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Abstract
In this paper, we study the leader election problem in oriented ring networks under content-oblivious
asynchronous message-passing systems, where an adversary may arbitrarily corrupt message contents.

Frei et al. (DISC 2024) recently presented a uniform terminating leader election algorithm for
oriented rings in this setting, with message complexity O(nIDmax) on a ring of size n, where IDmax

is the largest identifier in the system.
In this paper, we investigate the message complexity of leader election in this model, showing

that no uniform algorithm can solve the problem if each process is limited to sending a constant
number of messages in one direction.

Interestingly, this limitation hinges on the uniformity assumption. In the non-uniform setting
– where processes know an upper bound U ≥ n on the ring size – we present an algorithm with
message complexity O(nU IDmin), in which each process sends O(U IDmin) messages clockwise and
only three messages counter-clockwise. Here, IDmin is the smallest identifier in the system. This
dependence on the identifiers compares favorably with the dependence on IDmax of Frei et al. (DISC
2024).

We also show a non-uniform algorithm where each process sends O(U log IDmin) messages in one
direction and O(log IDmin) in the other. The factor log IDmin is optimal, matching the lower bound
of Frei et al. (DISC 2024).

Finally, in the anonymous setting, we propose a randomized algorithm where each process sends
only O(log2 U) messages, with a success probability of 1− U−c.
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51:2 Content-Oblivious Leader Election on Oriented Rings

1 Introduction

The field of reliable distributed computing is characterized by the study of a wide range of
failure models, from failures affecting specific processes [4, 17] to failures affecting commu-
nication channels, such as message omission failures, message addition failures or message
corruptions [19]. In a recent paper, Censor-Hillel et al. [7] introduced a new interesting failure
model for channels: the fully-defective asynchronous network. In this model, processes do
not fail, but all messages in transit may be arbitrarily corrupted by an adversary. While the
adversary can alter the content of any message, it cannot create or destroy messages.

This model is content-oblivious, meaning that messages carry no reliable content, not
even the identity of the sender. The only information a message conveys is its existence.

Surprisingly, Censor-Hillel et al. [7] showed that if a leader process is initially known
and the topology is 2-edge-connected, it is possible to simulate a reliable, uncorrupted
message-passing network, even in asynchronous settings, within this fully-defective model.

This result makes studying leader election algorithms for this model particularly com-
pelling: if a leader can be elected in a certain topology, with an algorithm that is terminating
and where it is possible to distinguish in some way the messages of the leader election
algorithm, then on such topology any asynchronous algorithm can be simulated even if all
messages are arbitrarily corrupted. In this regard, Censor-Hillel et al. [7] conjectured that
electing a leader was impossible in content-oblivious model and thus that having a leader
was a necessary requirement. We stress that electing a leader is a fundamental problem in
the classical message-passing setting, and it has been extensively studied in systems with
unique identifiers [1, 12, 16, 18] and in anonymous networks [2, 3, 8, 21].

Frei et al. [13] disproved the aforementioned conjecture for a notable family of 2-edge-
connected networks: oriented ring topologies. In an oriented ring, processes have a common
notion of clockwise and counter-clockwise direction. More specifically, Frei et al. [13] proposed
a quiescently terminating leader election algorithm with a message complexity of O(nIDmax),
where IDmax is the maximum identifier in the system. The quiescent termination of the
algorithm allows it to be composed with the simulator of Censor-Hillel et al. [7] and thus
implies that the presence of unique identifiers is enough to simulate any asynchronous
algorithm on a content-oblivious oriented ring.

Additionally, Frei et al. [13] proved that, for any uniform algorithm, there exists an
identifier assignment under which the algorithm must send Ω

(
n log IDmax

n

)
messages. Although

originally established for the uniform setting, this lower bound can be extended to the non-
uniform setting, even when the exact value of n is known; see the full version of the paper
for details.

In anonymous systems, where processes lack identifiers, Frei et al. [13] showed a randomized
leader election algorithm using nO(c2) messages and succeeding with probability 1 − n−c, but
without explicit termination. In fact, Itai and Rodeh [15] proved that no uniform algorithm
can both elect a leader and guarantee explicit termination in anonymous systems without
additional assumptions. We stress that the lack of explicit termination does not allow the
composition of this algorithm with the simulator of Censor-Hillel et al. [7].

Finally, we want to mention the related line of research of the beeping model [5, 6, 9, 20],
where in each round a process may either emit a beep to its neighbors or listen. This model
is inherently synchronous. Therefore, the techniques developed for leader election in the
beeping model [10, 11, 14] cannot be applied in content-oblivious networks.
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1.1 Contributions

We shed new light on the message complexity of leader election in the content-oblivious
model. Specifically, we show that a uniform algorithm, even on oriented rings, cannot elect a
leader while sending only a constant number of messages in a single direction.

Interestingly, we show that non-uniform algorithms, where processes know an upper
bound U on the network size n, can circumvent this impossibility result.

In particular, we present an algorithm for oriented rings (Section 3) that elects a leader
by sending O(nU IDmin) messages in the clockwise direction and where each process sends
just three messages in the counter-clockwise direction. Here IDmin is the minimum identifier
in the system. We also present a non-uniform algorithm for oriented rings (Section 4)
that sends O(nU log IDmin) messages in one direction and O(n log IDmin) messages in the
other. We stress that the factor log IDmin of our algorithm is optimal. This follows from
the aforementioned lower bound of Frei et al. [13], which shows the necessity of logarithmic
dependency on the values of the identifiers. Our result implies that Θ(log IDmin) is the tight
message complexity for constant-size instances.

The key technical novelty in our non-uniform algorithms is the design of a global syn-
chronization mechanism that leverages the known upper bound on the network size to keep
processes partially synchronized across algorithmic phases. This mechanism enables processes
to compare their identifiers bit by bit, leading to an algorithm whose complexity depends
only on the size of the identifiers (and not on their values).

Regarding anonymous networks, with non-uniformity at hand, the aforementioned impos-
sibility result of Itai and Rodeh [15] no longer applies. This allows us to create a randomized
algorithm (Section 5) that, with probability at least 1 − U−c, is quiescently terminating. The
algorithm has message complexity O(n log2 U). In contrast to the randomized approach of
Frei et al. [13], whose message complexity has an inherent exponential dependence on c, our
algorithm achieves near-linear message complexity with only a multiplicative dependence
on c, which is hidden in the O(·) notation.

For space reasons, in this brief announcement, we just announce our results and describe
the high-level ideas; see the full version of this paper for technical details.

2 System Model

We consider a system composed of a set of n processes P = {p0, p1, . . . , pn−1} that commu-
nicate on a ring network by sending messages to each other. More precisely, a process p has
two local communication ports: port 0 and port 1. By means of a specific port, a process is
able to send messages to and receive messages from one of its neighbors.

When the system is not anonymous, processes have unique identifiers that are arbitrarily
selected from N.

We assume an asynchronous system; that is, each message has an unpredictable delay
that is finite but unbounded. A message cannot be lost. Messages are buffered, in the sense
that if several messages are delivered to a process at the same time, they are stored in a
local buffer and can then be retrieved by the destination process at its discretion. The local
computation time at each process may be arbitrary but bounded, and processes do not share
a notion of common time.

Processes are correct and do not experience any kind of failure.

DISC 2025
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Content-Oblivious Algorithms. Since we are interested in content-oblivious algorithms, we
assume that messages do not carry any information apart from their existence. That is, each
message is an empty string (a pulse [13]) and a process only observes the local port number
on which the message is received.

Oriented Rings. We consider oriented rings. A ring is oriented if processes share a common
notion of clockwise (CW) and counter-clockwise (CCW) orientation. More precisely, consider
a ring (p0, p1, . . . , pn−1) for each j ∈ [0, n − 1], at process pj , port 0 leads to pj+1 and port 1
leads to pj−1 (where indices are taken modulo n). We will say that a message is traveling in
the clockwise direction if it is sent on port 0 and received on port 1 (i.e., a message goes
from pi to pi+1); conversely, a message travels in the counter-clockwise direction if it is sent
on port 1 and received on port 0.

Uniform and Non-Uniform Algorithms. An algorithm is uniform if it works for all possible
network sizes; i.e., processes do not know the total number of processes n or a bound on it.
An algorithm is non-uniform if processes know an upper bound U ≥ n.

Message Complexity. We measure the performance of our algorithms by their message
complexity. That is the number of all messages sent. We further discriminate between the
numbers of clockwise messages and counter-clockwise messages sent by each process.

Leader Election Problem. In this problem, processes must elect one of them as the leader
and all others are designated as non-leader processes. We consider terminating leader election,
in the sense that every process must eventually enter either a Leader or Non-Leader state,
and both of these states are final – meaning no further state changes are possible, and the
process terminates the execution of the algorithm.

Moreover, we require that once the last process enters its final state, there are no messages
in transit in the network. This is known as quiescent termination [13]. In our algorithms, the
last process to enter its final state is always the unique leader. This property enables easy
composability of algorithms: once the leader enters the final state, it knows that the network
is “at rest” and can begin sending messages for a subsequent algorithm [13, Section 1.1].

3 Constant Number of Messages in One Direction

We now describe an algorithm where each process sends O(U IDmin) messages in the clockwise
direction, and just 3 messages in the counter-clockwise direction. This algorithm is of interest
as it shows that our claim below needs the uniformity assumption:

▶ Theorem 1. For any uniform leader election algorithm and any bound b ∈ N there exists
an oriented ring where at least one process sends more than b messages in each direction.

The Constant Direction Algorithm, pseudocode in Algorithm 1, starts in a competing
phase. In the competing phase, blue lines, a process p with identifier ID performs a loop of
U ID iterations. In each iteration, the process sends a message in the CW direction and waits
for a message from the CW direction. This phase synchronizes the processes so that the
indices of any two processes in the phase loop can differ by at most n − 1. The process with
the minimum identifier will be the only one to end the competing phase by completing the
prescribed number of iterations.
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Algorithm 1 Constant Direction Algorithm(ID,boundOnSize).

1 for i← 1 to boundOnSize ∗ ID do
2 send a message on port 0
3 receive a message on port q // Wait for a message and store the port number in

variable q
4 if q = 0 then break
5 if q = 0 then

/* if a process enters this branch, then it is not the process with minimum ID
*/

6 send a message on port 1
7 receive a message on port 1 // Wait for a message on port 1.
8 repeat
9 receive a message on port q

10 send a message on port 1− q
11 until received two messages on port 0
12 return Non-Leader
13 else

/* only the process with minimum ID enters this branch */
14 send a message on port 1
15 receive a message on port 0
16 send a message on port 1
17 repeat
18 receive a message on port q
19 if q = 1 then
20 send a message on port 0
21 until q = 0
22 send a message on port 1
23 receive a message on port 0
24 return Leader

This process then enters the termination detection phase (green lines). In this phase, the
process first sends a message CCW to inform all other processes that they are not leaders.
Once this message returns, it sends a second CCW message while starting to relay CW
messages; when this second message will be received back the process will know that all
CW messages in the network are eliminated. Finally, once the second message is received, it
sends a third and final CCW message to terminate the algorithm.

A process whose identifier is not the minimum will enter the relay phase (red lines) upon
receiving and relaying a message from the CCW direction. In the relay phase, the process
first waits to receive a CW message, in order to eliminate the CW message it sent during
the competing phase, and afterwards it relays both CCW and CW messages it receives. A
non-leader process terminates after receiving three CCW messages.

▶ Theorem 2. There exists a quiescently terminating leader election algorithm for ori-
ented rings in which each process sends O(U IDmin) messages clockwise and three messages
counterclockwise, for a total of O(nU IDmin) messages.

4 An algorithm that sends O(nU log IDmin) messages

We now describe an algorithm in which each process sends O(U log IDmin) messages. The
algorithm uses an encoding of identifiers such that the smallest identifier is not a prefix of
any other identifier, and the last bit of every encoded identifier is 0. To achieve this, given
an identifier ID of bit length ℓ, we encode it as 1ℓ0 · ID · 0.

The algorithm elects the process with the minimum identifier and proceeds in elimination
rounds. In each round, active processes compare a specific bit of their (encoded) identifiers,
eliminating all processes that do not have the minimum bit at that position.

DISC 2025
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The bound U on the network size is used to synchronize processes across different rounds
of the algorithm. When an active process enters a round, it begins the Synchronization phase.
In this phase, each active process sends and receives messages in the CW direction for U steps.
Then, processes with bit 0 send and receive one message in the CCW direction, blocking
messages in the CW direction (this is the Zero Signaling phase). Meanwhile, processes with
bit 1 attempt to continue sending and receiving messages in the CW direction for another U

steps. However, they become inactive if they receive a CCW message, indicating the presence
of a process with bit 0 (this is the No-Zero Checking phase).

The rationale for these phases is to ensure that processes with bit 1 proceed to the next
round in the active state if and only if no process with bit 0 exists in the current round.
Indeed, when processes with bit 0 stop propagating CW messages, the processes with bit 1
are prevented from completing their No-Zero Checking phase.

Conversely, a process with bit 0 in a given round remains active. The Synchronization
phase described above ensures that once an active process completes this phase for a new
round, all active processes have completed the previous round and are in the Synchronization
phase of the current round.

An inactive process relays messages, and while doing so, it eliminates the first CW message
it receives. This guarantees that, once all inactive processes have eliminated one message, the
total number of messages in the network equals the number of active processes. Therefore,
once all processes except the one with the minimum identifier have been eliminated, only a
single message remains in the network.

The algorithm terminates after |IDmin| = O(log IDmin) rounds. At this point, the only
remaining active process is the one with the minimum identifier. This process can detect
this locally and communicates it to all other processes (which are, by construction, inactive)
by sending an additional message in the CCW direction (this is the Termination phase).

All other processes detect termination when they receive two consecutive messages in
the CCW direction: the first sent during the Zero Signaling phase by the process with the
minimum identifier, and the second sent during the Termination phase. Therefore, we have
the following theorem.

▶ Theorem 3. There exists a quiescently terminating leader election algorithm for ori-
ented rings in which each process sends O(U log IDmin) messages clockwise and O(log IDmin)
messages counterclockwise, for a total of O(nU log IDmin) messages.

5 Randomized Leader Election

In our randomized algorithm, each process samples its ID uniformly at random from the set
{0, 1, 2, . . . , 2⌈c1 log U⌉ − 1}. With probability at least 1 − U2−c1 , all processes receive distinct
identifiers. The bit-by-bit comparison algorithm from Section 4 is then executed using these
random identifiers.

This sampling strategy yields a useful property: for any fixed bit index i, every maximal
consecutive sequence of processes whose bit ID[i] equals 1 has length at most ⌈c2 log U⌉
with probability at least 1 − U1−c2 . This property reduces the number of steps in the
Synchronization and No-Zero Checking phases of the algorithm in Section 4 from U to
⌈c2 log U⌉, thereby improving the message complexity and establishing our final theorem.

▶ Theorem 4. For any constant c > 0, there exists a randomized quiescently terminating
leader election algorithm for anonymous oriented rings with a success probability of 1 −
U−c in which each process sends O(log2 U) messages clockwise and O(log U) messages
counterclockwise, for a total of O(n log2 U) messages.
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