs.DISC.2025.5

Related Version arXiv version: https://arxiv.org/abs/2508.14716

Funding This work has been mostly funded by the Cryptographic Foundations for Digital Society,
CryptoDigi, DFF Research Project 2, Grant ID 10.46540/3103-00077B, and partially funded by the
Swiss National Science Foundation(SNSF) under grant agreement Nr. 188443 (Advanced Consensus
Protocols) and by a grant from Avalanche, Inc. to the University of Bern.

1 Introduction

Scalability poses a significant challenge for consensus protocols. Paradoxically, increasing the
number of participants in consensus degrades its performance rather than enhancing it.

Traditional consensus protocols, such as Paxos [19], PBFT [10], and HotStuff [27],
primarily adopt a leader-based approach. In this model, a designated leader proposes a value,
which the remaining participants validate. This design results in an uneven distribution of
workload, with the leader becoming a performance bottleneck. If we add more parties to a
consensus protocol, we simply increase the communication load of the leader, degrading the
performance of the protocol. Furthermore, if the leader behaves in a Byzantine manner, the
system must invoke a view-change mechanism to replace it. These view-changes are sensitive
to timing assumptions and become progressively more expensive [8] as the number of parties
increases.

To address these limitations, Keidar et al. [16] introduced DAG-Rider, an elegant asyn-
chronous solution that leverages the common core abstraction [9]. This approach enables
every participant to act as a leader in the protocol. These instances are interwoven into a
directed acyclic graph (DAG), on top of which a total ordering is achieved using a common
coin [8], applied at the end of every wave: a set of four consecutive rounds.

? Ignacio AmoreS-Se§ar, Viktor Grm.ldal, Adam Holmgéard, and Mads Ottendal;
37 icensed under Creative Commons License CC-BY 4.0

39th International Symposium on Distributed Computing (DISC 2025).

Editor: Dariusz R. Kowalski; Article No. 5; pp. 5:1-5:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:amores-sesar@cs.au.dk
https://iamores.github.io/
https://orcid.org/0000-0002-1751-1515
mailto:au727671@uni.au.dk
https://orcid.org/0009-0007-7383-9463
mailto:au717856@uni.au.dk
https://orcid.org/0009-0004-8237-6438
mailto:au729914@uni.au.dk
https://orcid.org/0009-0009-1851-5751
https://doi.org/10.4230/LIPIcs.DISC.2025.5
https://arxiv.org/abs/2508.14716
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

5:2

DAG It Off

DAG-Rider demonstrates remarkable throughput compared to leader-based protocols,
but this comes at the cost of significantly increased latency. The primary cause of this
latency is the repeated use of reliable broadcast [8] across each of the four rounds required
to implement the common core primitive [9]. This triggered the effort of the research
community [12, 26, 17, 15, 24, 6, 25, 5] aimed at mitigating this latency overhead. These
contributions generally fall into two broad categories.

On the one hand, Cordial Miners [17] replaces the reliable broadcast rounds with bare-
message communications, reducing communication overhead at the cost of increasing the
wave length to five rounds (three in partial synchrony). On the other hand, a majority of the
works [12, 26, 15, 24, 6, 25, 5] pursue orthogonal improvements, either through more efficient
use of the common coin or by shortening the length of the waves under partial synchronous
assumptions. These approaches have collectively succeeded in halving the latency of DAG-
based protocols, marking a significant advance in the state of the art. However, their reliance
on the reliable broadcast primitive continues to be a limiting factor. Moreover, to the best of
our knowledge, no existing protocol has yet successfully elected an anchor in every round.

These are precisely the two limitations addressed in this paper. We introduce Black
Marlin, the first partially synchronous, DAG-based protocol that elects an anchor in every
round without relying on reliable broadcast. The simplest — yet most impactful — innovation
is the substitution of the common coin with a deterministic round-robin mechanism. This
substitution is valid because the FLP impossibility [14] only applies in asynchronous settings.

The primary advantage of the round-robin approach is that it allows block creation to be
conditioned on the reception of the anchor block from a given round. To handle scenarios in
which a malicious anchor fails to behave correctly, Black Marlin employs timeouts, thereby
preventing deadlocks. This conditional block creation enables Black Marlin to elect an anchor
in every round, fulfilling the long-standing goal of the research on DAG-based protocols.

Moreover, by operating in a partially synchronous model, Black Marlin is able to adapt
ideas from Cordial Miners [17] to eliminate the need for reliable broadcast, using only digital
signatures without the need for extra rounds of communication. The trade-off for achieving
anchor election without reliable broadcast is a small constant delay and a minor reduction
in commitment probability under Byzantine behavior, while maintaining optimal message
complexity in both cases.

Specifically, Black Marlin commits the anchor of round r» — 2 upon completing round
r with probability 4/9 under adversarial conditions. This probability increases to 1 when
all participants behave honestly. As a result, the expected latency is 4.25 communication
rounds under Byzantine behavior and the optimal 3 rounds in the honest case.

Additionally, timeouts are only triggered during asynchronous periods or when facing
Byzantine faults. Thus, Black Marlin remains a reactive protocol, effectively leveraging the
advantages of both synchronous and asynchronous models. We prove that Black Marlin
implements atomic broadcast [8] together with all the performance results mentioned above.
Furthermore, we benchmark Black Marlin against Bullshark, showing its practicality.

1.1 Structure

The paper is structured as follows. Section 1 briefly describes the paper. Section 2 details
the state of the art of DAG-based protocols. Section 3 sets the notation and key concepts
used in the paper. Section 4 describes Black Marlin in full detail. Section 5 shows that
Black Marlin implements atomic broadcast and studies its complexities. Section 6 describes
a comparison of the throughput and latency of Black Marlin and Bullshark.

I. Amores-Sesar, V. Grgndal, A. Holmgard, and M. Ottendal

2 Related work

DAG-based protocols have constituted a significant transformation in the field of consensus
over the past few years.

This revolution began in the permissionless setting, with protocols such as Avalanche [22]
and IOTA [20]. However, these protocols were initially introduced without thorough security
analyses. As a result, several vulnerabilities were later discovered [11, 4, 3], which limited
their success despite recent work demonstrating their optimality [2].

DAG-based consensus protocols were later extended to the permissioned setting, most
notably with DAG-Rider by Keidar et al. [16]. DAG-Rider was the first protocol to leverage the
properties of the common core primitive [9] to implement atomic broadcast in asynchronous

networks. It outperforms traditional leader-based protocols [19, 10, 27] in terms of throughput.

However, DAG-Rider requires on average six instances of reliable broadcast [7], resulting in
18 rounds of communication. Since its introduction, several works have aimed to address the
latency limitations of DAG-Rider.

On one hand, Cordial Miners [17] reduces latency to an average of 7.5 communication
rounds by replacing reliable broadcast with bare-message communication. The tradeoff of
this approach is that its new communication paradigm requires an additional round per wave
to compensate for the properties that reliable broadcast provides. When a party creates a
block in Cordial Miners, it must include any blocks the recipient may have missed. We adopt
this idea in the design of Black Marlin.

On the other hand, a widely adopted strategy to improve DAG-Rider’s latency has

involved either assuming synchronous networks or modifying the core and coin primitives.

Narwhal and Tusk [12] introduced a clever transaction preprocessing mechanism, where
transactions are grouped into batches, so only the hashes of these batches are submitted to
consensus. This batching is delegated to specialized workers, allowing the system to scale
dynamically with transaction load. However, Narwhal and Tusk lack a rigorous security
analysis, and liveness vulnerabilities have been identified [23].

Bullshark [26], which builds on top of Narwhal and Tusk, also introduces a variant for
partial synchrony that improves latency to just three instances of reliable broadcast, about
nine rounds of communication, on average. Bullshark is particularly relevant to our work, as
its authors provide a public implementation [21]!, enabling a fair, side-by-side comparison
with Black Marlin. It is worth noting that both Narwhal and Tusk, as well as Bullshark,
rely on reliable broadcast as a fundamental building block.

More recently, several protocols have been proposed targeting latency. These works largely
follow the above trajectory. Mysticeti [6] reduces latency further by employing consistent
broadcast, achieving an average-case latency of only three instances [8]. Sailfish [24] also
improves latency, though it continues to rely on reliable broadcast. Similarly, Shoal and

Shoal++ [25] provide enhancements in anchor selection, but still depend on reliable broadcast.

To the best of our knowledge, Black Marlin is the first DAG-based protocol to achieve
optimal latency in partial synchrony, while electing an anchor in every round, a crucial

feature for minimizing the latency of non-anchor blocks without relying on reliable broadcast.

We also highlight that Black Marlin achieves these properties while preserving simplicity.

! Bullshark has been chosen over more recent frameworks such as Mysticeti [18] due to its closer similarity
to Black Marlin and the timing of this project.

5:3

DISC 2025

5:4

DAG It Off

3 Model

3.1 Notation

We consider a set N = {0, ...,n — 1} of n parties running a round-based algorithm. In each
round, these parties create blocks that form the vertices of a directed acyclic graph (DAG, R)
with references that constitute the edges. Edge (B, Bs) € R if By includes a reference to Bs.
A block B = [r,i, refs, refs'] is a tuple formed by a round number 7, an identifier for party i,
a set of strong references refs, and a set of weak references refs’. For simplicity, we omit the
set of transactions and the signature from the block, as these transactions play no role in
the consensus mechanism. Given a block B, creator(B) denotes the party that created B,
round(B) denotes the round in which B was created. The variable DAG(r) denotes the set of
block B’ € DAG such that round(B’) = r. A party selected by a round-robin mechanism is
referred to as anchor, blocks produced by the anchor party are referred to as anchor blocks.

3.2 Adversary and Network

We model parties as interactive Turing machines (ITM). An interactive Turing machine
is a Turing machine with an input and an output tape that allows the Turing machine to
communicate with other Turing machines and make decisions based on the content of their
input tape. The adversary is modeled as another ITM that corrupts up to f parties at
the beginning of the execution, the actual number of corruptions is denoted by t < f < .
These corrupted parties obey the adversary; i.e., they may diverge from the execution of the
protocol. Corrupted parties are often referred to as Byzantine and non-corrupted as honest.

We assume a partial synchronous communication model [13] on point-to-point links. The
network begins in an asynchronous state and turns synchronous after a global stabilization
time (GST). After this point, every message sent is delivered with a delay of up to A. The
adversary not only decides the global stabilization time but also when the message is made
available to the party within the A time limit. We also assume that the local computations
are instantaneous, this assumption can easily be relaxed by factoring the computation of the
honest parties in the network delay. We assume the existence of a public key infrastructure.
We also assume that every block and a message produced by every party is signed, and that
the signature scheme is secure.

3.3 Atomic broadcast

‘We model our protocol as atomic broadcast. Our atomic broadcast primitive is accessed
with the events ab-broadcast(B,i,r) and outputs events ab-deliver(B,j,r). The event
ab-broadcast(B, i,r) can only be triggered by party i, but ab-deliver(B, j,r) may be output
by every party.

» Definition 1 (Atomic broadcast). A protocol solves atomic broadcast if it satisfies the

following properties, except with negligible probability:

Validity. If an honest party i invokes ab-broadcast(B,i,7) after the global stabilization time,
then party i eventually outputs ab-deliver(B,i,r).

Agreement. If an honest party outputs ab-deliver(B,i,r), then all honest parties eventually
output ab-deliver(B,i,r).

Integrity. For any party i and round r, every honest party outputs ab-deliver(B,i,r) at most
once regardless of B. Moreover, if i is honest, then i has invoked ab-broadcast(B,i,r).

Total order. If an honest party outputs ab-deliver(B,i,r) before ab-deliver(B', j,r"), then
no honest party outputs ab-deliver(B’, j,r") before ab-deliver(B,i,r).

I. Amores-Sesar, V. Grgndal, A. Holmgard, and M. Ottendal

Note that our definition of atomic broadcast is adapted to the partial synchrony model; the

validity property applies to blocks that are broadcast after the network becomes synchronous.

However, the safety properties are satisfied during both synchrony and asynchrony.

4 Protocol

Black Marlin (Algorithm 2) proceeds in rounds. In round 7, honest parties wait to receive
blocks from at least n!—!f parties. They then check if an anchor for round r has been
received and the anchors for rounds 7 — 2 and » — 1 appear in the past of at least n — f
blocks from rounds r — 1 and 7, respectively. If both hold, a new block is created referencing
all received blocks, and the party advances to round r 4+ 1. Otherwise, the party waits until
the conditions are met or a timeout triggers block creation. These timeouts ensure liveness
under Byzantine anchors and are only used when progress is blocked, allowing the protocol
to be responsive. Figure 1 illustrates an example execution.

Py

P,

P

Py

Round r—3 r—2 r—1 T r+1 r+2

Figure 1 An example of execution of Black Marlin (Algorithm 2) with f =1 and n = 4. Every
block has references to at least 3 blocks from the previous round. The blocks By, ..., Bs are the
anchor blocks for the corresponding round. Note that blocks By, Bi, B2, and Bs have enough
support (i.e., at least 3 references) to be committed. However, Bs ¢ strong(Ba), thus By, B1, and
Bs, satisfy the commitment rule (L18-32) while B3 does not. After the global stabilization time,
this situation cannot occur without malicious behavior, as Bs would satisfy Bs € past(B4). This
situation has been constructed to illustrate the commitment rule.

4.1 Validity predicates

A block from round r # 1 and creator j is valid if it is signed by party j and contains
references to valid blocks created by at least n — f parties from round r — 1. Since blocks in
round 7 = 1 do not reference any previous blocks, a block is valid if it has been signed by its
creator. A history H is valid if all the blocks contained in it are also valid.

When receiving a message [BLOCK, B/, H’, j,r'] (L57), party i checks the validity of both
the block B’ and the history H’, and adds the block B’ along with every unknown block
from the history H' to its local view (DAG). Party ¢ also updates party j’s local history
(L60), used solely to optimize message complexity by sending only strictly necessary blocks.

5:5

DISC 2025

5:6

DAG It Off

4.2 Initialization

The first round of the protocol differs from the rest as there are no blocks from earlier
rounds. Party i creates a block with an empty set of references and invokes the event
ab-broadcast(B, 1) before sending the message [BLOCK, B, {},1, 0] to every party and starting
a timeout with time 2A. Party ¢ then moves to the next round, a standard round.

4.3 Round structure

Every round beyond the first shares the same structure. Consider an honest party i in
round 7, i.e., it has just produced a block corresponding to round r. Party ¢ waits to receive
messages [BLOCK, B, H, j,r'] from at least n — f different parties for some round ' > r. Once
sufficient messages for such a round have been received, party i checks whether it has received
a message [BLOCK, B’ H', j,r'] with j being the anchor for the current round, and verifies
that the previous two anchors have enough support, or if a timeout has been triggered, to
conclude the round. This dual condition to start a new round allows the protocol to be
responsive, i.e., it runs at the speed of the actual network delay instead of the estimated
network delay A without deadlocking when an anchor party behaves maliciously.

Party ¢ concludes the round by performing the following sequential operations. First, 4
attempts the delivery of blocks (L42); this function is described in its own paragraph below.
Secondly, party i creates a new block B corresponding to the next round r’ + 1, including
strong references refs to every block in DAG(r') (L43-50). A set of weak references refs’ to
blocks from previous rounds are also included; this secondary set is time-bounded, preventing
the usual garbage collection problem associated with these solutions. Party ¢ concludes these
operations by sending B to every other party, together with the history of the parties (L54).
Note that party ¢ may skip one or multiple rounds if an appropriate quorum is received.

Py

P,

P

Py

Round

Figure 2 Illustration of the commit rule of Black Marlin. When a party invokes the commit
function on an anchor block B, it will recursively commit earlier uncommitted anchor blocks
first. The subscript numbers on the blocks indicate the order in which the commit function is
called. In this process, blocks B1 B2, Bs, and By are ab-delivered, in the reverse order of their
commitment. Before committing any anchor block, all non-delivered blocks in their causal history
are deterministically sorted and committed. In the illustration, these correspond to the smaller
vertices contained within the history boxes associated with each anchor block.

4.4 Delivery

The delivery function determines which blocks are delivered and in what order, based on
the local view of the DAG. Upon concluding round r, party i attempts the commitment of
the anchor block B from round r — 2 (L14-17). B is an anchor block if its creator has been

I. Amores-Sesar, V. Grgndal, A. Holmgard, and M. Ottendal

elected by the round-robin mechanism. However, it is only committed if it is supported by
at least n — f parties in round r — 1 and including an anchor of round r — 1 B’, and B’ is
also supported by at least n — f parties in round r. These conditions prevent honest parties
from committing different blocks when the anchor party is Byzantine.

If this check succeeds, party ¢ calls the function commit(B) (L18-32), which iterates
through the local view of the DAG. Party i searches for a non-delivered block B’ from a
higher round reachable through strong references from B. If such a block B’ exists, the
function commit(B’) is called recursively. If no such block exists, party 4 deterministically
orders the blocks in past(B) before invoking ab-deliver on them. In case of conflicting blocks
from the same party and round, only the first block — determined by the deterministic
ordering above — is ab-delivered. Figure 2 shows an example of the commitment rule.

4.5 Functions

Black Marlin (Algorithm 2) uses special functions as described in the paragraphs above. For
the sake of the reader, we summarize the functions together in this section.

Algorithm 1 State and functions (party).

1N set of parties
2.7+ 0 current round
3: DAG + 0 local view of the DAG
4: D+ 0 set of delivered blocks
5: refs <+ 0 set of strong references
6: refs’ < () set of weak references
7: history[j € N+ 0 set of blocks known by party j
8: function quorum(r)
9: return |parties(DAG(r))| >n — f

10: function anchor(r)

11: return 3B € DAG(r) : creator(B) = RR(r)

12: function suppAnchor(r)

13: return 3B € DAG(r) : creator(B) = RR(r) A supp(B) > n — f

14: function delivery(r) //attempt a block in r — 2

15: B+ RR(r —2) //if multiple consider them all

16: if supp(B) > n — f AIB' € DAG(r — 1) :

creator(B’) = RR(r — 1) A B € strong(B’) A supp(B’) > n — f then
17: commit(B)

18: function commit(B)

19: A + strong(B) \ D //ignore already delivered blocks
20: if A# 0 then
21: if |maxAnchor(A)| =1 then
22: B’ + maxAnchor(A) //anchor from the highest round
23: else
24: B’ + A € maxAnchor(A) : [round(A) — round(maxAnchor(strong(A)))|
is minimal and break ties deterministically
25: commit(B")
26: for B’ € 7(past(B) \ D) do // with 7 any deterministic topological sorting
27: if AB* € D : creator(B') = creator(B*) A round(B’) = round(B*) then
28: ab-deliver(B’, creator(B'), round(B’))
29: D+ DUB
30: ab-deliver(B, creator(B), round(B))
31: D+ DUB
32: return

5:7

DISC 2025

5:8

DAG It Off

Given a block B, the function creator(B) returns the party that created and signed B,
and the function round(B) returns the round in which B was created. The validity predicate
V(B) returns 1 if B has at least n — f blocks from different parties and no two blocks from
the same party corresponding to round(B) — 1 in its references, and B has been signed
by its creator. When invoked with a set of blocks A, the validity predicate V(#) returns
1 if every block B’ € H satisfies V(B’). The function past(B) returns the set of blocks
reachable from B through strong and weak links, and the function strong(B) returns the
set of blocks reachable from B through strong links, B is not part of the output of either
function. The function supp(B) counts the number of parties ¢ that created a block B; in
round round(B) + 1 such that B € strong(B;) and no other block from the same creator
and round is in strong(B;). The function H(B) is a collision-resistant hash function. The
operation setTimeout(r, p) starts a timeout of duration p corresponding to round r, whereas
timeout(r) triggers when the timeout is completed and clearTimeout(r) removes any active
timeout corresponding to round r. The function time() returns the local time of the party
and when input with a round r, time(r) returns the local time when the party adopted round
r. In the case that the party never adopted round r, time(r) returns the time when the
party adopted the smallest round 7/ > r. The function RR(r) takes a round as an input
and returns the party by the round-robin mechanism in round 7, a block from this party is
also referred to as anchor. In case multiple blocks exist, e.g. due to Byzantine behavior, the
function returns both blocks. The variable DAG(r) returns the set of blocks from round r in
the local view of the party. The operation maxAnchor(A) takes a set of blocks .4 as an input
and returns the anchor from the highest round. Given a round r, the function quorum(r)
returns 1 if there are blocks from at least n — f parties in DAG(r). The function anchor(r)
returns 1 if there is a block created by the anchor of r in DAG(r), and suppAnchor(r) returns
1 if there is an anchor block in r that is supported by at least n — f parties in DAG(r + 1).

5 Analysis

Black Marlin (Algorithm 2) is designed for partially synchronous networks, which means
that it may not be alive during the asynchronous period. However, its safety properties are
still guaranteed during this period. This fact is reflected in the analysis below.

5.1 Safety

The results in this section apply to every block, even during the asynchronous phase.

» Lemma 2. Every honest message [BLOCK, B', H', j, 7] received by an honest party i is valid,
i.e., satisfies line L58 in the view of i.

Proof. A message [BLOCK, B’,H', j,r] is valid if block B’ and history H' satisfy the validity
predicate V. If the sender is honest, both B’ and H’ satisfy the validity predicate. Thus, it
is only left to prove that party 7 has enough information to verify the validity predicate. The
construction of the history H' guarantees this fact. |

Lemma 2 applies whenever an honest party sends a message. For the sake of readability,
we omit explicit references to this lemma each time an honest message is sent.

» Lemma 3. Given two honest parties i and j and blocks B; and B; from round r, if B;
satisfies line L16 in the view of party i and Bj; satisfies line L16 in the view of party j, then
B, = Bj.

I. Amores-Sesar, V. Grgndal, A. Holmgard, and M. Ottendal

Proof. Given a block B; created by party k in round r that satisfies line L16 in the view
of some party, it follows that creator(B;) = RR(r) and supp(B;) > n — f. Recall that, by
definition of the support function, an honest party supports at most one block per party per
round. Therefore, if blocks B; and B; both satisfy line L16 in the views of parties ¢ and j
respectively, then the following condition must be satisfied creator(B;) = creator(B;) = RR(r)
and supp(B;), supp(B;) > n — f. Given the corruption threshold condition of n > 3f +1, it
is impossible for two distinct blocks to each have support from at least n — f parties. Hence,
it must be the case that B; = B;. <

Lemma 3 states that at most one block is honestly committed per round. Furthermore, these
committed blocks create a chain in the DAG, as we prove in the following lemmas.

Algorithm 2 Black Marlin (party).

33: upon init do

34: ab-broadcast(B, i, 1)

35: send message [BLOCK, B, {},1,r] to every party
36: r+1

37: setTimeout(1,2A)

38: upon I’ > r : quorum(r’) do
39: set Timeout(r’, 2A)

40: upon 3’ > r : quorum(r’) A
(anchor(r") A suppAnchor(r’ — 1) A suppAnchor(r’ — 2)) V timeout(r’)) do

41: clearTimeout(r’)

42: delivery(r’)

43: refs < ()

44: re < min{r’ € N: [time() — time(r)| < 3A}

45: weak U;*;ln DAG(r")

46: for j € parties(DAG(r)) do

47: B’ < B € DAG(r) : creator(B’) = j if multiple B’, select any
48: refs < refsU H(B')

49: weak <+ weak \ past(B’)

50: refs’ < Up+cweakH (B*)

51: rer'+1

52: B « [r,i, refs, refs]

53: ab-broadcast(B, i, 1)

54: for j € N do

55: send message [BLOCK, B, DAG \ history[j],,7] to party j
56: history[j] + DAG

57: upon receiving message [BLOCK, B',H', j,7'] do

58: if V(B')AV(H') then

59: DAG + DAGU {B'}UH'

60: history[j] < history[j]UH U {B'}

» Lemma 4. Consider an honest party i and the mazimal round r such that DAG(r) # 0 in
the view of party i, then |DAG(r")| > n — f for every round v’ < r.

Proof. Consider the maximal round r and a block B € DAG(r). Since B is a valid block,
there exists valid blocks from at least n — f parties in strong(B) corresponding to round
r — 1. Thus, |DAG(r — 1)| > n — f. Now, consider any block in DAG(r — 1) and iterate
recursively. We conclude that |DAG(r")| > n — f for every round 7’ < r. <

In contrast to traditional leader-based protocols, a block in DAG-based protocols must
be in the past of an overwhelming majority of blocks to ensure its delivery. The following
result formalizes this requirement for committed blocks.

5:9

DISC 2025

5:10

DAG It Off

» Lemma 5. If a block B from round r satisfies line L16 in the view of some honest party i,
then every valid block B’ from round v’ > r + 2 satisfies B € past(B’).

Proof. By definition of line L16, supp(B) > n — f, thus B € past(B’) of blocks B’ from at
least n — f different parties in round r + 1. We proceed by induction over p := 7' — r:
Let B’ be any block from round r + 2. By construction, there are blocks from at least
n— f in DAG(r + 1), and up to f of them could be Byzantine. Block B is in the past
of blocks from round r + 1 from at least n — f different parties, thus B € past(B’). We
conclude B € past(B’) of any block B’ from round r + 2.
Assume that every block By from round r + pg satisfies B € past(By) and let B’ be a
block from round ' = r + pg + 1. We have that B € past(B’'), since there are at least
n — f blocks in past(B’) and every block By from round r + py fulfills B € past(By).

We conclude that any block B from round r that satisfies line .16 in the view of some
honest party, then every block B’ from round ' > r + 2 satisfies B € past(B’). <

» Lemma 6. If honest parties i and j commit blocks B; and B; respectively, then B; = Bj,
B, € past(Bj), or B; € past(B;).

Proof. Let round(B;) and round(B;) denote the rounds in which parties ¢ and j commit
blocks B; and Bj, respectively. We analyze three cases based on the values of these rounds:
Case 1: round(B;) = round(B;).
By Lemma 3, at most one block can be committed per round. Hence, B; = B;.
Case 2: round(B;) < round(B;). We further distinguish two sub-cases:
Case 2a: round(B;) = round(B;) + 1.
By the second condition in line L16, there exists a block B} € DAG(round(B;)) such
that creator(B;) = creator(B’;) and B; € strong(B}). Since Byzantine parties may
create multiple blocks, we cannot immediately conclude that B; = B;. However, the
third condition of line L16 ensures that both B; and Bj satisfy supp(B;), supp(B}) >
n — f, which, by Lemma 3, implies B; = B’. Thus, B; € past(B;).
Case 2b: round(B;) + 1 < round(B;).
In this case, Lemma 5 guarantees that B; € past(B;).
Case 3: round(B;) > round(B;).
This is symmetric to Case 2 and follows by applying the same reasoning, yielding
B; € past(B;).
We conclude that any two blocks committed by honest parties satisfy that both parties
commit the same block or blocks in the past of each other. |

This chain of committed blocks is common across honest parties, thus defining a partial order
common to every honest party.

5.2 Liveness

Liveness is guaranteed only after the global stabilization time. For this reason, the majority
of the results presented here apply only to blocks that are ab-broadcast after time GST.

» Lemma 7. If an honest party invokes ab-broadcast(B,i,r) at time T > GST, then every
honest party j that invokes ab-broadcast(B’, j,r), does it before time T + 3A.

Proof. Assume that party i invokes ab-broadcast(B,i,r) at time T' > GST. Then, according
to line L55, ¢ sends a message of the form [BLOCK, B, DAG \ history[j], i, 7] to every party.
An honest party j receives this message by time T+ A. Since the message includes all the

I. Amores-Sesar, V. Grgndal, A. Holmgard, and M. Ottendal

strong references of B, party j’s view satisfies |[DAG(r — 1)| > n — f. As a result, j can
create a block for round 7 once the anchors have sufficient support or a timeout of duration
2A triggers. Therefore, j can create its block by time T+ 3A. <

Lemma 5 guarantees that committed anchor blocks are in the past of future blocks. The
result below generalizes this property to all honest blocks created after the global stabilization
time GST.

» Lemma 8. If honest party i invokes ab-broadcast(B,i,r) at time T > GST, then B €
past(B’) of every honestly ab-broadcast(B’) block B’ after time T + A

Proof. Assume that party ¢ invokes ab-broadcast(B,i,r) at time T', then 7 sends a message
of the form [BLOCK, B, DAG \ historyl[j], i, 7] to every party (L55). Any block B’ created by
party j after receiving the message [BLOCK, B, DAG \ historyl[j|, i,r] satisfies B € past(B’).
Lemma 7 guarantees that the message [BLOCK, B, DAG\ historylj], i, r] is not garbage col-
lected, thus proving the statement. |

» Lemma 9. Given an honest party i and a round r € N, Ir’ > r such that i invokes
ab-broadcast(B,i,1") for some block B.

Proof. Let r be a round, and define ' > r as the first round such that no honest party
has executed it before time GST, and RR(r’') = i. We show that party ¢ eventually invokes
ab-broadcast(B, i,r") for some block B.

Consider line L40 as executed in round 7’ by any honest party j. Since i is the leader, no
honest party concludes round r without a block from ¢ unless its timeout triggers. Consider
j to be the first honest party that concluded round ' — 1, the duration of its timeout is 2A.
This guarantees that party ¢ receives the quorum of round r — 1 sent by j (at most A delay)
before any honest party concludes round 7/, thus party ¢ invokes ab-broadcast(B,i,7’) <

» Lemma 10. At time T > GST, if an honest party concludes a round r (L40) such that
the anchors from rounds r — 2 and r — 1 are honest, then suppAnchor(r —2) > n — f and
suppAnchor(r — 1) > n — f.

Proof. At time T' > GST, assume an honest party concludes round r (L40) and that the
anchors from rounds » — 2 and r — 1 are also honest. By construction, if a party creates a
block for round 7 at time 7", then every honest party receives this block by time 7" + A and
subsequently creates its own block, which is received by all honest parties by time T’ + 2A.

Given that both anchors from rounds r — 2 and r — 1 are honest, it follows that
suppAnchor(r — 2) > n — f and suppAnchor(r — 1) > n — f, since there are at least
n — f honest parties contributing to support anchors in each round. |

Lemma 10 states that after the GST, the timeout is not triggered with honest anchors.

» Lemma 11. After the global stabilization tz;me, given a round r, the probability that honest
party i commits a block in r is at least (";t)

+—. Thus the expected number of rounds until a

block is committed is at most ﬁ

Proof. Given a round r, party ¢ commits a block B € DAG(r — 2) (L16) if and only if the
following conditions are satisfied:
The creator of B has been elected by the round-robin mechanism in round r — 2, i.e.,
creator(B) = RR(r — 2), and the block has sufficient support, supp(B) > n — f.
There exists a block B’ € DAG(r — 1) such that B € strong(B’), creator(B’) = RR(r — 1),
and supp(B’) > n — f.

5:11

DISC 2025

5:12

DAG It Off

Assume that the anchors from rounds r — 2 and r — 1 are both honest; this implies
the existence of B € DAG(r — 2) and B’ € DAG(r — 1), as described above. According to
Lemma 10, both blocks have enough support: supp(B) > n — f and supp(B’) > n — f. Since

there are n — t honest parties, the anchors from rounds r — 2 and r — 1 are both honest

2
with probability ("n%t) Hence, party ¢ commits a block in round r with probability at least

—_+)2 . 2
("nzt)" and commits every a block every at most (Lit)z rounds on average. |

7
n—

This lemma shows that, under maximum number of corruptions, honest parties commit a
block every at most 9/4 rounds. Nonetheless, a clever adversary may delay commitment for
a short period of time (¢ rounds), at the cost of allowing the network to commit optimally
(every round) outside this period.

» Lemma 12. Given two honest parties i and j and a block B, then i commits B if and
only if j eventually commits B.

Proof. Assume that an honest party ¢ commits a block B. By Lemma 11, any other honest
party j will eventually commit a block B’ such that round(B’) > round(B). Lemma 6 applied
to blocks B and B’ implies that either B = B’ or B € past(B’). Since round(B’) > round(B),
it cannot be the case that B’ € past(B) unless B = B’. If B’ = B, then party j directly
commits the same block. If B € past(B’) and B # B’, then by construction of the delivery
function, party j must have also committed B. Therefore, we conclude that if an honest
party ¢ commits a block B, then every honest party j eventually commits B. <

5.3 Main Result

Previous lemmas are sufficient to show that Black Marlin implements atomic broadcast.
» Theorem 13. Black Marlin (Algorithm 2) implements atomic broadcast.

Proof. We proceed property by property:

Validity. Assume an honest party ¢ invokes ab-broadcast(B, i,r) after the global stabilization
time GST. According to the delivery function (L14), party ¢ outputs ab-deliver(B, i, r)
the first time it observes a block B’ such that B € past(B’) and B’ satisfies line L16.
Lemma 8 guarantees that B is eventually in the past of every valid block. Lemmas 9 and
11 ensure that B’ is eventually committed, hence party ¢ outputs ab-deliver(B,i,r).

Agreement. Suppose an honest party i outputs ab-deliver(B, j,r). By Algorithm 2, this
means a block B* with B € past(B*) satisfies line L16. For any other honest party j,
Lemmas 9 and 11 guarantee that j eventually commits a block B’ with B* € past(B’), and
thus B € past(B’). Therefore, party j eventually ab-delivers(B, j,), ensuring agreement.

Integrity. The delivery function (L16) ensures that honest party j keeps track of all previously
delivered blocks. Consequently, j outputs ab-deliver(B,i,r) at most once per party @
and round r. Furthermore, if ¢ is honest, j outputs ab-deliver(B,i,r) only if ¢ previously
invoked ab-broadcast(B,i,r) as Byzantine parties cannot impersonate honest parties.

Total order. By definition of the delivery function, the order of delivery of non-anchor blocks
is determined by the order in which the anchor blocks are committed (L16). Thus,
it suffices to show that honest parties commit anchors in the same order. Lemma 12,
guarantees that every honest party commits the same set of blocks. The delivery function
called with block B guarantees that any anchorin the past of B is committed before B,
Lemma 6 guarantees that any committed blocks (possibly by different parties) are in the
past of each other. Thus, honest parties commit anchors in the same order. <

I. Amores-Sesar, V. Grgndal, A. Holmgard, and M. Ottendal

5.4 Communication and Time Complexity

Previously, we showed that Algorithm 2 is both safe and live in a partial synchronous network.

In particular, we demonstrated that blocks are eventually delivered, avoiding any concrete
analysis of the communication and time complexity of the algorithm.

5.4.1 Communication complexity

Each round, a party sends at most one message of the form [BLOCK, B, DAG \ history[j], i, 7].

We assume that the round number can be expressed in logarithmic size O(In(n)) (note
that the round number grows more slowly than the number of blocks). The identifier
of the party can also be expressed in O(In(n)) number of bits. For the computation of
the size of DAG \ history[j] we assume that the Byzantine parties do not send multiple
equivocating blocks, as these blocks include signatures that implicate the party, thus the
size of DAG\ history[j] < O(n). We conclude that the amount of bits sent per honest party
and round is O(n(|B| + n)), hence packing n transactions of constant size in B we obtain a

communication complexity of O(n?) with an amortized complexity of O(n), both optimal [1].

5.4.2 Time complexity

Lemma 11 gives an upper bound on the expected number of rounds of communication
between anchor blocks are committed. An anchor block is committed on average every (nﬁ%)z
rounds in the presence of ¢ corruptions: in the worst case, every 9/4 round of communication,
and every round of communication in the good case. Note that in round r, an anchor from
round r — 2 is committed. Considering latency to be the number of rounds of communication
since an anchor block is broadcast until it is delivered we obtain 4.25 and 3 rounds of
communication in the average and good case, respectively. It is important to remark that
in contrast to most DAG-based protocols, we are measuring in rounds of communication
and not instances of reliable broadcast. Thus, Black Marlin not only achieves O(1) time
complexity in expectation, but also the best concrete time complexity concerning DAG-based
protocols [24, 25, 5, 15, 6], as their use of reliable broadcast hinders the protocols.

6 Benchmarking

We evaluate the performance of our implementation with respect to the metrics of throughput
and latency for a varying number of parties and network delays.

6.1 Experiments

We conducted all benchmarks locally on a MacBook Pro equipped with an M1 Pro chip, 16
GB of RAM, 10 cores (8 performance and 2 efficiency), and running macOS Sequoia Version
15.0.1. To ensure a fair comparison, we modified the benchmarking framework developed for
Bullshark [26, 21]? to incorporate our implementation of Black Marlin. The biggest difference
between Black Marlin and Bullshark is the use of common coins by Bullshark. However,
their implementation also uses round-robin®. This approach allows a close performance

2 Bullshark has been chosen over more recent frameworks such as Mysticeti [18] due to its closer similarity
to Black Marlin and the timing of this project.
3 https://github.com/facebookresearch/narwhal/blob/bullshark/consensus/src/lib.rs L202.

5:13

DISC 2025

https://github.com/facebookresearch/narwhal/blob/bullshark/consensus/src/lib.rs

5:14

DAG It Off

comparison between Black Marlin and Bullshark and also demonstrates that Bullshark’s
preprocessing techniques can be adapted to Black Marlin. Note that the actual performance
of Bullshark is worse due to the lack of common coins in the implementation.

To emulate realistic network conditions despite running benchmarks on a single machine,
we modified both the Black Marlin and Bullshark implementations to introduce configurable
network delays. Specifically, messages are delivered based on a Poisson distribution with
the expected value A/2, where A represents the maximum network delay assumed by the
protocol. This design ensures that with high probability, the actual message delay remains
below A. For instance, when A = 400 ms, the average delivery time for a message is 200 ms.

For each experimental run, we measure throughput as the total number of transactions
delivered divided by the total duration of the run. The latency of a transaction ¢z is defined
as the time elapsed from the creation of the block containing ¢z until it is ab-delivered. The
latency for a run is the average latency of all ab-delivered transactions in the run. Every
party behaves honestly during the benchmarking.

Each data point in Figure 3 represents the average throughput or latency over 10
independent runs, each lasting 60 seconds. Error bars indicate two standard deviations.
We report results across varying numbers of parties (4, 10, and 13) and network delays
(A =200, 400, 600, 800, and 1000 ms). All other parameters remained constant throughout
the experiments: one worker per party, a transaction size of 512 bytes, and a transaction
injection rate of 50,000 transactions per second.

6.2 Results

The results of the experiments described above are summarized in Figure 3, Black Marlin
is represented by blue tones and Bullshark by red ones. The two figures of merit that we
consider are throughput and latency.

Black Marlin consistently achieves lower latency than Bullshark across all configurations.
The latency improvement ranges from a factor of 2 to 3, depending on the network delay.
For example, with 10 parties and a network delay of A = 200 ms, Black Marlin achieves a
latency of 696 + 5 ms, compared to 1800 £+ 54 ms for Bullshark. At A = 1000 ms, Black
Marlin’s latency is 3226 £ 55 ms, while Bullshark’s latency increases to 7773 £ 360 ms. This
improvement is expected: Black Marlin eliminates the need for reliable broadcast, reducing
latency by approximately a factor of 2. Additionally, its more frequent anchor selection
contributes to a constant-factor latency reduction, further widening the latency gap.

Black Marlin also achieves consistently higher throughput than Bullshark across all
network delay scenarios. In contrast to the more pronounced latency gains, the throughput
improvement is by a constant margin. This behavior can be explained by the way Bullshark
constructs blocks: a party running Bullshark accumulates batches of transactions from
workers until it is ready to broadcast a new block. As network delay increases, blocks become
larger, which helps mitigate throughput loss. Therefore, the ~ 2x latency improvement
observed with Black Marlin does not directly translate into an equivalent gain in throughput
— unless the number of workers or the network delay is significantly increased. However, these
adjustments were beyond the scope of this study. We were unable to increase the number of
workers due to hardware limitations, and we excluded network delays greater than 1 second,
as such conditions are considered unrealistic. This block size phenomenon also explains the
erratic throughput results observed for Bullshark under configurations with 4 parties and
low network delays. In these cases, small block sizes limited Bullshark’s throughput.

I. Amores-Sesar, V. Grgndal, A. Holmgard, and M. Ottendal

Figure 3 also demonstrates that Black Marlin’s garbage collection mechanism is robust
to overestimations of the actual network delay. Specifically, a constant-factor overestimation

leads to only a constant increase in the number of rounds that parties must retain in memory.

This implies that even for arbitrarily long executions, Black Marlin only requires O(n)
memory, provided the network delay is overestimated by a constant factor.

8000 - BM 4 parties
—8— BM 10 parties
49000 1
7000~ BM 13 parties
BS 4 parties
6000 - —8— BS 10 parties 48000
—&— BS 13 parties I
B 3
E 5000 vt 47000 -
> 3
2 4000 £
2 %’ 46000 -
- -
3000 7 = BM 4 parties
45000 | —— BM 10 parties
2000 - —=— BM 13 parties
44000 1 BS 4 parties
1000 - —8— BS 10 parties
—8— BS 13 parties
01— . T T T . ! : T T
200 400 600 800 1000 200 400 600 800 1000
Network Delay A (ms) Network Delay A (ms)
(a) Latency of Black Marlin and Bullshark. (b) Throughput of Black Marlin and Bullshark.
20
b
1S
(-]
£ 15
[}
=
E LY \ and e e 4
» 10 O P AR S B G G e B i R R AP R AT S P e R D TR R P Toeriienan
5 |
c
g 5 3A
« — 6A
— 9A
V] T T T T T T
V] 200 400 600 800 1000
Round

(c) Garbage collection as a function of the estimated network delay.

Figure 3 Black Marlin is shown in blue, Bullshark in red. Darker tones indicate higher numbers
of parties: n =4 (cross), n = 10 (circle), n = 13 (square). Black Marlin outperforms Bullshark in
latency and throughput: latency improves by a factor of 2—3; throughput sees a smaller but consistent
gain. Bullshark’s block creation strategy explains this modest throughput gap — it produces larger
blocks to compensate for delays, up to a size limit. This also accounts for Bullshark’s irregular
throughput at n = 4 under low delay, where small blocks constrain performance. Plot (c) shows

the number of rounds stored in memory by Black Marlin as a function of estimated network delay.

The actual delay is A = 600 ms, modeled as a Poisson distribution with mean 300 ms. We vary the
garbage collection threshold from 3A to 6A and 9A, observing linear growth in retained rounds. As
each round contains O(n) blocks, memory usage remains O(n).

Overall, Black Marlin outperforms Bullshark in our implementation, which uses the same
codebase and experimental conditions for both protocols. Unfortunately, source code for
more recent DAG-based protocols is not publicly available, preventing a direct empirical
comparison. However, as we demonstrate in Section 5.4, Black Marlin also surpasses these
protocols at a theoretical level in terms of communication and latency complexities while
allowing implementations with O(n) memory.

5:15

DISC 2025

5:16

DAG It Off
—— References
1 TIttai Abraham, Kartik Nayak, Ling Ren, and Zhuolun Xiang. Good-case latency of byzantine

10

11

12

13

14

15

16

17

18

19

broadcast: a complete categorization. In PODC, pages 331-341. ACM, 2021. doi:10.1145/
3465084 .3467899.

Ignacio Amores-Sesar and Christian Cachin. We will DAG you. In ESORICS Workshops
(1), volume 15263 of Lecture Notes in Computer Science, pages 276—291. Springer, 2024.
doi:10.1007/978-3-031-82349-7_19.

Ignacio Amores-Sesar, Christian Cachin, and Philipp Schneider. An analysis of avalanche
consensus. In STROCCO, volume 14662 of Lecture Notes in Computer Science, pages 27—44.
Springer, 2024. doi:10.1007/978-3-031-60603-8_2.

Ignacio Amores-Sesar, Christian Cachin, and Enrico Tedeschi. When is spring coming? A
security analysis of avalanche consensus. In OPODIS, volume 253 of LIPIcs, pages 10:1-10:22.
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2022. doi:10.4230/LIPICS.0PODIS.2022.
10.

Balaji Arun, Zekun Li, Florian Suri-Payer, Sourav Das, and Alexander Spiegelman. Shoal++:
High throughput DAG BFT can be fast and robust! In NSDI, pages 813-826. USENIX
Association, 2025. URL: https://www.usenix.org/conference/nsdi25/presentation/arun.
Kushal Babel, Andrey Chursin, George Danezis, Anastasios Kichidis, Lefteris Kokoris-Kogias,
Arun Koshy, Alberto Sonnino, and Mingwei Tian. Mysticeti: Reaching the latency limits with
uncertified dags. In NDSS. The Internet Society, 2025. URL: https://www.ndss-symposium.
org/ndss-paper/mysticeti-reaching-the-latency-limits-with-uncertified-dags/.
Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast protocols. J. ACM,
32(4):824*840, 1985. doi:10.1145/4221.214134.

Christian Cachin, Rachid Guerraoui, and Luis E. T. Rodrigues. Introduction to Reliable and
Secure Distributed Programming (2. ed.). Springer, 2011. doi:10.1007/978-3-642-15260-3.
Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with optimal resilience.
In STOC, pages 42-51. ACM, 1993. doi:10.1145/167088.167105.

Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In OSDI, pages
173-186. USENIX Association, 1999. URL: https://dl.acm.org/citation.cfm?id=296824.
Andrew Cullen, Pietro Ferraro, Christopher K. King, and Robert Shorten. On the resilience
of dag-based distributed ledgers in iot applications. IEEE Internet Things J., 7(8):7112-7122,
2020. doi:10.1109/JI0T.2020.2983401.

George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander Spiegelman. Narwhal
and tusk: a dag-based mempool and efficient BFT consensus. In FuroSys, pages 34-50. ACM,
2022. doi:10.1145/3492321.3519594.

Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in the presence of
partial synchrony. J. ACM, 35(2):288-323, 1988. doi:10.1145/42282.42283.

Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed consensus
with one faulty process. J. ACM, 32(2):374-382, 1985. doi:10.1145/3149.214121.

Neil Giridharan, Florian Suri-Payer, Ittai Abraham, Lorenzo Alvisi, and Natacha Crooks.
Autobahn: Seamless high speed BFT. In SOSP, pages 1-23. ACM, 2024. doi:10.1145/
3694715.3695942.

Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman. All you need
is DAG. In PODC, pages 165-175. ACM, 2021. doi:10.1145/3465084.3467905.

Idit Keidar, Oded Naor, Ouri Poupko, and Ehud Shapiro. Cordial miners: Fast and efficient
consensus for every eventuality. In DISC, volume 281 of LIPIcs, pages 26:1-26:22. Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik, 2023. doi:10.4230/LIPICS.DISC.2023.26.
Mysten Labs. Github, accessed on April 2025. URL: https://github.com/asonnino/
mysticeti/tree/paper.

Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133-169, 1998.
doi:10.1145/279227.279229.

https://doi.org/10.1145/3465084.3467899
https://doi.org/10.1145/3465084.3467899
https://doi.org/10.1007/978-3-031-82349-7_19
https://doi.org/10.1007/978-3-031-60603-8_2
https://doi.org/10.4230/LIPICS.OPODIS.2022.10
https://doi.org/10.4230/LIPICS.OPODIS.2022.10
https://www.usenix.org/conference/nsdi25/presentation/arun
https://www.ndss-symposium.org/ndss-paper/mysticeti-reaching-the-latency-limits-with-uncertified-dags/
https://www.ndss-symposium.org/ndss-paper/mysticeti-reaching-the-latency-limits-with-uncertified-dags/
https://doi.org/10.1145/4221.214134
https://doi.org/10.1007/978-3-642-15260-3
https://doi.org/10.1145/167088.167105
https://dl.acm.org/citation.cfm?id=296824
https://doi.org/10.1109/JIOT.2020.2983401
https://doi.org/10.1145/3492321.3519594
https://doi.org/10.1145/42282.42283
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3694715.3695942
https://doi.org/10.1145/3694715.3695942
https://doi.org/10.1145/3465084.3467905
https://doi.org/10.4230/LIPICS.DISC.2023.26
https://github.com/asonnino/mysticeti/tree/paper
https://github.com/asonnino/mysticeti/tree/paper
https://doi.org/10.1145/279227.279229

I. Amores-Sesar, V. Grgndal, A. Holmgard, and M. Ottendal

20

21

22

23

24

25

26

27

Serguei Popov, Olivia Saa, and Paulo Finardi. Equilibria in the tangle. Comput. Ind. Eng.,
136:160-172, 2019. doi:10.1016/J.CIE.2019.07.025.

Facebook Research. Bullshark implementation. Github, accessed on April 2025.
https://github.com/facebookresearch /narwhal/tree/bullshark.

Team Rocket, Maofan Yin, Kevin Sekniqi, Robbert van Renesse, and Emin Giin Sirer. Scalable
and probabilistic leaderless BFT consensus through metastability. CoRR, abs/1906.08936,
2019. arXiv:1906.08936.

Victor Shoup. Blue fish, red fish, live fish, dead fish. JACR Cryptol. ePrint Arch., page 1235,
2024. URL: https://eprint.iacr.org/2024/1235.

Nibesh Shrestha, Aniket Kate, and Kartik Nayak. Sailfish: Towards improving latency of

dag-based BFT. JACR Cryptol. ePrint Arch., page 472, 2024. URL: https://eprint.iacr.

org/2024/472.

Alexander Spiegelman, Balaji Arun, Rati Gelashvili, and Zekun Li. Shoal: Improving DAG-
BFT latency and robustness. In FC (1), volume 14744 of Lecture Notes in Computer Science,
pages 92-109. Springer, 2024. doi:10.1007/978-3-031-78676-1_6.

Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lefteris Kokoris-Kogias.
Bullshark: DAG BFT protocols made practical. In CCS, pages 2705-2718. ACM, 2022.
doi:10.1145/3548606.3559361.

Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta, and Ittai Abraham. Hotstuff:
BFT consensus with linearity and responsiveness. In PODC, pages 347-356. ACM, 2019.
doi:10.1145/3293611.3331591.

5:17

DISC 2025

https://doi.org/10.1016/J.CIE.2019.07.025
https://arxiv.org/abs/1906.08936
https://eprint.iacr.org/2024/1235
https://eprint.iacr.org/2024/472
https://eprint.iacr.org/2024/472
https://doi.org/10.1007/978-3-031-78676-1_6
https://doi.org/10.1145/3548606.3559361
https://doi.org/10.1145/3293611.3331591

	1 Introduction
	1.1 Structure

	2 Related work
	3 Model
	3.1 Notation
	3.2 Adversary and Network
	3.3 Atomic broadcast

	4 Protocol
	4.1 Validity predicates
	4.2 Initialization
	4.3 Round structure
	4.4 Delivery
	4.5 Functions

	5 Analysis
	5.1 Safety
	5.2 Liveness
	5.3 Main Result
	5.4 Communication and Time Complexity
	5.4.1 Communication complexity
	5.4.2 Time complexity

	6 Benchmarking
	6.1 Experiments
	6.2 Results

