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—— Abstract

The Dancing problem requires a swarm of n autonomous mobile robots to form a sequence of

patterns, aka perform a choreography. Existing work has proven that some crucial restrictions on
choreographies and initial configurations (e.g., on repetitions of patterns, periodicity, symmetries,
contractions/expansions) must hold so that the Dancing problem can be solved under certain robot
models. Here, we prove that these necessary constraints can be dropped by considering the LUMZT
model (i.e., where robots are endowed with a light whose color can be chosen from a constant-size
palette) under the quite unexplored sequential scheduler. We formalize the class of Universal
Dancing problems which require a swarm of n robots starting from any initial configuration to
perform a (periodic or finite) sequence of arbitrary patterns, only provided that each pattern consists
of n vertices (including multiplicities). However, we prove that, to be solvable under LUMZ, the
length of the feasible choreographies is bounded by the compositions of n into the number of
colors available to the robots. We provide an algorithm solving the Universal Dancing problem by
exploiting the peculiar capability of sequential robots to implement a distributed counter mechanism.
Even assuming non-rigid movements, our algorithm ensures spatial homogeneity of the performed
choreography.
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1 Introduction

The Look-Compute-Move (LCM) model is a theoretical model used to study distributed
systems of mobile robots, aka swarms [12]. Generally, a swarm is modeled as a set of
punctiform mobile robots R = {r1,...,r,} acting on the Euclidean plane R?; they are
assumed to be anonymous and indistinguishable (i.e., no internal nor external ids), autonomous
(no central control), and homogeneous (they execute the same deterministic algorithm). Any
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robot, idle by default, is repeatedly activated by a scheduler. As soon as activated, the robot
performs an LCM cycle: it takes the snapshot of the system (Look), it executes the given
algorithm calculating a position (Compute), and it moves straight towards the computed
position (Move). By repeating the LCM cycle infinitely, the swarm performs a given task
(aka solves a problem). Different LCM (sub) models, usually referred to as X, have been
considered to study the solvability of a problem: X = OBLOT represents the most limited
model where robots are both oblivious and silent, while X = LUMZT represents the model
where robots are embedded with a O(1)-size light whose color is used both as an internal
state and a communication means. Instead, S refers to the synchronization scheduler setting:
FSYNCH, SSYNCH, and ASYNCH are the most considered ones, while the sequential setting (SEQ),
which activates only one robot at each round assuming the fairness condition, has remained
nearly unexplored until a few years ago [3, 7, 8, 11, 15].

Interest in SEQ has been driven by recent research on the well-known Pattern Formation
problem [1, 2, 9, 13, 14, 17, 18, 19]. Pattern Formation for a given pattern II (i.e., a
multiset of positions in R?) requires the robots to rearrange themselves into a configuration
similar to II, and terminate. Indeed, the features of the model, particularly its X and .5,
characterize the class of patterns that a swarm can form [20]. A question arose: under which
model assumptions can a swarm solve the Universal Pattern Formation (UPF) problem,
namely form any pattern starting from any initial configuration? An answer is given in [11]
which shows that, except for point formation, UPF is solvable under OBLOT ¥ without any
additional assumption: consequently, UPF, with point formation, is solvable under LUMZ5™,

Recognizing the power of SEQ, the same interest has turned towards the quite unexplored
Dancing problem, which asks a swarm to form a periodic or finite sequence of patterns, aka
a choreography [4, 5, 6]. In [6] it was shown that under OBLOT ™ robots can perform
choreographies with several constraints (on patterns and choreography periodicity), assuming
chirality agreement among robots; in [5], it has shown that, under LUMZ and with a global
chirality, the feasible choreographies are subject to fewer constraints, even assuming ASYNCH
and non-rigid movements. Now, the question is similar: under which model assumptions
can a swarm solve the Universal Dancing (UD) problem, namely perform a sequence of
arbitrary patterns starting from any initial configuration?

This paper answers this question. We provide an algorithm that solves UD under £/ MZ?
and considering robots that are completely disoriented (i.e., no agreement on origin, unit
distance, axes, chirality) and suffering from variable disorientation (i.e., their local coordinate
system may change from one LCM cycle to the next one). Robots have strong multiplicity
detection, i.e., they can detect the number of all the robots — and their colors — lying in the
same point (aka forming a multiplicity). We assume non-rigid movements; thus, any robot
may be stopped unpredictably after having traveled at least a non-null constant distance
0, unknown to robots. Despite non-rigidity, our solution guarantees an interesting spatial
property which provides homogeneity to the whole choreography performance: the smallest
circles enclosing the patterns of the choreography (except for patterns with only two or three
points) formed by the swarm are concentric. We prove that, to be solvable under LUMZ,
the length/period of the feasible choreographies of UD is bounded by the compositions of n
into the number of colors available to the robots. Our contribution is summarized here:

» Theorem 1. The Universal Dancing problem can be solved under LUMI ™ by a swarm
of n disoriented robots with k > 4 colors, assuming that the choreographies have length/period
q < (anj), even assuming non-rigid movements.
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2 Preliminaries

Patterns and choreographies. A pattern II is a multiset of positions in R2, called vertices.

We denote with shape(IT) the set containing the unique positions in II. We distinguish
between four classes of patterns, namely Point, TwoPoints, ThreePoints, and NPoints,
according to |shape(-)|, which is respectively 1, 2, 3, and more than 3. We denote with &2(II)
the set of patterns similar! to II. A swarm forms II if it stops in a configuration whose
multiset of positions is in Z(II).

A choreography is a sequence of patterns S = (Ilo, ..., II;_1)* where II,11 ¢ Z(II;) and
with 2 € {1,00}. If S is periodic (i.e., if x = 00), then we assume that Iy ¢ & (II,_1) and
that the sequence Iy, ..., II;_1 cannot be written as (Ilo, ... ,Hh_l)% for any h < q. We say
that ¢ is the length (period, resp.) of S if z = 1 (z = oo, resp.). A swarm R performs S if, for
any j = 1,...,z, there exists a series of increasing finite times {ti+(j_1)q}izoy__wq_lyj:l’”_,m
such that R forms II; at time #;, (j_1)q. If = 1, then R must remain still after time ¢,_;.

The Dancing problems. Dancing refers to the generic problem of performing choreographies.

Multiple constraints can be applied to the set of choreographies in order to make them
performable (aka feasible). Different constraints define specific Dancing problems, each one
formalized as the triple © = (X(n),Z(n), ¢), where:

Y(n) is a set of patterns with n vertices;

Z(n) is a set of initial configurations for a swarm of n robots;

¢ is a predicate on choreographies (e.g., limiting their length, pattern repetitions, etc.).
We say that S = (I,...,II,_1)" is a feasible choreography for ® if II; € X(n) for any
i € [0,q— 1] and S satisfies ¢. For © to be well-defined, each pattern in ¥(n) must appear in
at least one feasible choreography. An algorithm A solves ® if, for any swarm R starting from
a configuration in Z(n), it makes R perform any feasible choreography for ®. A Dancing
problem (3(n),Z(n), ¢) is said to be Universal if X(n) = (R?)" (i.e., any pattern with n
vertices), Z(n) = (R? x {off})" (i.e., set of all possible initial configurations where robots are
off-colored), and ¢ can only bound the length/period of the choreographies. In this paper,
we solve the Universal Dancing under a specific bound ¢. We prove that if ¢ is a tautology
T, then the problem is unsolved under our model.

» Theorem 2. The ((R?)", (R? x {off})™, T) problem cannot be solved under LUMI™ even
if robots have rigid movements and share a global coordinate system.

Proof. (sketch) A contradiction is achieved considering S = (Py,11y,...,P,, I1,, P, 1,11, 41),
where z = ("}*7") is the number of color-compositions in a n-size swarm using k colors, and
where P; € Point for any i € [1,z+1] and II; # II; for any ¢ # j € [1, 2+ 1]. Then, there will
be two times during the performance of & in which the swarm has the same configuration
(same colors, forming P, and Py, with a < b). This may lead the swarm to perform in a loop

the sub-sequence (Il,, ..., II,_1P;)*°, thus never completing the choreography. <

3 Algorithm QOutline

We here outline the algorithm that proves Theorem 1. Our algorithm uses a totally-ordered

palette £ = {¢1,...,0r_3,L1,Lp, L3} of k > 4 colors which allows a n-size swarm R to perform
any feasible choreography S = (Ilo, ..., II,_1)* with z € {1, 00} that satisfies ¢ < ("fo)

By convention, ¢; = off, which is the default color to which all robots are initialized.

! We consider non-degenerate similarities.
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Figure 1 Chiral angles in different scenarios.

Techniques

Our algorithm adopts peculiar techniques which combine both the power of LUMZ*E? and
some concepts taken and adapted from other fields.

Universal orientation. The SEQ setting allows us to elect three leaders, starting from
any configuration. These leaders, colored with the colors L1, Ly, and L3, will be destined
to form the chiral angle, a special triangle Avqvov3 which globally defines a coordinate
system for the swarm, and the position of the actual pattern, i.e., the pattern on whose
vertices the robots must arrange. The construction of the chiral angle occurs before the
formation of each pattern II; of the choreography and strictly depends on it; moreover,
it is built to maintain spatial homogeneity to the choreography performance (e.g., 11
is always the same point for any II;). Notably, if II; ¢ NPoints, then the vertices of
the chiral angle? exactly define the points where the robots have to arrange themselves.
Instead, if IT; € NPoints, v; sets the origin (0,0), v sets the coordinate (0, 1) thus the
z-axis and the unit distance, and v5 sets the clockwise direction®. The actual pattern
IT € 2(11;) is univocally defined by the chiral angle: vo and v5 are two specific vertices
of II, and SEC(II) will be centered in 11, so that v5 lies on its boundary. See Figure 1.

Robot-vertex matching. The formation of each pattern is based on a technique that
makes the robots match their target vertices, exploiting properties of Dyck words on the
Boolean alphabet.

Distributed counter. We exploit the power of LUMZI® by implementing a distributed
counter to keep track of the pattern to form along the choreography. Specifically, the n—3
non-leader robots, using the colors ¢y, ..., ¢;_3, can encode an integer in the range [0, z—1]
where z = (”'}if) is the number of weak-compositions of n — 3 robots with k — 3 colors.
For this purpose, we exploit the Gray Code for compositions in [16]: that method allows
us to order all the composition vectors Xg, ..., X,_1, so that each X; = (x1,...,T5_3)
indicates the number of robots z; of color ¢;, for any j € [1,k — 3]. The vector X, thus
encodes the counter value i. The Gray code ensures that X, corresponds to the vector
where all the n — 3 robots are off, and that X; and X, differ at exactly two indices, say
a, b, so that X;11[a] = X;[a] + 1 and X;41[b] = X;[b] — 1: thus, to increment the counter,
an {;-colored robot must turn into £,.

2 Degenerate if II; € Point U TwoPoints.
3 When the vertices in II; are not aligned.
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Figure 2 PHASE 2, case I € NPoints.

Phases

The core of our algorithm is composed of three phases, i.e., PHASE 1, PHASE 2, PHASE 3,
which are repeated cyclically until the choreography ends. For each II; € S, PHASE 1 aims at
setting the chiral angle; PHASE 2 aims at making robots form II;; PHASE 3 aims at updating
the counter value. Before entering the loop, robots execute an initial phase PHASE 0.

Phase 0 - Election of leaders. This phase is executed only once, starting from the initial
configuration, and terminates when the three leaders have properly elected themselves by
setting the dedicated colors Lj, Ly, and L3. No robot moves. The counter value now is 0.

Phase 1 - Chiral angle setup. Let ¢ be the counter’s value, and let IT; be the corresponding
pattern in the choreography. In this phase, the three leaders L1, L, L3 compute the chiral
angle Avivarg for I1;, and sequentially reach the relative vertices. No other robot moves.

Phase 2 - Pattern Formation. This phase starts when the leaders have formed the chiral
angle for IT; and ends as soon as each vertex of IT € Z(I1;), unequivocally defined by the
chiral angle, is covered by a robot. We describe PHASE 2 for the case II € NPoints.

Let Q be the circle centered in L; and such that L; lies on its boundary. By construction,

all the robots are enclosed in 2, and they will form IT so that SEC(II) = Q. Note that L,

and L3 already lie on two vertices of II, thus they will not move. Let D be the diameter of

starting from L,. Given a vertex v of II, we indicate with v, its projection on D. Robots
arrange on II in four sub-phases:

1. Migration towards D. Each non-leader robot reaches D moving along a perpendicular
trajectory (see Figure 2a).

2. Arrangement on D. Once all m = n — 3 non-leader robots have reached D, they
compute IT; = {v, | v € I}, i.e., the multiset of all the projections of II (see Figure 2b),
and remove from it the projections of the three vertices intended for the leaders. Let r
be an activated robot on D. Thus,  computes the boolean string w € {0,1}<2™ that
represents the ordered arrangement of unmatched robots (1s) and uncovered projections
(0s) along D. Note that multiplicities of robots (vertices, resp.) on D are treated by
unrolling and representing them through factors of adjacent 1s (0s, resp.). Then, w
can be factorized uniquely into Dyck words (or their reverses), which univocally defines
the robot-projection matching (see Figure 3). Thus, each non-leader robot moves along
D to reach the matching target projection. The properties of Dyck words ensure that
each of the m non-leader robots will reach a vertex projection on D in finite time, even
considering non-rigid movements.

56:5
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Figure 3 Robot-projection matching through Dyck words, where w = 100001011110.

Back to the vertices. In this sub-phase, all the non-leader robots travel perpendicularly
to D and reach the corresponding vertices of II. Let r be a non-leader robot on D: it
unambiguously chooses the closest uncovered vertex of IT whose projection corresponds
to its current position on D, and for which there does not yet exist a robot moving
towards it. Note that multiple vertices (belonging to both the semi-circles cut by D)
can have the same projection; in this case, » unambiguously elects the target vertex
by considering the clockwise orientation of the plane. After the vertex choice, r starts
traveling perpendicularly to D towards the computed vertex. Robot r» may be stopped
before reaching its vertex. Let h be the segment perpendicular to D which starts from
D, contains r, and ends at 2. Let vy,...,vs be the list of vertices along h so that
d(vi, D) > d(vi41, D). Then r moves to vj where j € [1, 5] is the greatest index such that
vj is not covered and r lies on the segment [v;,v;, ).

L; towards its vertex. Lastly, L; moves to reach the last missing vertex of the pattern
II, which has been properly selected by the swarm.

Phase 3 - Counter Update. This phase starts as soon as each vertex of II is covered by a
robot. Let the current counter vector be X; = (z1,...,2zr—3). We distinguish three actions:
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