Brief Announcement: Concurrent Double-Ended
Priority Queues

Panagiota Fatourou &
Department of Computer Science, University of Crete, Heraklion, Greece
FORTH ICS, Heraklion, Greece

Eric Ruppert &

York University, Toronto, Canada

Ioannis Xiradakis &
Department of Computer Science, University of Crete, Heraklion, Greece
FORTH ICS, Heraklion, Greece

—— Abstract
This work provides the first concurrent implementation of a double-ended priority queue (DEPQ). We describe

a general way to add an ExtractMax operation to any concurrent priority queue that already supports Insert
and ExtractMin.

2012 ACM Subject Classification Theory of computation — Concurrent algorithms; Theory of computation
— Data structures design and analysis

Keywords and phrases shared-memory, data structure, double-ended, priority queue, priority deque, heap,
skip list, combining

Digital Object Identifier 10.4230/LIPIcs.DISC.2025.55

Related Version Full Version: https://arxiv.org/abs/2508.13399 [11]

Funding Panagiota Fatourou and loannis Xiradakis: Greek Ministry of Education, Religious Affairs and
Sports through the HARSH project (project no. YII3TA - 0560901), within the framework of the National
Recovery and Resilience Plan—Greece 2.0—with funding from the European Union—NextGenerationEU.

Eric Ruppert: Natural Sciences and Engineering Research Council of Canada.

1 Introduction

Priority queues, which store a set of keys and support an Insert operation that adds a key to the set
and an ExtractMin operation that removes and returns the minimum key, have long been recognized
as an important data structure for concurrent systems. They have been used in operating systems
for job queues and load balancing, heuristic searches [29], graph algorithms (e.g., [1, 17]) and for
event-driven simulations [19]. There are numerous concurrent implementations of priority queues.

In the single-process setting, there has been much research on designing a double-ended priority
queue (DEPQ), which supports both ExtractMin and ExtractMax operations [31]. We provide a
general transformation to construct a linearizable concurrent DEPQ from a concurrent (single-ended)
priority queue. Implementing a concurrent DEPQ has not been explored previously.

We take our inspiration from the insight that some of the sequential DEPQ data structures
can be viewed as being constructed from a pair of single-ended priority queues [5]. Our general
construction in Section 3 uses two linearizable, concurrent priority queues to construct a linearizable
dual-consumer DEPQ, which allows only one process to perform ExtractMin and one process to
perform ExtractMax at a time. Insertions proceed concurrently with one another and with Extract
operations. The construction works even if the underlying priority queues used are single-consumer,
meaning that only one process at a time may perform ExtractMin operations. Our construction uses
a new lightweight layer of synchronization between the two processes that perform ExtractMin and

© Panagiota Fatourou, Eric Ruppert, and Ioannis Xiradakis;
37 licensed under Creative Commons License CC-BY 4.0

39th International Symposium on Distributed Computing (DISC 2025).

Editor: Dariusz R. Kowalski; Article No. 55; pp. 55:1-55:7

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:faturu@csd.uoc.gr
https://orcid.org/0000-0002-6265-6895
mailto:ruppert@eecs.yorku.ca
https://orcid.org/0000-0001-5613-8701
mailto:giannisx@ics.forth.gr
https://orcid.org/0009-0009-4974-4901
https://doi.org/10.4230/LIPIcs.DISC.2025.55
https://arxiv.org/abs/2508.13399
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

55:2

Brief Announcement: Concurrent Double-Ended Priority Queues

ExtractMax operations. It preserves linearizability and lock-free progress: if the underlying priority
queue is lock-free, then so is the resulting DEPQ. If the underlying priority queue also supports
deletions of arbitrary elements, we provide time and space bounds for our DEPQ.

Section 4 describes how to adapt our dual-consumer DEPQ to handle concurrent Extract operations
at each end using a lock-based combining technique [10]. At a high level, each process that acquires
the lock for one end of the DEPQ performs a whole batch of Extract operations, which keeps the
overhead for synchronization low.

Our technique is general enough to be applied to any concurrent priority queue. In the full
version [11], we provide an example that applies our technique (including combining) to a simple
list-based priority queue.

2 Related Work

There are many DEPQ implementations for just one process (see e.g., Chong and Sahni’s survey [5]).
In the concurrent setting, we are unaware of any previous work that aims to provide a linearizable
concurrent DEPQ implementation. Medidi and Deo [24] described a DEPQ that supports batches
of parallel operations, but their focus was on the synchronous PRAM model. Our construction
uses two concurrent (single-ended) priority queues as building blocks. See [7, 26] for surveys of
early work on concurrent priority queues, including many based on sequential heap data structures.
Tamir, Morrison and Rinetzky [34] added support for an operation that modifies an existing key in a
lock-based concurrent heap. Pugh’s skip list data structure [28] has been used as the basis for several
concurrent priority queues [3, 21, 32, 33]. Liu and Spear [22] gave a novel concurrent priority queue
data structure based on a tree where each node stores a sorted linked list.

The concurrent priority queues discussed above allow multiple concurrent consumers. Our
construction requires only a single-consumer priority queue, which may be easier to implement. Hoover
and Wei [16] gave a wait-free single-consumer priority queue where operations take O(logn + log p)
steps, where n is the number of elements in the queue and p is the number of processes accessing it.

One way to use existing data structures to build a linearizable concurrent DEPQ is to use a binary
search tree (BST), where the tree is sorted by key values [20, Section 5.2.3]. There are a number of
lock-free concurrent BST implementations (e.g., [8, 27]) that support insertion and deletion of keys.
The Delete operation can easily be modified to delete (and return) the minimum or maximum key
present in the BST to yield the Extract operations of a DEPQ. Since repeated Extract operations at
one end of the DEPQ could yield a lopsided BST, it would likely be desirable to use a balanced BST,
such as the concurrent chromatic tree, which has both lock-based and lock-free implementations [2, 4].
However, even with balancing, this would require each Extract operation to traverse a path of length
O(logn) in the BST when the DEPQ contains n elements. In contrast, if we apply our approach to
a (single-ended) concurrent priority queue based on a list or skip list, Extract operations find the
required key right at the beginning of the list, and less restructuring is required, compared to the
rebalancing of chromatic trees. There are also concurrent implementations of (single-ended) priority
queues that augment a search tree with a sorted singly-linked list of keys in the tree to expedite
ExtractMin operations [18, 30].

3 Constructing a Dual-Consumer DEPQ from Two Priority Queues

Our DEPQ construction uses two (single-ended) priority queues MinP@Q and MazP@ organized using
opposite total orders on the keys. Thus, an Extract on MinPQ@ returns the minimum key and an
Extract on MazP(@ returns the maximum key. Algorithm 1 gives pseudocode for our construction.



P. Fatourou, E. Ruppert, and |. Xiradakis

An Insert operation on the DEPQ simply inserts the key into both priority queues. To coordinate
extractions, each item has an associated reserved bit, which is initially 0. An ExtractMin on the
DEPQ repeatedly removes the (next) minimum element from MinP@Q and tries to set the element’s
reserved bit using a TestAndSet instruction until it successfully changes the reserved bit of some
element. That element is then returned. If, at any time, the ExtractMin observes that MinPQ is
empty, it terminates and indicates that the DEP(Q is empty. The ExtractMax operation on the
DEPQ is symmetric to ExtractMin, using MaxP(Q in place of MinPQ.

The reserved bit ensures that an element cannot be returned twice by both an ExtractMin and
an ExtractMax. An element removed from the DEPQ by an ExtractMin operation may remain in
MazP(@ for some time, but if it is eventually removed from MaxP@ by an ExtractMax operation, the
ExtractMax will skip the item because its TestAndSet operation will fail to set the item’s reserved bit.

If the priority queue implementation we are using also supports a Delete operation, then we can
add the optional lines 15 and 25 to the Extract operations. The DEPQ is linearizable regardless of
whether these lines are included or not. When an ExtractMin operation removes an item from MinPQ,
line 15 removes it from MazP(@Q. Whether the inclusion of these lines improves performance may
depend upon the underlying priority queue: if deleting an arbitrary element is not much more costly
than extracting the minimum, or if performance of the priority queues would degrade significantly
due to the presence of obsolete items, then it may be worthwhile to include lines 15 and 25.

3.1 Linearizability and Progress

There are challenges in showing that the DEPQ is linearizable. Since MinP@ and MazP(@ are
updated separately by Insert operations, their contents may not exactly match. Moreover, since the
reserved bit is updated after removing the item from MinP(Q or MaxP(), the order in which items’
bits are set may be different from the order in which they are removed from the priority queues.

Since we have assumed that the implementations of MinP@Q and MaxP(@ are linearizable, the
composability property of linearizability [15] allows us to consider operations applied to each of these
priority queues as atomic steps. For the sake of simplicity in our presentation, we assume that all
keys inserted into the DEPQ are distinct. This allows us to talk about the Insert that inserted the
key extracted by some ExtractMax or ExtractMin operation without ambiguity.

Fix an execution a. We now describe how to linearize operations in «. We linearize each
ExtractMin and ExtractMax when it performs a successful TestAndSet (or when it sees that MinPQ@ or
MazPQ is empty, in the case of operations that return nil). An Insert(z) adds x to MinP@ and then
to MazP(@. By default, we linearize the Insert when it adds x to MazP(). However, if an ExtractMin
removes = from MinP(@Q and returns it before x is added to MazP(@Q, we must shift the linearization
point of the Insert earlier.

We now describe this linearization more formally. Consider an ExtractMin or ExtractMax opera-
tion e. If e never performs an Extract at line 12 or 22, it is not linearized, since it never accesses
shared memory. If e does perform an Extract at line 12 or 22, let last. be the last step where e does
so, and let result, be the key returned by this last ExtractMin performed by e.

L1. Linearize an ExtractMin or ExtractMax operation e at last,. if either result. = nil or e performs
a successful TestAndSet at line 14 or 24.
L2. Linearize each Insert operation at the earlier of
a. its insertion into MazP(@ at line 8, or
b. immediately before the ExtractMin operation on DEPQ that returns its item.
If neither of these events occur, then the Insert is not linearized.

55:3

DISC 2025



55:4

Brief Announcement: Concurrent Double-Ended Priority Queues

Algorithm 1 Generic construction of a dual-consumer DEPQ from two single-consumer priority queues.

class item
Key key
boolean reserved

end item

: function INSERT(Key x)
item ¢ := new item with key = z, reserved = 0
MinPQ.Insert(7)
MaxPQ.Insert(7)

end function

10: function EXTRACTMIN : Key

11: while true do > repeatedly extract element from MinPQ
12: item x := MinP(@.Extract

13: if = nil then return nil > DEPQ is empty

14: else if TestAndSet(x.reserved) = 0 then > return when TestAndSet succeeds

15: MazPQ.Delete(z) > this line is optional

16: return x.key

17: end if

18: end while
19: end function

20: function EXTRACTMAX : Key

21: while true do > repeatedly extract element from MazPQ
22: item x := MaxP(@Q.Extract

23: if x = nil then return nil > DEPQ is empty

24: else if TestAndSet(z.reserved) = 0 then > return when TestAndSet succeeds

25: MinP@.Delete(x) > this line is optional

26: return z.key

27: end if

28: end while
29: end function

In the full version [11], we prove every operation that terminates is assigned a linearization point,
and that the linearization points of operations are within their execution intervals. Combining these
claims with Lemma 1, which is the cornerstone of our proof, we get Theorem 2, proving linearizability.

» Lemma 1. In the sequential execution defined by the linearization, each ExtractMin or ExtractMax
operation e returns result..

» Theorem 2. If MinPQ and MaxPQ are linearizable (single-consumer) priority queues, then
Algorithm 1 is a linearizable dual-consumer DEPQ).

The Insert operation on the DEPQ is lock- or wait-free if insertions on the underlying priority
queues are. The ExtractMin and ExtractMax operations on the DEPQ are lock-free if extractions
(and deletions, if lines 15 and 25 are included) on the underlying priority queues are. This is because
the TestAndSet on line 14 or 24 can fail only if some other ExtractMin or ExtractMax operation has
successfully performed the TestAndSet, and that other operation is guaranteed to terminate.

ExtractMin and ExtractMax operations on the DEPQ are not wait-free, even if the underlying
priority queue is wait-free because one such operation may repeatedly fail its TestAndSet in every
iteration. Modifying the construction to make it wait-free would probably require some coordination
between the two processes performing extractions at opposite ends of the DEPQ.



P. Fatourou, E. Ruppert, and |. Xiradakis

We provide amortized bounds on step complexity, provided that lines 15 and 25 are included. We
say that the amortized step complexity is O(T;) for insertions and O(T,) for extractions if, for every
(finite) execution in which m; Inserts and m, ExtractMin and ExtractMax operations are invoked,
the total number of steps in the execution is O(m; - T; + m, - T¢). Let n be the maximum number
of elements in the DEPQ at any time, if operations are performed sequentially in the order of the
linearization. Let ¢ be the maximum point contention, that is, the maximum number of operations
that are active at any one time. Assume that the underlying priority queues have space complexity
S(n,c) and that the (amortized) step complexity for their Insert, Extract and Delete operations
are T} (n,c),T.(n,c) and Tj(n,c), respectively. The maximum number of elements that are ever in
MinPQ or MazPQ is O(n+c). Thus, the amortized step complexity for each insertion and extraction
operation on the DEPQ is O(T}(n + ¢, ¢)) and O(T.(n + ¢,c) + Tj(n + ¢, c)), respectively.

If we have bounds on the ezpected step complexity of the underlying data structure (for example,
if the data structure is randomized, like a skip list) then the bounds described above hold for the
expected amortized step complexity of operations on the DEPQ. If T; is a bound on the worst-case
time per insertion into the underlying priority queue, rather than an amortized bound, then the
bound for insertions on the DEPQ is also a worst-case bound.

4 Constructing a Multi-Consumer DEPQ from a Dual-Consumer DEPQ

The construction provided in Section 3 permits a single Extract operation at each end of the DEPQ
at a time. If multiple processes wish to perform Extract operations, we could use two locks: one for
each end. A process must acquire the lock for one end of the DEPQ before performing an Extract on
that end. Insert operations can proceed regardless of the locks.

To reduce the overhead required by locking, we can use software combining, wherein the process
that acquires the lock performs its own work as well as the work of other processes that failed to
acquire the lock. Combining is particularly useful for data structures like stacks, queues, deques
and priority queues, which have hot spots of contention (e.g., [10, 13, 14, 9]). Early versions of this
approach [12, 35] used a tree to combine requests for work. Hendler et al. [14] developed a more
efficient approach called flat combining.

We use the CC-Synch combining algorithm of Fatourou and Kallimanis [10] for our DEPQ. This
combining algorithm has improved efficiency due to an integrated scheme for both locking the data
structure and organizing the requests for operations on it. CC-Synch implements a combining-friendly
variant of a queue lock [6, 23, 25]. The queue that implements the lock is also used to store the active
operations in FIFO order. Processes use this lock to choose a combiner process, which is delegated
to perform a batch of pending operations. After announcing its operation, each process p that is not
chosen as the combiner simply waits (by performing local spinning) until a combiner informs p that
its requested operation has been completed and provides the result of its operation.

We use two instances of CC-Synch, one for each end of the DEPQ. To perform an Extract
operation on the DEPQ), a process adds its operation to the FIFO queue of the appropriate instance
of CC-Synch. When CC-Synch chooses a combiner process to perform a batch of Extract operations
from the FIFO queue, the combiner performs the Extracts one by one using Algorithm 1. An Insert
simply runs Algorithm 1 directly, without using CC-Synch. CC-Synch ensures that only one process
acts as a combiner at a time, satisfying Algorithm 1’s requirement that there be only one process
performing Extract operations at each end of the DEPQ. This approach improves locality in accessing
the data structure, since the combiner process performs an entire batch of Extract operations. It
also avoids having a hotspot of contention because multiple Extract operations would typically access
the same part of the data structure. We remark that there is little contention on the reserved bits
of items: only the two Extract operations that extract an item from MinPQ and MazP(Q can ever
access its reserved field, and the reserved field is ignored by Insert operations.

55:5

DISC 2025



55:6

Brief Announcement: Concurrent Double-Ended Priority Queues

—— References

1

10

11

12

13

14

15

16

17

18

19

D. P. Bertsekas, F. Guerriero, and R. Musmanno. Parallel asynchronous label-correcting methods
for shortest paths. Journal of Optimization Theory and Applications, 88(2):297-320, February 1996.
doi:10.1007/BF02192173.

Joan Boyar, Rolf Fagerberg, and Kim S. Larsen. Amortization results for chromatic search trees, with
an application to priority queues. Journal of Computer and System Sciences, 55(3):504-521, 1997.
do0i:10.1006/jcss.1997.1511.

Anastasia Braginsky, Nachshon Cohen, and Erez Petrank. CBPQ: high performance lock-free priority
queue. In Proc. 22nd International Conference on Parallel and Distributed Computing, volume 9833 of
LNCS, pages 460-474. Springer, 2016. doi:10.1007/978-3-319-43659-3_34.

Trevor Brown, Faith Ellen, and Eric Ruppert. A general technique for non-blocking trees. In Proc.
19th ACM Symposium on Principles and Practice of Parallel Programming, pages 329-342, 2014.
doi:10.1145/2555243.2555267.

Kyun-Rak Chong and Sartaj Sahni. Correspondence-based data structures for double-ended priority
queues. ACM J. Exp. Algorithmics, 5, December 2000. doi:10.1145/351827.351828.

Travis S. Craig. Building FIFO and priority-queuing spin locks from atomic swap. Technical Report
93-02-02, Department of Computer Science and Engineering, University of Washington, 1993.
Kristijan Dragic¢evi¢ and Daniel Bauer. A survey of concurrent priority queue algorithms. In Proc.
22nd IEEFE International Symposium on Parallel and Distributed Processing, pages 1-6. IEEE, 2008.
doi:10.1109/IPDPS.2008.4536331.

Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel. Non-blocking binary search
trees. In Proc. 29th ACM Symposium on Principles of Distributed Computing, pages 131-140, 2010.
doi:10.1145/1835698.1835736.

P. Fatourou and P. Papadogiannakis. Double-ended queues based on software combining. Manuscript,
2025.

Panagiota Fatourou and Nikolaos D. Kallimanis. Revisiting the combining synchronization technique.
In Proc. 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages
257-266, 2012. doi:10.1145/2145816.2145849.

Panagiota Fatourou, Eric Ruppert, and Ioannis Xiradakis. Concurrent double-ended priority queues.
CoRR, abs/2508.13399, 2025. URL: https://arxiv.org/abs/2508.13399.

James R. Goodman, Mary K. Vernon, and Philip J. Woest. Efficient synchronization primitives for large-
scale cache-coherent multiprocessors. In Proc. 3rd International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 64—75, April 1989. doi:10.1145/70082.68188.
O. Grimes, A. Hassan, P. Fatourou, and R. Palmieri. PIPQ: A strict insert-optimized concurrent
priority queue. In Proc. 39th International Symposium on Principles of Distributed Computing, 2025.
Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat combining and the synchronization-
parallelism tradeoff. In Proc. 22nd ACM Symposium on Parallelism in Algorithms and Architectures,
pages 355-364, 2010. doi:10.1145/1810479.1810540.

Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for concurrent
objects. ACM Transactions on Programming Languages and Systems, 12(3):463-492, July 1990.
doi:10.1145/78969.78972.

Kenneth D. Hoover and Yuanhao Wei. A fast single-extractor wait-free priority queue. Manuscript. A
brief overview in the Review of Undergraduate Computer Science is available from https://rucs-uoft.
github.io/theory-of-computation/a-fast-single-extractor-wait-free-priority-queue, 2017.
Qin Huang and W.E. Weihl. An evaluation of concurrent priority queue algorithms. In Proc. 3rd
IEEE Symposium on Parallel and Distributed Processing, pages 518-525, 1991. doi:10.1109/SPDP.
1991.218255.

Theodore Johnson. A highly concurrent priority queue. J. Parallel Distributed Comput., 22(2):367-373,
1994. doi:10.1006/JPDC.1994.1097.

Douglas W. Jones. Concurrent simulation: an alternative to distributed simulation. In Proc. 18th
Winter Simulation Conference, pages 417-423. ACM, 1986. doi:10.1145/318242.318468.


https://doi.org/10.1007/BF02192173
https://doi.org/10.1006/jcss.1997.1511
https://doi.org/10.1007/978-3-319-43659-3_34
https://doi.org/10.1145/2555243.2555267
https://doi.org/10.1145/351827.351828
https://doi.org/10.1109/IPDPS.2008.4536331
https://doi.org/10.1145/1835698.1835736
https://doi.org/10.1145/2145816.2145849
https://arxiv.org/abs/2508.13399
https://doi.org/10.1145/70082.68188
https://doi.org/10.1145/1810479.1810540
https://doi.org/10.1145/78969.78972
https://rucs-uoft.github.io/theory-of-computation/a-fast-single-extractor-wait-free-priority-queue
https://rucs-uoft.github.io/theory-of-computation/a-fast-single-extractor-wait-free-priority-queue
https://doi.org/10.1109/SPDP.1991.218255
https://doi.org/10.1109/SPDP.1991.218255
https://doi.org/10.1006/JPDC.1994.1097
https://doi.org/10.1145/318242.318468

P. Fatourou, E. Ruppert, and |. Xiradakis

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Donald E. Knuth. The Art of Computer Programming, volume 3. Addison Wesley Longman, third
edition, 1998.

Jonatan Lindén and Bengt Jonsson. A skiplist-based concurrent priority queue with minimal memory
contention. In Proc. 17th International Conference on Principles of Distributed Systems, volume 8304
of LNCS, pages 206-220. Springer, 2013. doi:10.1007/978-3-319-03850-6_15.

Yujie Liu and Michael F. Spear. Mounds: Array-based concurrent priority queues. In Proc. 41st
International Conference on Parallel Processing, pages 1-10. IEEE Computer Society, 2012. doi:
10.1109/ICPP.2012.42.

Peter S. Magnusson, Anders Landin, and Erik Hagersten. Queue locks on cache coherent multiprocessors.
In Proc. 8th International Symposium on Parallel Processing, pages 165-171, 1994. doi:10.1109/IPPS.
1994 .288305.

Muralidhar Medidi and Narsingh Deo. Parallel min-max-pair heap. In Proc. 13th IEEFE International
Phoeniz Conference on Computers and Communications, pages 322—-328, 1994. doi:10.1109/PCCC.
1994 .504133.

John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable synchronization on shared-
memory multiprocessors. ACM Trans. Comput. Syst., 9(1):21-65, 1991. doi:10.1145/103727.103729.
Mark Moir and Nir Shavit. Concurrent data structures. In Dinesh P. Mehta and Sartaj Sahni, editors,
Handbook of Data Structures and Applications, chapter 48.8.1. Chapman and Hall/CRC, second edition,
2018. doi:10.1201/9781315119335.

Aravind Natarajan, Arunmoezhi Ramachandran, and Neeraj Mittal. FEAST: a lightweight lock-
free concurrent binary search tree. ACM Transactions on Parallel Computing, 7(2):1-64, May 2020.
doi:10.1145/3391438.

William Pugh. Skip lists: a probabilistic alternative to balanced trees. Communications of ACM,
33(6):668-676, 1990. doi:10.1145/78973.78977.

V. Nageshwara Rao and Vipin Kumar. Concurrent access of priority queues. IEEE Trans. Computers,
37(12):1657-1665, 1988. doi:10.1109/12.9744.

Adones Rukundo and Philippas Tsigas. TSLQueue: An efficient lock-free design for priority queues. In
Proc. 27th International Conference on Parallel and Distributed Computing, volume 12820 of LNCS,
pages 385-401. Springer, 2021. doi:10.1007/978-3-030-85665-6_24.

Sartaj Sahni. Double-ended priority queues. In Dinesh P. Mehta and Sartaj Sahni, editors, Handbook
of Data Structures and Applications, chapter 8. Chapman and Hall/CRC, second edition, 2018. doi:
10.1201/9781315119335.

Nir Shavit and Itay Lotan. Skiplist-based concurrent priority queues. In Proc. 14th International
Parallel & Distributed Processing Symposium, pages 263—268. IEEE Computer Society, 2000. doi:
10.1109/IPDPS.2000.845994.

H&akan Sundell and Philippas Tsigas. Fast and lock-free concurrent priority queues for multi-thread
systems. J. Parallel Distributed Comput., 65(5):609-627, 2005. doi:10.1016/J.JPDC.2004.12.005.
Orr Tamir, Adam Morrison, and Noam Rinetzky. A heap-based concurrent priority queue with
mutable priorities for faster parallel algorithms. In Proc. 19th International Conference on Principles
of Distributed Systems, volume 46 of LIPIcs, pages 15:1-15:16, 2015. doi:10.4230/LIPICS.0PODIS.
2015.15.

Pen-Chung Yew, Nian-Feng Tzeng, and Duncan H. Lawrie. Distributing hot-spot addressing in large-
scale multiprocessors. IEEE Transactions on Computers, 36(4):388-395, 1987. doi:10.1109/TC.1987.
1676921.

55:7

DISC 2025


https://doi.org/10.1007/978-3-319-03850-6_15
https://doi.org/10.1109/ICPP.2012.42
https://doi.org/10.1109/ICPP.2012.42
https://doi.org/10.1109/IPPS.1994.288305
https://doi.org/10.1109/IPPS.1994.288305
https://doi.org/10.1109/PCCC.1994.504133
https://doi.org/10.1109/PCCC.1994.504133
https://doi.org/10.1145/103727.103729
https://doi.org/10.1201/9781315119335
https://doi.org/10.1145/3391438
https://doi.org/10.1145/78973.78977
https://doi.org/10.1109/12.9744
https://doi.org/10.1007/978-3-030-85665-6_24
https://doi.org/10.1201/9781315119335
https://doi.org/10.1201/9781315119335
https://doi.org/10.1109/IPDPS.2000.845994
https://doi.org/10.1109/IPDPS.2000.845994
https://doi.org/10.1016/J.JPDC.2004.12.005
https://doi.org/10.4230/LIPICS.OPODIS.2015.15
https://doi.org/10.4230/LIPICS.OPODIS.2015.15
https://doi.org/10.1109/TC.1987.1676921
https://doi.org/10.1109/TC.1987.1676921

	1 Introduction
	2 Related Work
	3 Constructing a Dual-Consumer DEPQ from Two Priority Queues
	3.1 Linearizability and Progress

	4 Constructing a Multi-Consumer DEPQ from a Dual-Consumer DEPQ

