Brief Announcement: Faster CONGEST
Approximation Algorithms for Maximum Weighted
Independent Set in Sparse Graphs

Salwa Faour 2 &
University of Freiburg, Germany

Fabian Kuhn 24
University of Freiburg, Germany

—— Abstract

The maximum independent set problem is a classic optimization problem in graph theory that has
also been studied quite intensively in the distributed setting. Although the problem is hard to
approximate within reasonable factors in general, there are good approximation algorithms known for
several sparse graph families. In the present paper, we consider deterministic distributed CONGEST
algorithms for the weighted version of the problem in trees and graphs of bounded arboricity (i.e.,
hereditary sparse graphs).

For trees, we prove that the task of deterministically computing a (1 — €)-approximate solution
to the maximum weight independent set (MWIS) problem has a tight ©(log™(n)/e) complexity. The
lower bound already holds on unweighted oriented paths. On the upper bound side, we show that
the bound can be achieved even in unrooted trees.

For graphs G = (V, E) of arboricity 8 > 1, we give two algorithms. If the sum of all node weights
is w(V), we show that for any € > 0, an independent set of weight at least (1 —¢) - wi;/)
computed in O(log?(3/¢)/e + log* n) rounds. This result is obtained by a direct application of the
local rounding framework of Faour, Ghaffari, Grunau, Kuhn, and Rozhorti [SODA ‘23]. We further
show that for any £ > 0, an independent set of weight at least (1 —¢) - 121:3(:3
O(log®(B) - log(1/€) /e - logn) rounds. For e = w(1/+/B), this significantly improves on a recent
result of Gil [OPODIS ‘23], who showed that a 1/|(2 + ¢)3]-approximation to the MWIS problem
can be computed in O(8/e - logn) rounds. As an intermediate step to our result, we design an

can be

can be computed in

algorithm to compute an independent set of total weight at least (1 —¢) - ZUEV % in time

O(log®(A) - log(1/€)/e + log* n), where A is the maximum degree of the graph.
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1 Introduction and Related Work

Given a graph G = (V, E) with node weights w : V' — Rxq, the mazimum weight independent
set (MWIS) problem asks for an independent set I C V (i.e., a set I of pairwise non-adjacent
nodes) such that the total weight w(I) := 3 .\ w(v) is maximized. The MWIS problem is
a classic optimization problem on graphs, which has also been studied quite extensively in
the distributed setting. In the present paper, we focus on sparse families of graphs for which
good MWIS approximations are known in the centralized and also in the distributed setting.
We start by briefly summarizing the most relevant existing literature.

In the standard setting, the graph G = (V| E)) on which we intend to solve some given
graph problem (e.g., MWIS) is also the communication graph. There are n = |V| nodes and
each node is equipped with an O(logn)-bit unique identifier. The nodes V' communicate
over the edges in synchronous rounds. In the LOCAL model [18], the nodes can exchange
? Salwa Faour and Eabian Kuhn; )
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arbitrarily large messages. In the more restricted CONGEST model, in each round, each node
can send a (possibly different) message of O(logn) bits to each neighbor. When considering
CONGEST algorithms for the MWIS problem, we further assume that a single node weight
can be communicated with a single message. The internal computation at the nodes is
not restricted. Initially, the nodes do not know anything about the topology of the graph
G. For simplicity, we however assume that the nodes do know the values of the relevant
parameters of G. At the end of an independent set algorithm, each node must know if it is
in the independent set or not.

1.1 Distributed MWIS Algorithms in General Graphs

The most widely studied distributed independent set problem is the problem of computing
a maximal independent set (MIS), i.e., an independent set that cannot be extended. The
distributed complexity of computing an MIS has been studied intensively since the 1980s,
e.g., [1, 5, 10, 9, 17, 11, 15]. The current best randomized algorithms have complexity
O(log A) + O(log®3 log n) in LOCAL and O(log A) + O(log® log n) in CONGEST [10, 9, 11].2
The best known deterministic MIS algorithms require O(log®® n) rounds in LOCAL and
O(log® A - logn) rounds in CONGEST [9, 11]. For the mazimum cardinality independent set
(MCIS) problem, i.e., for the unweighted version of the MWIS problem, an MIS directly
gives a 1/A-approximation (where A denotes the maximum degree of the graph). In [3],
it is shown that in CONGEST, a 1/A-approximation for MWIS can be computed in time
O(logW - Tvis), where W denotes the ratio between the largest and smallest node weight
and Tyrs is the time to compute an MIS. Subsequently, Kawarabayashi, Khoury, Schild,
and Schwartzman [14] give an algorithm to compute an independent set of weight at least
(1—¢)- 12(:_/1) in time O(1/¢) times the time to compute an independent set of weight at least
CEUA(‘K)U for some constant ¢ > 0. For the latter problem, they give two algorithms. One of
them uses the local-ratio technique [2] to reduce the problem to computing a single MIS of a
(locally computable) subgraph of the input graph. The other one is a randomized algorithm
that requires poly(loglogn) rounds. In [9], it is shown that it suffices to run O(log(1/¢))

instances of computing an independent set of weight CEUA(K)l)' Further, the paper gives a

deterministic O(log2 A + log" n)-time CONGEST algorithm to compute an independent set
w(V)
4(A+1)"

of total weight at least

1.2 Distributed MWIS Algorithms for Sparse Graphs

We now get to the case of sparse graphs, which are the focus of this paper. It has been shown
by Turan [19] that every graph of average degree d has an independent set of size at least
n/(d+1). A natural generalization of this is the so-called Caro-Wei bound [7, 20], which
states that every graph G has an independent set of size

1
a(G) > CaroWei(G) := > = . 1
(@) = (@) Zdeg(v)+1_d+1 1)
The second inequality follows from an application of the Cauchy-Schwarz inequality. As
observed by Boppana, the Caro-Wei bound can be obtained in expectation by a simple
random process that can be implemented in a single round in the CONGEST model [6, 13].
Every node picks an independent random number from a sufficiently large domain and a

L The notation O(-) hides polylogarithmic factors in the argument, i.e., O(x) = z - poly log x.
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node joins the independent set if and only if it picked a smaller number than all its neighbors.
This algorithm is equivalent to running a single phase of Luby’s classic MIS algorithm [17].

In [6], it is shown that the Caro-Wei bound (1) is a % ~ %-approximation of the
MCIS problem. For sparse graphs, we often want to express the approximation factor as a
function of the arboricity 8 of the graph. The arboricity of a graph is defined as the number
of forests into which the edges of a graph can be partitioned. Since we always have 3 > 2d,
the result of [6] implies that (1) is a 2'(%/31_1) ~ %—approximation of the MCIS problem.
In [9], it is shown that there is a deterministic CONGEST algorithm with round complexity

O(log%%/e) +log™ n) that comes within a factor (1/2 — €) of the bound of (1), as well as of
a natural generalization of (1) in the weighted case. As one of the technical results of the
present paper, we show that one can improve the (1/2 —¢) factor to a (1 — ¢) factor at the
cost of an additional log(A)/e factor in the round complexity (cf. Theorem 4).

The first paper that achieves an efficient 1/0(f)-approximation for the MWIS problem in
the CONGEST model is [14]. They achieve a (1 —¢)/(80)-approximation by first decomposing
the graph into O(logn) layers of degree at most 46 — 1 and by running an algorithm to
obtain an independent set of weight (1 —¢) - w;(V;)/(48) within each layer V; (and where w;
is an appropriate weight function that is used in layer V;). The overall round complexity is
O(logn) times the time for computing the independent set of weight (1 — &) - w;(V;)/(48) in
each layer. By using the randomized algorithm of [14], the overall complexity of the resulting
randomized (1 — ¢)/(843)-approximation for the MWIS problem is O(w) and by
using the deterministic algorithm of [9], the overall complexity of the resulting deterministic
(1 — €)/(8B)-approximation for the MWIS problem is O((log® 8- log(1/e) - logn). In fact, at
the cost of an additional 1/e-factor in the round complexity, the approximation quality of

the algorithm of [14] can be improved to (1 — €)/(4/3). Those results were then improved by
Gil in [12], who in particular provides a deterministic CONGEST algorithm to compute a
1/1(2 + €)3]-approximation in time O(f - log(n)/e).

More special classes of sparse graphs are trees and more generally minor-closes families
of graphs (e.g., planar graphs). In [16, 8], it was shown that on cycles (and paths), determin-
istically computing a constant approximation for the maximum cardinality independent set
problem requires (log™ n) rounds. Note that in all graphs of arboricity 8 = O(1), computing
a constant MCIS approximation is trivial. Half the nodes have degree at most 45 and an
independent set of size 2(n) among the nodes of degree at most 45 can be computed by
computing an MIS in time O(8 +log™ n) [5]. For planar graphs (and thus also for trees), it is
shown in [8] that in the LOCAL model, even for the MWIS problem, a (1 — ¢)-approximation
can be computed in time poly(e¢~!) - O(log* n).

1.3 Our Contributions

In our paper, we focus on deterministic approximation algorithms for the MWIS problem
in the CONGEST model in sparse families of graphs. In the following, we list our technical
contributions in detail and we also give an overview over the most important ideas that are
needed to prove the stated theorems.

1.3.1 Approximating Maximum Weight Independent Set in Trees

We start by establishing a tight bound for computing a (1 — ¢)-approximation in trees.

» Theorem 1. Let € > log(n)/n be a parameter. The deterministic CONGEST model
complexity of computing a (1 — ¢)-approzimate solution for MWIS in tree networks is
@(@). The upper bound holds in general unrooted trees. The lower bound even holds for
the unweighted version of the problem in oriented paths and in the LOCAL model.

54:3

DISC 2025



54:4

Faster CONGEST Approx. Alg. for Maximum Weighted Indep. Set in Sparse Graphs

The lower bound is based on a relatively simple reduction from the MCIS problem in
paths [8, 16]. The condition & > log(n)/n is a technical condition because for arbitrary & > 0,
the lower bound becomes Q(log™(en)/e).

The upper bound is based on ideas that were developed for planar graphs in [8] and
which are based the following core idea. First, one defines a weight function on edges, where
for {u,v} € E, we set w({u,v}) := min {w(u),w(v)}. The algorithm of [8] then computes
a clustering of the nodes of V' such that the total weight of the edges connecting nodes
in different clusters is at most an e/2-fraction of the total weight of all the edges. By
computing an optimal weighted independent set within each cluster, one can then obtain
a (1 — e)-approximate MWIS solution of the given instance. The independent sets of the
clusters are combined by taking the union and removing the smaller weight node of every
intercluster edge. The clustering algorithm of [8] obtains clusters of diameter poly(s¢~!)
in time poly(¢7!) - O(log" n) in the LOCAL model. In trees, the clustering algorithm of
[8] can be implemented in the CONGEST model. Further, in trees, an optimal MWIS
solution inside each cluster can be computed in time linear in cluster diameter by using a
straightforward dynamic programming algorithm. The core challenge for proving the upper
bound of Theorem 1 is to obtain a clustering algorithm in which the maximum cluster
diameter is only O(1/e). The algorithm of [8] consists of basic steps in which the cluster
diameter grows by constant factor and the total weight of the intercluster edges shrinks by a
constant factor. The cluster diameter however grows by a factor that is larger than the factor
by which the total weight of the intercluster edges decreases. In our algorithm, we show that
in trees, one can interleave those basic steps of [8] with steps in which the clusters are split
into clusters of smaller diameter, without increasing the overall weight of the intercluster
edges by too much.

1.3.2 Approximation of MWIS as a Function of the Arboricity

For the remainder of this section, we assume that we are given a graph G = (V| E) of
arboricity S. In [14], it is shown that there is a deterministic CONGEST algorithm to
w(V) 10gn~polyloglogn)

g

compute an independent set of weight at least @ro)p in randomized time O(

and in combination with an algorithm from [9] in deterministic time O(
In the following, we show that for moderately small 5 both those bounds can be improved
significantly.

log? B-log(1/¢)-logn
€ )

» Theorem 2. For any e > 0, there is a O(logz(%/e) +log* n) -round deterministic CONGEST
w(V)
17

algorithm to compute an independent set I of weight w(I) > (1 —¢) - in any graph

G = (V,E) of arboricity 5 > 1 and with node weights w: V' — Rxq.

The theorem can be proven by a relatively straightforward blackbox application of the
local rounding framework of [9]. More concretely, we can show that Theorem 2 follows almost

directly from Lemma 4.2 in [9]. Theorem 2 implies a 14755—approximation of MWIS. In [12],

it is shown that a L(Tlg)m—approximation can be computed deterministically in O(ﬂ'lzj)
CONGEST rounds. For e = 1/0(y/B), we significantly improve on this bound as stated by
the following theorem.

» Theorem 3. For anye > 0, there is a O(logg(ﬂ)'lofél/a)'log ) -round deterministic CONGEST

algorithm to compute an independent set I of weight w(I) > (1 —¢) - ;UB(-‘Q in any graph

G = (V,E) of arboricity 5 > 1 and with node weights w: V — Rxq.
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A major step towards proving Theorem 3 is an efficient algorithm to compute an inde-
pendent set of weight arbitrarily close to a natural weighted generalization of the Caro-Wei
bound (1). Specifically, we prove the following theorem.

» Theorem 4. For any € > 0, there is a O(M + log* n) -round deterministic

CONGEST algorithm to compute an independent set I of weight w(I) > (1—€)->", oy dqu”((v?ﬂ

in any graph G = (V, E) of mazimum degree A > 1 and with node weights w: V — R>g.

Before discussing the main ideas needed to prove, Theorem 4, we discuss its direct
application to approximating the maximum cardinality independent set problem in graphs of
arboricity 8. As proven in [6] and discussed in Section 1.2, the Caro-Wei bound (1) provides
a %—approximation to the maximum cardinality independent set problem in graphs
of arboricity 8. Theorem 4 thus implies that such an approximation can be computed in
O(w + log™ n) rounds in the CONGEST model. This can be further improved
slightly. Because in a graph G of arboricity 3, the average degree is at most 23, the number of
nodes of degree > ¢+ 3%/e is at most 2en/(cf3), which can be shown to be at most 4¢/c- a(G),
where «(G) denotes the independence number of G. It therefore suffices to apply Theorem 4
to the subgraph induced by the nodes of degree at most ¢3? /¢ for a sufficiently large constant
c. We thus obtain the following corollary.

» Corollary 5. For any € > 0, there is a O(w + log” n) -round deterministic

CONGEST algorithm to compute a (1—¢)- %—appmmimation to the mazimum cardinality

independent set problem in graphs of arboricity 8 > 1.

We next sketch how Theorem 4 is proven and how it is used to prove Theorem 3. The
starting point to proving Theorem 4 is an O(w +log™ n)-round algorithm from [9]
to compute an independent set of weight at least (1 —¢)- 12(}:1) in a graph of maximum degree
A. The idea now is to divide the nodes of G into O(log(A)/e) degree classes so that the
degrees within one class differ by at most a factor 1 + . We then want to essentially apply
the algorithm from [9] separately for each degree class, starting from the small degrees. This
would work almost directly for unweighted graphs. To make it work, one just has to include
all the still available nodes from the lower degree classes when computing the independent
set of some degree class.

For weighted graphs, sequential composition of independent set is a bit more tricky. We
can however utilize a technique developed in the context of the local-ratio method [2] and
used in the context of distributed MWIS approximation in [3, 14, 9]. Given a graph G
with node weights w(v) and an independent set Iy, one can define a new weight function
w(u) := max {0, w(u) — w(ly N NT(u))}, where N*(u) denotes the inclusive neigborhood
of u. If one then computes a second independent set I’ consisting only of nodes v for which
w'(v) > 0, the combined independent set I := I’ U (Iy \ N*(I')) is guaranteed to have a total
weight of at least w(ly) + w'(I") (w.r.t. to the original weight function w(-)). In this way, we
can iterate through the O(logn/e) degree classes in a similar way as in the unweighted case
to obtain an independent set satisfying the requirements for Theorem 4.

We next discuss our algorithm to obtain the bound claimed by Theorem 3. Note that since
the average degree of a graph of arboricity 5 can be almost 25, we might have to compute an
independent set of weight close to w(V') divided by the average degree. There are graphs of
arboricity 8 for which this is best possible (e.g., unweighted cliques) and we therefore in some
cases cannot afford to allow too much “slack” when iteratively computing an independent set.
A standard tool to algorithmically deal with graphs of bounded arboricity is the so-called
H-decomposition as introduced in [4]. Because the average degree of a graph with arboricity
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B is at most 23, the number of nodes of degree more than (2 + ¢)3 is at most (1 — ©(¢)) - n.
When peeling off all nodes of degree at most (2 4 ¢)/3, we therefore get rid of a ©(¢)-fraction
of all the nodes. Repeating this idea gives a decomposition of the graph into O(log(n)/e)
layers so that the nodes in each layer have at most (2 4 )3 neighbors in the same layer and
higher layers. We are not aware of an algorithm to compute an independent set of weight
close to w(V)/(26) that does not at least implicitly use an H-decomposition (which in most
cases leads to a time complexity that is at least linear in the number of layers ©(log(n)/¢)).

The highlevel idea of our approach is the following. We again use the framework of
[2, 3, 14] to iteratively construct an independent set in the weighted setting. Because the
nodes in the lowest layer are always the ones of bounded degree, we start our iterative
construction at the lowest layer and work our way up the decomposition. Some of the main
challenges with this approach already appear for the unweighted case and in the following
highlevel discussion, we therefore focus on this case. Let Vj be the nodes of the lowest layer
of our decomposition. All nodes in Vj have degree at most (2 + £)5 and we can therefore
compute an independent set In C Vj of size close to |Vp|/(253) (or even close to the Caro-Wei
bound (1) within Vj). However, even if the independent set Ij is relatively large, it could
consist of nodes that mostly have neighbors in V' \ V4 so that a lot of nodes in V4 have no
neighbor in Iy. When moving to the next layer, we can however not include any remaining
nodes in Vj because this might create some high degree nodes in the layer, we are considering.
Our goal therefore should be to select an independent set Iy in Vg such that it removes
most of the nodes in V. As an estimate of the number of removed nodes in Vj, we use
> ver, (dego(v) + 1), where degg(v) is the degree of v within Vp. If this sum is close to Vo],
we are guaranteed to make sufficient progress (even if many nodes of V5 remain because
other nodes in Vj have multiple neighbors in Iy). We can compute such an independent
set Iy as follows. We define a weight w(v) := deg,(v) + 1 for each node v € Vj. Note that
for an independent set Iy, we have w(lo) = 3, ;. (degy(v) + 1). By using Theorem 4, we
can compute an independent set /o of total weight wW(lp) =~ >, v, % = |Vo|, which is
exactly what we need.
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