
Brief Announcement: Weaker Assumptions for
Asymmetric Trust
Christian Cachin #

University of Bern, Switzerland

Juan Villacis #

University of Bern, Switzerland

Abstract
In protocols with asymmetric trust, each participant is free to make its own trust assumptions about
others, captured by an asymmetric quorum system. This contrasts with ordinary, symmetric quorum
systems and threshold models, where trust assumptions are uniformly shared among participants.
Fundamental problems like reliable broadcast and consensus are unsolvable in the asymmetric model
if quorum systems satisfy only the classical properties of consistency and availability. As a result,
existing solutions introduce stronger assumptions to circumvent this limitation. We show that
some requirements used by state-of-the-art approaches are overly restrictive, so much so that they
effectively eliminate the benefits of asymmetric trust. To address this, we propose a new approach
to characterize asymmetric problems and, building upon it, present an asymmetric asynchronous
unauthenticated reliable broadcast algorithm that significantly weakens the assumptions needed to
solve the problem. Our techniques are general and can be readily adapted to other core problems in
the asymmetric trust setting.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Asymmetric Trust, Quorum Systems, Reliable Broadcast

Digital Object Identifier 10.4230/LIPIcs.DISC.2025.50

Funding This work was supported by the Swiss National Science Foundation (SNSF) under grant
agreement Nr. 219403 (Emerging Consensus) and the Initiative for Cryptocurrencies and Contracts
(IC3).

1 Introduction

Asymmetric trust models, such as those proposed by Damgård et al. [3], Alpos et al. [1],
and Li, Chan, and Lesani [4] allow the development of distributed protocols in which each
participant can operate under its own trust settings. These algorithms are built on top of
asymmetric quorum systems, where each process independently defines its own quorums.
The traditional consistency and availability properties must be satisfied by these systems,
but as was shown by Li et al. [4], these are not enough to solve fundamental problems like
reliable broadcast and consensus. Therefore, the models introduce additional assumptions.
The protocols for reliable broadcast and consensus of Alpos et al. [1] require the existence of
a guild, a set of processes that contains a quorum for each of its members. Li et al. [4] and
Losa, Gafni, and Mazieres [5] identify similar conditions. These assumptions can be very
strong and restrictive, and while they are sufficient to provide solutions to the aforementioned
problems, we will show that they are not necessary. This leads to asymmetric algorithms
that work under weaker assumptions, making such systems more flexible and usable.

We show that assumptions currently identified for algorithms such as reliable broadcast
or consensus are so restrictive that it becomes unnecessary to use asymmetric trust models
altogether. That is, given an asymmetric trust assumption that satisfies such requirements,
we can build an equivalent symmetric trust assumption such that no process will be worse
off by adopting it. This result is surprising, considering that Alpos et al. [1] show that
asymmetric trust is more expressive than symmetric trust.

© Christian Cachin and Juan Villacis;
licensed under Creative Commons License CC-BY 4.0

39th International Symposium on Distributed Computing (DISC 2025).
Editor: Dariusz R. Kowalski; Article No. 50; pp. 50:1–50:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:christian.cachin@unibe.ch
https://orcid.org/0000-0001-8967-9213
mailto:juan.villacis@unibe.ch
https://orcid.org/0009-0006-0110-8613
https://doi.org/10.4230/LIPIcs.DISC.2025.50
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de


50:2 Brief Announcement: Weaker Assumptions for Asymmetric Trust

To solve this, we introduce the notion of depth of a process and propose a new way to
characterize asymmetric problems based on it. We use this concept to provide a more general
definition of asymmetric asynchronous reliable broadcast and to propose a new algorithm for
this problem that foregoes the guild requirement in favor of a weaker assumption on depth .

2 Asymmetric Trust Model

For a complete presentation of the asymmetric trust model, we refer the reader to the work of
Alpos et al. [1]. In protocols with asymmetric trust, each participant is free to make its own
individual trust assumptions about others, captured by an asymmetric quorum system. This
contrasts with ordinary, symmetric and threshold quorum systems, where all participants
share the same trust assumptions. Given a set of processes P, an asymmetric fail-prone
system F = [F1, . . . , Fn], where Fi represents the trust assumptions of process pi, captures
the heterogeneous model. Each Fi is a collection of subsets of P (the set of processes) such
that some F ∈ Fi with F ⊆ P is called a fail-prone set for pi and contains all processes that,
according to pi, may at most fail together in some execution [3]. We can in turn proceed
to define the asymmetric Byzantine quorum systems. Here and from now on, the notation
A∗ for a system A ⊆ 2P , denotes the collection of all subsets of the sets in A, that is,
A∗ = {A′|A′ ⊆ A, A ∈ A}.

▶ Definition 1. An asymmetric Byzantine quorum system Q for F is an array of collections
of sets Q = [Q1, · · · , Qn] where Qi ⊆ 2P for i ∈ [1, n]. The set Qi ⊆ 2P is a symmetric
quorum system of pi and any set Qi ∈ Qi is called a quorum for pi. The system Q must
satisfy the following two properties.

Consistency: The intersection of two quorums for any two processes contains at least one
process for which either process assumes that it is not faulty, i.e.,

∀i, j ∈ [1, n], ∀Qi ∈ Qi, ∀Qj ∈ Qj , ∀Fij ∈ F∗
i ∩ F∗

j : Qi ∩ Qj ⊈ Fij .

Availability: For any process pi and any set of processes that may fail together according to
pi, there exists a disjoint quorum for pi in Qi, i.e.,

∀i ∈ [1, n], ∀Fi ∈ Fi : ∃Qi ∈ Qi : Fi ∩ Qi = ∅.

Given an asymmetric quorum system Q for F, an asymmetric kernel system for Q is
defined analogously as the array K = [K1, . . . , Kn] that consists of the kernel systems for
all processes in P. A set Ki ∈ Ki is called a kernel for pi and for each Ki it holds that
∀Qi ∈ Qi, Ki ∩ Qi ̸= ∅, that is, a kernel intersects all quorums of a process.

The existence of a valid Q is conditioned on F satisfying the B3 condition.

▶ Definition 2 (B3-condition). An asymmetric fail-prone system F satisfies the B3-condition,
abbreviated as B3(F), whenever it holds that

∀i, j ∈ [1, n], ∀Fi ∈ Fi, ∀Fj ∈ Fj , ∀Fij ∈ Fi
∗ ∩ Fj

∗ : P ̸⊆ Fi ∪ Fj ∪ Fij

Existing work shows that an asymmetric fail-prone system F satisfies B3(F) if and only if
there exists an asymmetric quorum system for F. If B3(F) holds, then the canonical quorum
system, defined as the complement of the asymmetric fail-prone system, is a valid asymmetric
quorum system.

During an execution the set of processes that fail is denoted by F . The members of F are
unknown to the processes and can only be identified by an outside observer and the adversary.
A process pi correctly foresees F if F ∈ F∗

i , that is, F is contained in one of its fail-prone
sets. Based on this information, it is possible to classify processes in three categories.



C. Cachin and J. Villacis 50:3

Faulty: a faulty process, i.e., pi ∈ F ;
Naive: a correct process pi, i.e. pi /∈ F , where F /∈ F∗

i ; or
Wise: a correct process pi, i.e. pi /∈ F , where F ∈ F∗

i

Alpos et al. [1] show that naive processes might affect the safety and liveness guarantees
of some protocols. In order to formalize this notion, they introduced the concept of a guild.
This concept is central for many of the algorithms they propose (e.g., reliable broadcast,
binary consensus), as properties can only be ensured for executions where a guild exists.

▶ Definition 3. A guild is a set of wise processes that contains one quorum for each member.
Formally, a guild G for F and Q, for an execution with faulty processes F , is a set of processes
that satisfies the following two properties.

Wisdom: G is a set of wise processes, that is,

∀pi ∈ G : F ∈ F∗
i .

Closure: G contains a quorum for each of its members, that is,

∀pi ∈ G : ∃Qi ∈ Qi : Qi ⊆ G.

3 Guild Assumptions are not Asymmetric

Li et al. [4] show that given a Byzantine asymmetric quorum system, the classical properties
of consistency and availability alone do not suffice to solve fundamental problems such as
reliable broadcast or consensus. The heterogeneous views of the system make it necessary
assume more structure. The corresponding algorithms of Alpos et al. [1] require the existence
of a guild. In a similar manner, Li et al. [4] propose that the strong availability property
should be satisfied to be able to solve such problems. This requirement closely resembles
the notion of a guild; in fact, any execution that satisfies the strong availability property is
guaranteed to contain at least one guild. We explore here the implications of requiring this
kind of assumptions, focusing our attention on the model of Alpos et al. [1].

Guilds are a very strong assumption, essentially requiring all members to have common
beliefs, which goes against the spirit of asymmetry. We show that given an asymmetric
fail-prone system F, in all executions where there is a guild, it is possible to construct an
equally valid symmetric trust assumption F from F. As a result, asymmetric trust reduces
to symmetric trust.

In the crash-fault model, Senn and Cachin [6] already show that given an asymmetric
fail-prone system F′, it is possible to construct a symmetric fail-prone system F ′ from F′

such that if all processes adopt F ′ as their trust assumption, no process will be worse off.
This result implies that there is no need for asymmetric trust in that setting. We extend
this by showing that a similar scenario occurs in the Byzantine model for all executions with
a guild. This effectively invalidates the advantages of asymmetric trust for the algorithms
proposed by Alpos et al. [1], which rely on the existence of a guild.

▶ Theorem 4. Let F be an asymmetric fail-prone system. Given an execution with faulty
processes F and at least one guild G, it is possible to construct a symmetric fail-prone system
F derived from F such that F ∈ F∗.

Theorem 4 shows that for executions with a guild, every process is at least as well off
using the symmetric quorum system F instead of F. For a wise process pi the situation
will remain the same regardless of the quorum system chosen. With the asymmetric system

DISC 2025



50:4 Brief Announcement: Weaker Assumptions for Asymmetric Trust

F ∈ F∗
i will hold, while the symmetric alternative satisfies F ∈ F∗. For naive processes the

situation improves, as now the faulty processes will be considered in their trust assumption.
Thus, there is no reason for a process not to adopt the derived symmetric fail-prone system F .
One limitation of this result is that it assumes knowledge of F, the trust assumptions for
all processes. Although Alpos et al. [1] also make this assumption, it is not required in
other asymmetric trust models [5]. We also note that knowing the faulty processes F is not
required to derive the symmetric fail-prone system presented in Theorem 4.

If a guild is needed to solve a problem in the asymmetric setting, there exists a way to
use existing algorithms in the symmetric model and obtain the same guarantees that an
asymmetric algorithm would provide. Therefore, if a problem can only be solved with a
guild, the interest in using asymmetric algorithms decreases. This motivates to look for
other models and algorithms to implement reliable broadcast, consensus, and other problems,
where the asymmetric algorithms known so far require a guild.

4 Depth-Characterized Reliable Broadcast

The result of Section 3 motivates the search for new guildless algorithms for problems where
the only known protocols require a guild. We explore this within the context of the Byzantine
reliable broadcast problem. We present a new approach that significantly weakens the
assumptions needed to implement the problem and removes the reliance on guilds.

In order to do this, we introduce the notion of the depth of a process. Intuitively, this
captures the extent to which a process can depend on others during a multi-round protocol
execution. We then show how it can be used to characterize asymmetric problems in a more
fine-grained approach.

▶ Definition 5 (Depth of a process). For an execution, we recursively define the notion of a
correct process having depth d as follows:

Any correct process pi has depth 0.
Additionally, a correct process pi has depth d ≥ 1 if

∃Q ∈ Qi, ∀pj ∈ Q : pj is correct, has depth s, and s ≥ d − 1.

We will center our attention on the maximal depth of a process. Note that a process with
maximal depth d also has depth d′ for all 0 ≤ d′ ≤ d. Following the terminology of Alpos et
al. [1], naive processes have maximal depth 0, wise processes have maximal depth at least 1,
and processes in a guild have maximal depth ∞.

Definition 6 presents a way to characterize reliable broadcast based on the depth of
processes. Its properties are specific to processes that have at least a certain maximal depth.

▶ Definition 6 (Depth-characterized asymmetric asynchronous Byzantine reliable broadcast). A
protocol for depth-characterized asymmetric (Byzantine) reliable broadcast with sender ps

and depth d, shortened as RB[d], defined through the events dar-deliver and dar-broadcast,
satisfies the following properties:

Validity: If a correct process ps dar-broadcasts a message m, then all processes with
depth d eventually dar-deliver m.
Consistency: If some process with depth d dar-delivers m and another process with
depth d dar-delivers m′, then m = m′

Integrity: Every process with depth d dar-delivers m at most once. Moreover, if the
sender ps is correct and the receiver has depth d, m was previously dar-broadcast by ps

Totality: If a process with depth d dar-delivers some message, then all processes with
depth d eventually dar-deliver a message.



C. Cachin and J. Villacis 50:5

RB[∞] gives a solution for all processes with depth ∞, while the protocol by Alpos et al.
only guarantees a solution for processes with depth ∞ that also belong to the maximal guild.
Lemma 7 shows that if an algorithm solves RB[s] then it also solves RB[s′] for all s′ ≥ s.
This simplifies the search for a solution by reducing it to finding an algorithm that works for
the minimal value of s. Lemma 8 shows that there are no algorithms that can solve RB[1],
therefore we must search for a protocol that solves the problem for processes with depth ≥ 2.

▶ Lemma 7. If an algorithm solves RB[s] then it also solves RB[s′] for all s′ > s

▶ Lemma 8. There is no algorithm that solves RB[1]

Algorithm 1 presents a solution for RB[3]. Every process in the algorithm waits to receive
a quorum of Readyafterecho messages associated to the same message m and round r

before delivering m. A process with depth 3 will only receive such a quorum if there exists a
set of processes Q (which form a quorum for a wise process) that can attest that the sender
indeed sent the value m. Since there will be an attesting quorum for every process that
delivers, and since quorums for wise processes intersect in at least one correct process, we
can deduce that all processes with depth 3 that deliver a value m will deliver the same value.
In addition, we use a technique similar to Bracha’s kernel amplification [2] to ensure that if a
valid process delivers then all valid processes will deliver. The arrays in lines 4, 5, 6, and 7
are hashmaps, so even though they are depicted as having infinite size they are actually
sparsely populated. The algorithm has a latency of 3 asynchronous rounds in the best case
and 5 in the worst case scenario.

▶ Lemma 9. Algorithm 1 solves RB[3]

5 Conclusion

We have shown that if a problem requires a guild assumption to be solved it is of less interest
to use asymmetric trust to solve it. This arises from Theorem 4, which shows that for these
cases, asymmetric trust reduces to symmetric trust.

To address this we presented a more fine-grained approach to characterize asymmetric
problems, using the concept of depth, and showed that reliable broadcast can be solved
for all processes with depth at least 3. This weakens the requirements needed to solve the
problem in an asymmetric setting compared to the solution proposed by Alpos et al. [1],
which only solves reliable broadcast for a fraction of processes with depth ∞. It is an open
question if there exists an algorithm that solves RB[2]. These techniques can also be applied
to other problems, such as binary consensus and common coin, whose existing solutions in
the asymmetric trust setting rely on guilds. This approach could enable the development of
new algorithms that operate under significantly weaker assumptions.

DISC 2025



50:6 Brief Announcement: Weaker Assumptions for Asymmetric Trust

Algorithm 1 Depth-based asymmetric reliable broadcast for processes with depth 3 with sender ps

(RB[3]) (process pi).

1: State
2: sentecho← false: indicates whether pi has sent echo
3: echos← [⊥]n: collects the received echo messages from other processes
4: sentrae← [false]∞: indicates whether pi has sent readyafterecho in round n, a hashmap
5: sentrar← [false]∞: indicates whether pi has sent readyafterready in round n, a hashmap
6: readysafterecho← [⊥,⊥]∞×n: collects readyafterecho messages from other processes, a hashmap
7: readysafterready← [⊥,⊥]∞×n: collects readyafterready messages from other processes, a hashmap
8: delivered← false: indicates whether pi has delivered a message

9: upon invocation dar-broadcast(m) do
10: send message [send, m] to all pj ∈ P

11: upon receiving a message [send, m] from ps such that ¬sentecho do
12: sentecho← true
13: send message [echo, m] to all pj ∈ P

14: upon receiving a message [echo, m] from pj do
15: if echos[j] = ⊥ then
16: echos[j]← m

17: upon exists m ̸= ⊥ such that {pj ∈ P|echos[j] = m} ∈ Qi and ¬sentrae[1] do // a quorum for pi

18: sentrae[1]← true
19: send message [readyafterecho, 1, m] to all pj ∈ P

20: upon exists m ̸= ⊥, r > 0 such that {pj ∈ P|readysafterecho[r][j] = m} ∈ Ki and ¬sentrar[r] do
21: sentrar[n]← true
22: send message [readyafterready, r, m] to all pj ∈ P

23: upon receiving a message [readyafterecho, r, m] from pj do
24: if readysafterecho[r][j] = ⊥ then
25: readysafterecho[r][j]← m

26: upon receiving a message [readyafterready, r, m] from pj do
27: if readysafterready[r][j] = ⊥ then
28: readysafterready[r][j]← m

29: upon exists m ̸= ⊥, r > 1 such that {pj ∈ P|readyafterready[r][j] = m} ∈ Qi and ¬sentrae[r] do
30: sentrae[r+1]← true
31: send message [readyafterecho, r + 1, m] to all pj ∈ P

32: upon exists m ̸= ⊥, r > 0 such that {pj ∈ P|readysafterecho[r][j] = m} ∈ Qi and ¬delivered do
33: delivered← true
34: output dar-deliver(m)



C. Cachin and J. Villacis 50:7

References
1 Orestis Alpos, Christian Cachin, Björn Tackmann, and Luca Zanolini. Asymmetric distributed

trust. Distributed Comput., 37(3):247–277, 2024. doi:10.1007/S00446-024-00469-1.
2 Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast protocols. J. ACM,

32(4):824–840, 1985. doi:10.1145/4221.214134.
3 Ivan Damgård, Yvo Desmedt, Matthias Fitzi, and Jesper Buus Nielsen. Secure protocols

with asymmetric trust. In Advances in Cryptology - ASIACRYPT 2007, 13th International
Conference on the Theory and Application of Cryptology and Information Security, Kuching,
Malaysia, December 2-6, 2007, Proceedings, volume 4833 of Lecture Notes in Computer Science,
pages 357–375. Springer, 2007. doi:10.1007/978-3-540-76900-2_22.

4 Xiao Li, Eric Chan, and Mohsen Lesani. Quorum subsumption for heterogeneous quorum
systems. In Rotem Oshman, editor, 37th International Symposium on Distributed Computing,
DISC 2023, October 10-12, 2023, L’Aquila, Italy, volume 281 of LIPIcs, pages 28:1–28:19.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.DISC.2023.
28.

5 Giuliano Losa, Eli Gafni, and David Mazières. Stellar consensus by instantiation. In Jukka
Suomela, editor, 33rd International Symposium on Distributed Computing, DISC 2019, October
14-18, 2019, Budapest, Hungary, volume 146 of LIPIcs, pages 27:1–27:15. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPICS.DISC.2019.27.

6 Michael Senn and Christian Cachin. Asymmetric failure assumptions for reliable distributed
systems. In Davide Frey and Gowtham Kaki, editors, Proceedings of the 12th Workshop
on Principles and Practice of Consistency for Distributed Data, PaPoC 2025, World Trade
Center, Rotterdam, The Netherlands, 30 March 2025- 3 April 2025, pages 8–14. ACM, 2025.
doi:10.1145/3721473.3722143.

DISC 2025

https://doi.org/10.1007/S00446-024-00469-1
https://doi.org/10.1145/4221.214134
https://doi.org/10.1007/978-3-540-76900-2_22
https://doi.org/10.4230/LIPICS.DISC.2023.28
https://doi.org/10.4230/LIPICS.DISC.2023.28
https://doi.org/10.4230/LIPICS.DISC.2019.27
https://doi.org/10.1145/3721473.3722143

	1 Introduction
	2 Asymmetric Trust Model
	3 Guild Assumptions are not Asymmetric
	4 Depth-Characterized Reliable Broadcast
	5 Conclusion

