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Abstract
We study the problem of Strong Byzantine Agreement and establish tight upper and lower bounds
on communication complexity, parameterized by the actual number of Byzantine faults. Specifically,
for a system of n parties tolerating up to t Byzantine faults, out of which only f ≤ t are actually
faulty, we obtain the following results:

In the partially synchronous setting, we present the first Byzantine Agreement protocol that
achieves adaptive communication complexity of O(n + t · f) words, which is asymptotically optimal.
Our protocol has an optimal resilience of t < n/3.

In the asynchronous setting, we prove a lower bound of Ω(n + t2) on the expected number of
messages, and design an almost matching protocol with an optimal resilience that solves agreement
with O((n + t2) · log n) words. Our main technical contribution in the asynchronous setting is the
utilization of a bipartite expander graph that allows for low-cost information dissemination.
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1 Introduction

Achieving agreement in a distributed setting is fundamental to blockchain systems. Modern
blockchains often comprise thousands of nodes attempting to reach consensus. Given the
widely accepted resilience model where t ≈ n/3 validators can be Byzantine, and considering
the classical Dolev-Reischuk lower bound of Ω(n2) messages for agreement [11], such systems
must exchange millions of messages. This communication overhead results in high latency
and limited scalability. This work addresses this challenge through two key contributions:

We bypass the Dolev-Reischuk lower bound by introducing the first partial-synchrony
algorithm for Byzantine Agreement that requires only O(n + t · f) messages. This approach
is significantly faster compared to the O(n2) suggested by [11], since often in practice the
actual number of misbehaving nodes is small. Our algorithm achieves asymptotically optimal
communication complexity, as well as optimal resilience.

Furthermore, we highlight that system robustness is determined not by the relative
fraction of possible corruptions but by the absolute number of failures it can tolerate. For
instance, it’s easier for an adversary to corrupt a system with 3, 001 nodes that tolerates
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1, 000 faults than one with 10, 000 nodes tolerating 2, 000 faults. Building on this insight,
we design an algorithm that decouples n and t, achieving superior performance when t ≪ n.
Specifically, instead of the known O(n · t) communication complexity, in the asynchronous
setting, we achieve agreement with a communication complexity of O((n + t2) · log n). This
allows system designers to first choose a maximal threshold t of tolerated failures that would
still allow for efficient dissemination of t2 messages, and then scale n up to t2 without
introducing additional latency. Notably, our algorithm is non-constructive, since it internally
utilizes a bipartite expander whose existence has been proven, but no explicit construction
is known; when restricted to explicit constructions, the best-known guarantees are slightly
weaker.

Finally, we establish that achieving adaptive communication complexity is infeasible in
asynchronous settings. Specifically, we prove a lower bound of Ω(n + t2) for any algorithm
that guarantees almost-sure termination. This result demonstrates that our algorithm is
optimal up to a logarithmic factor.

2 Related Work

Synchrony. In synchronous networks, deterministic Byzantine Broadcast (BB) and Weak
Byzantine Agreement (BA) achieve cheap communication: Cohen et al. [9] give O(n(f + 1))
for Weak BA/BB, and [7] give deterministic BA with O(nf) at resilience t < ( 1

2 − ε)n.
Civit et al. [5] extend to Multi-Valued BA (MVBA) and Interactive Consistency (IC) with
bit complexity O(Lon + n(f + 1)κ). Lower bounds include Ω(f2) messages [11], Ω(n + tf)
bits [15], and even randomized expected Ω(f2) under adaptive adversaries [1].

Partial synchrony. In partial synchrony, BA attains O(n2) communication complexity, e.g.,
Oper [6] Introduced by Civit et al., lifts any synchronous BA algorithm to partial synchrony
while preserving per-process bit costs (yielding total O(n2) for [5]). For State Machine
Replication (SMR) in partial synchrony, HotStuff with robust view synchronization reaches
O(nf) after GST [17, 14]. As for the lower bounds, Spiegelman [15] showed that for any
partially synchronous algorithm, the number of messages sent before GST can be unbounded.

Asynchrony. In asynchrony, the classical FLP [12] impossibility rules out deterministic BA.
However, randomness enables expected O(n2) communication complexity to achieve an almost
sure termination [4] and subquadratic O(n log2 n) for with high probability guarantees [8].
When allowing for an initial setup, expected O(nκ4) can be achieved [2].

3 Preliminaries

We consider a set of n parties running a distributed protocol in a fully connected network.
Channels are authenticated, meaning that when receiving a message, a party knows who
sent it.

Network Setting. We consider 3 different network settings:
Synchronous network: We assume there is a known ∆ > 0 such that when sending a
message, a party has the guarantee that this message will be received within ∆ units of
time. This allows protocols to be expressed in rounds where each round takes ∆ units of
time.
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Table 1 Comparison of Byzantine Agreement Protocols. When a communication is stated with
Ω, it indicates a lower bound result.
∗ - [14] uses random leader election, but can be derandomized, maintaining the mentioned character-
istics.
§ - unlimited messages before GST., † - with high probability., †† - with overwhelming probability. ,
‡ - with probability 1., E - in expectation.

Paper Problem Communication Resilience Det. PKI Properties
Synchrony

Cohen et al. [9] BB O(n · f) t < n/2 Yes Yes A;T;V
Civit et al. [7] MVBA O(n · f) t < ( 1

2 − ε)n Yes Yes A;T;V
Civit et al. [5] MVBA, IC O(Lon + n · f) t < n

2 Yes Yes A;T;V;IC
This paper BA O(n + tf) t < n

2 Yes Yes A;T;V
Spiegelman et al. [15] BA Ω(n + tf) Any Yes No A;T;V
Ittai et al.[1] BA E(Ω(f2)) Any No Yes A;T;V

Partial Synchrony
Maofan et al. [17, 14] SMR O(n · f) t < n/3 Yes∗ Yes A;T;EV
Civit et al. [6] BA O(n2) t < n/3 Yes No A;T;V
This paper BA O(n + t · f) t < n/3 Yes Yes A;T;V
Spigeleman et al. [15] BA Ω(∞)§ Any Yes No A;T;V

Asynchrony
Cachin et al. [4] BA E(O(n2)) t < n/3 No Yes A;T‡;V
Cohen et al. [8] BA O(n · log2 n)† t < ( 1

3 − ε)n No Yes A†;T†;V†

Blum et al. [2] BA E[O(n · κ4)] t < ( 1
3 − ε)n No Yes A††;T††;V††

This paper BA E(O((n + t2) · log n)) t < n/3 No Yes A;T‡;V
This paper BA E(Ω(n + t2)) Any No Yes A;T‡;V

Asynchronous network: There is no guarantee on the delay between a party sending a
message and it being received. The only guarantee is that a message sent is eventually
received.
Partially synchronous network: We assume the setting with a known ∆ > 0 and an
unknown Global Stabilization Time (GST), such that a messages sent at time t is received
by the time at most max{t, GST} + ∆.

Byzantine Behavior. We assume that a set of at most t parties can become faulty when
running the protocol. In particular, an adversary is able to control these parties, and the
protocol must be resilient to this setting. Parties that are not corrupted are called honest. In
the rest of this paper, we will also consider f , the number of actual byzantine parties during
an execution of a protocol, we have 0 ≤ f ≤ t ≤ n.

Moreover, we assume that for the asynchronous setting as well as the partially synchronous
setting before GST, the adversary has full control over the scheduler and can delay or reorder
any messages as long as they are eventually received. Our protocols are resilient against a
dynamic adversary. This means that the adversary is allowed to observe messages being sent
before deciding which parties to corrupt.

Byzantine Agreement. In this paper, we focus on solving the problem of Strong Binary
Byzantine Agreement, which we call just Byzantine Agreement for simplicity. In this problem,
each honest party can propose a value (either 0 or 1) and can decide a value. The Byzantine
Agreement is defined by the following properties.

Termination: Every honest party eventually decides a value.

DISC 2025
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Agreement: If two honest parties p1 and p2 respectively decide values v1 and v2, then
v1 = v2.
Strong Unanimity1: If all honest parties propose the same value, then this value must be
decided.
Probabilistic termination: Every honest party eventually decides a value almost surely.

For the synchronous and partially synchronous setting, we say that a protocol satisfies
Byzantine Agreement (BA) if it satisfies Termination, Agreement, and Strong Unanimity.
Because of the FLP impossibility result [12] BA cannot be solved deterministically in asyn-
chrony. Therefore, for the asynchronous setting, we replace Termination with Probabilistic
Termination:

Cryptographic Primitive. In some of our protocols, we will assume the presence of a public-
key infrastructure (PKI). This allows for threshold signature schemes [3] which are used for
combining multiple signatures into one and hence reducing the communication complexity of
the algorithm.

Communication Complexity. We define the communication complexity of an algorithm as
the number of words sent by honest nodes, where each word contains a constant number of
signatures and a constant number of bits. As pointed out by Spiegelman et al. [15], there
doesn’t exist a partially synchronous algorithm that solves BA sending a bounded number
of messages if messages sent before GST are counted. Therefore, when speaking about the
communication complexity of partially synchronous algorithms, we refer only to messages
sent after GST.

4 Results Overview

In this section, we formally state our results and describe the main components used to
obtain them. On the feasibility side, we devise protocols with adaptive communication
complexity for all major time models.

In partial synchrony, our algorithm achieves asymptotically optimal communication
complexity.

▶ Theorem 1. There exists a deterministic algorithm that tolerates up to t < n/3 Byzantine
faults and, given a PKI, solves Byzantine Agreement in partial synchrony with communication
complexity of O(n + t · f).

In an asynchronous setting, we show the existence of an algorithm that achieves optimal
resilience and a communication complexity that is asymptotically optimal up to a logarithmic
factor.

▶ Theorem 2. There exists a randomized algorithm that tolerates up to t < n/3 Byzantine
faults and, given a PKI, solves Byzantine Agreement in asynchrony with expected communi-
cation complexity of O((n + t2) · log n).

In synchrony, our algorithm has asymptotically optimal adaptive communication and
optimal resilience.

1 In literature, this property is also called Strong Validity.
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▶ Theorem 3. There exists a deterministic algorithm that tolerates up to t < n/2 Byzantine
faults and, given a PKI, solves Byzantine Agreement in synchrony with communication
complexity of O(n + t · f).

All of our results follow a common high-level strategy. First, we execute an adaptive
Byzantine Agreement protocol on a subset of parties of size Θ(t), which we refer to as the
quorum. The communication complexity here only depends on t and f . We note that for this
step we rely on existing Byzantine Agreement protocols in the synchronous and asynchronous
settings, specifically those of Civit et al.[5] and Cachin et al.[4]. In contrast, the O(n + n · f)
protocol we use for the partially synchronous setting is our own contribution, described in
Section 5. While inspired by Spiegelman’s synchronous protocol for external validity [15],
our algorithm advances it in two key ways: it operates in the partially synchronous setting
and guarantees strong unanimity.

In the second step, we execute a Quorum-to-All Broadcast (QAB) – a communication
primitive introduced in this work – where the quorum nodes disseminate the decided value
to the rest of the network. We design QAB protocols for both partially synchronous and
asynchronous settings. In particular, our asynchronous QAB leverages bipartite expander
graphs to enable efficient communication, constituting one of the key technical contributions
of this paper.

On the infeasibility side, we have the following versatile lower bound that shows the
impossibility of achieving an adaptive communication complexity in the asynchronous setting.

▶ Theorem 4. Let A be a protocol solving asynchronous byzantine agreement resilient to t

byzantine parties. A is allowed to have access to PKI, shared randomness, and an initial
setup phase before receiving values. Let M be the number of messages exchanged after setup
to reach agreement, then there exists an input configuration and a message scheduling protocol
such that E(M) = Ω(t2) without any byzantine party. This lower bound holds even if the
adversary is static.

The main contribution of this result – beyond the fact that it holds under a very weak
adversary and a strong algorithmic setting – is that, to the best of our knowledge, it
establishes the first lower bound of Ω(t2), in contrast to the Ω(f2) bounds shown in [11, 1].
This bound allows us to claim that the algorithm stated by Theorem 2 has an almost optimal
communication complexity, since Ω(n) is a trivial lower bound.

5 Adaptive Byzantine Agreement in Partial Synchrony

In this section, we present a partially synchronous algorithm that achieves an adaptive
communication complexity of O(n + n · f). Our algorithm is based on a modified version
of Spiegelman’s byzantine agreement protocol for external validity [15], which itself uses
Hotstuff’s view synchronization [17] technique. While inspired by Spiegelman’s protocol for
network-agnostic settings [15], our work departs significantly in both design and guarantees.
We eliminate the asynchronous and randomized components of the original protocol and
instead strengthen the synchronous part with additional checks, enabling it to function
effectively in partial synchrony after GST. This modification allows us to achieve O(n · f)
message complexity for external validity without relying on full synchrony. Crucially, by
allowing parties to selectively share their commit proofs upon request, we ensure termination
without incurring additional message overhead. Moreover, we extend the protocol to achieve
binary strong unanimity – rather than just external validity – by leveraging threshold
signatures.

DISC 2025
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Figure 1 Evolution of a single view in our partially synchronous Byzantine Agreement protocol,
assuming an honest leader L and that the system is after GST.

The protocol is organized in views. Each view has a leader, who is chosen in a round-robin
way. In the full version of the paper [10], we show that the algorithm is guaranteed to succeed
after at most n views after GST. Moreover, if there are no byzantine parties, everyone is
guaranteed to decide within constant time after GST.

The algorithm for a single view consists of 4 phases of a leader asking and other parties
responding. A leader proceeds to the next phase once they get n − t responses. On each
phase, the leader tries to acquire a new threshold signature, namely the key signature, then
the lock and finally the commit signature, each with stronger properties than the other.
After 4 phases pass successfully, the leader obtains broadcasts his value and is guaranteed
than only this value can be decided in the future (see Figure 1). We note that if the leader
is byzantine or the network is not yet synchronous, the last phase may not be reached by
the end of the view. Even then, the threshold values obtained so far are used in subsequent
rounds to ensure agreement. A complete description of our protocol as well as a detailed
proof for it is given in the full version of our paper [10].

This algorithm, coupled with the QAB primitive, solves Byzantine agreement while
tolerating up to t < n/3 parties and using O(n + t · f) messages. Therefore, it satisfies
Theorem 1.

6 Broadcasting from a Quorum

To decrease the message complexity, we will rely on a primitive which we call Quorum-to-All
Broadcast (abbreviated QAB). Briefly, this primitive allows a small group (of size Θ(t)) of
parties all having the same input value vin to broadcast it to everyone. QAB is defined by
the following property that encapsulates classical Agreement, Termination, and Validity.

Complete correctness: Every honest node eventually decides vin.
We next describe our QAB for Asynchrony at a high level. For formal description, as well as
the partial synchrony QAB, please refer to the full version of the paper [10].

▶ Theorem 5. For a Quorum of size 3t + 1, there exists a deterministic algorithm that,
given a PKI, solves QAB in asynchrony in the presence of at most t Byzantine faults with
communication complexity of O((n + t2) · log n).

In order to achieve the stated communication complexity, we restrict the communication
between nodes to a specific graph, which we call a communication graph. There are three
roles in the algorithm (one node can have multiple roles): quorum nodes - nodes that have a
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common value to broadcast, relayers - nodes that help quorum nodes disseminate the value
and parties - all the nodes, those that need to learn the value. First, quorum nodes agree
on a value based on their own proposals, then disseminate it through relayers. Parties then
confirm that they have received the value by sending a signed confirmation to relayers who
in turn aggregate these confirmations and relay them to quorum nodes. If a quorum node
does not receive a confirmation from some party, it sends a value to it directly.

𝑛 Ο(𝑡 ∙ log 𝑛) 3 ∙ 𝑡 + 1

Figure 2 The communication graph for stages 1 and 2 of the algorithm. Nodes are assigned three
roles (non-exclusive): parties, relayers and quorum with respective sizes of n, O(t log n) and 3t + 1.
Each party is only linked to O(log n) relayers, and each relayer is linked to each quorum node.

The crux of our result is the utilization of a bipartite (parties, relayers) graph that (I)
has few edges (II) an adversary cannot disconnect many parties from the quorum. Please see
the full paper [10] for a formal statement of its properties.

We remark that the existence of a bipartite expander with desired properties is only
shown non-constructively in [16]. Known explicit bipartite expanders with polynomial time
construction [13], when utilized instead, would imply a message complexity of (n + t2+ε) ·
logO(1/ε) n.
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