Brief Announcement:
The Virtue of Self-Consistency

Fabian Frei =
CSAIL, Massachusetts Institute of Technology, Cambridge, MA, USA

Koichi Wada &
Hosei University, Koganei, Tokyo, Japan

—— Abstract

We show that self-consistency can be a crucial property for autonomous mobile robots.

Specifically, we consider the task of gathering three robots, placed adversarially in distinct
locations in the Euclidean plane, in a single point. We assume the natural scheduler ROUNDROBIN,
which activates the robots in turns. An activated robot perceives all robot locations in an adversarially
scaled, rotated, and mirrored Cartesian coordinate system with itself at the origin and then moves
wherever it wants. We show that this task cannot be solved in the default robot model (without
any consistency guarantees and no multiplicity detection) but becomes feasible if we assume self-
consistency (i.e., no changes between the different activations of the same robot) of either the unit
length (i.e., no scaling) or the compass (i.e., no rotating) by providing explicit algorithms.
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1 Model and Motivation

The computational power of autonomously acting, simple, mobile robots has been the object
of intense research in the field of distributed computing. Ever since Suzuki and Yamashita’s
seminal work [13], a large amount of work has been dedicated to the research of theoretical
models of such autonomous mobile robots [1, 2, 3, 6, 10, 11, 12]. The standard textbook
by Flocchini et al. [7] provides an excellent overview of the basic models and literature. In
the standard model, each robot is represented as a point in the two-dimensional plane with
limited capabilities. In particular, the robots are assumed to be oblivious (have no persistent
memory), anonymous (have no IDs), uniform (run identical algorithms) [7]. This basic model
is often called OBLOT, which is an abbreviation of “oblivious robot.”

The robots operate in Look-Compute-Move (LCM) cycles. A robot performs such a
cycle whenever it is activated by the so-called scheduler. For the scheduler ROUNDROBIN,
which we consider here, the robots are activated in turns, keeping the same, previously
unknown, order forever. Whenever a robot is activated, it performs a full LCM cycle
before the next robot is activated. Each cycle is composed of the following three successive
operations: In the Look operation, a robot obtains a snapshot of the plane showing the
positions of the other robots without multiplicity in a Cartesian coordinate system with the
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observing robot at the origin. In the Compute operation, it then executes its algorithm,
which is identical for all robots, using the snapshot as input. Finally, it moves towards the
computed destination in the Move operation.

We assume the robots to be transparent, i.e., not obstructing each other’s views, and
collision-resistant, i.e., passing each other without consequence.

By default, the choice of the Cartesian coordinate system is fully volatile; that is, any
robot’s coordinate system may be rotated, scaled, and mirrored adversarially before each
activation. If the adversary cannot scale and rotate, we speak of a consistent unit length
and consistent compass, respectively. If the adversary can scale and rotate between different
robots but not between different activations of the same robot, we say that the unit length
and compass are self-consistent, respectively.

We also distinguish between the standard model of rigid movement and the weaker
assumption of nonrigid movement, which models various adverse situations such as robots
overheating or running out of energy during their movements. The standard assumption for
mobile robots executing Look-Compute-Move cycles is that they always reach their target.
This is called rigid movement, as opposed to nonrigid movement, where a robot’s movement
may be stopped at any time by the adversary, as long as the robot has moved some minimum
distance 0 during its current cycle. The minimum movement distance J is unknown to the
robots. Note that the knowledge of a common § would indeed provide the robots with a
consistent unit length.

We consider the fundamental and extensively studied task of gathering all robots in a
single, arbitrary point. Together with our assumption that the robots start from distinct
locations, this task is also called Distinct Gathering, in contrast to Self-Stabilizing Gathering
without this assumption. A recent survey summarizes results for both Distinct Gathering
and Self-Stabilizing Gathering in the Euclidean plane [9].

It has been a widespread and natural assumption of the field that the purely robot-
internal property of self-consistency cannot help them coordinate. We prove that this is
not the case by showing that Distinct Gathering of three robots under ROUNDROBIN is an
unsolvable problem in the default model without consistency guarantees but feasible as soon
as we assume either a self-consistent unit or a self-consistent compass. This shows that it
is important to be careful and precise in model descriptions when it comes to assumptions
about self-consistency or the lack thereof.

2 Related Work and Contribution

A quarter century ago, Suzuki and Yamashita [13] introduced in their seminal paper the
robot model that served as the basis for much of the research on mobile robots during the
following years. The key difference to what we present here is their assumption that robots
can detect how many robots occupy any location. They show how gathering can be achieved
under this assumption [13, Thm. 3.4]. The main idea is to use the geometry of the initial
configuration to create an arbitrary point of multiplicity, and then let all robots move to
the point of highest multiplicity. But depending on the given sensors, the robots might not
be able to detect multiplicity. Moreover, multiplicity makes it rather simple to achieve a
gathering, such that most problems in this settings were resolved quickly. It has thus become
the standard assumption of the subsequent papers that robots cannot detect multiplicity. As
previously stated, this is also our assumption here.

The remaining question is therefore whether the task remains feasible without multiplicity
detection. While gathering n = 2 robots is trivial under ROUNDROBIN, it remained a
prominent open question whether Distinct Gathering is still possible for n > 3 robots. This
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question was first officially raised at DISC 2006 [4], tackled repeatedly [5, 14], and finally
resolved last year, as announced at DISC 2024 [8]: The problem is indeed infeasible for
n = 3 robots, which matches the established conjecture by Défago et al. [5, Conj. 2], but
surprisingly becomes solvable again for n > 4 robots.

For the purposes of this paper, however, the most interesting result is indeed the infea-
sibility of Distinct Gathering under ROUNDROBIN for n = 3 robots in the default model
without any additional assumptions introduced above.

The last and best attempt to find an algorithm solving the problem by introducing a
minimal set of assumptions is due to Terai et al. [14, Sect. 4, Alg. 10]. They managed to
find an algorithm for the problem if the algorithm is equipped with some internal memory
(referred to as internal lights) and at the same time a consistent unit distance. The results
announced in this paper show that the aforementioned result still made several unnecessary
assumptions. Specifically, we can show that solving the problem requires neither internal nor
external memory nor a consistent unit distance.

For the first of our two results, which is formally stated in Theorem 1, we provide an
algorithm (Algorithm 1) that works with only the additional assumption that the robots have
a self-consistent unit length. In particular, each robot may be adversarially assigned its own
unit distance for any given initial configuration. As mentioned above, it is quite surprising
that a purely self-consistent property can help the robots coordinate among each other at all.
The conventional assumption has been that some shared knowledge or perception is required
for the robots to improve their capabilities.

Motivated by the first result, we have also investigated the case where not the unit length,
but instead a sense of direction, which we call a compass (essentially a vector of variable length
always pointing in the same direction), is given to the robots in a self-consistent way. As it
turns out, the problem is even solvable under this assumption, without any self-consistency
for the unit length. This is stated in Theorem 2. Due to the space constraints, we cannot
provide the full algorithm in this case and can only sketch the main idea. The techniques
for the two proofs of Theorems 1 and 2 are quite dissimilar. Indeed, it seems impossible to
simulate either of the two algorithms using the other one.

» Theorem 1. Distinct Gathering under ROUNDROBIN is possible for 3 robots with a self-
consistent unit length and the otherwise default assumptions detailed in the introduction, even
if movement may be nonrigid.

Proof Sketch. The algorithm (Algorithm 1) relies on a distance classification scheme. Specif-
ically, the continuum of positive real numbers R+ is partitioned into two disjoint infinite
unions of intervals:

Dgolden = UkeQZ [

Dgather = Upt1e22[%
where ¢ = 1+2 7= 0.618... is the golden ratio. These intervals are logarithmically spaced
and serve to discretize distance observations in a self-consistent manner.

The main challenge addressed by the algorithm is indeed the lack of consistency in
perceived distances: each robot uses its own arbitrary unit scale. Hence, we cannot directly
rely on any single robot’s perception to define globally consistent behavior. The key idea is
to enforce a structure on the observed distances that causes predictable transitions between
configurations.

The algorithm operates on configurations of three robots, moving through the following
high-level phases:

1. Initialization and Contraction: Starting from any arbitrary configuration (collinear
or non-collinear), the robots execute moves that eventually reduce the diameter of the
configuration without ever increasing it. Through repeated activations and based on the

k+1,30k),
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classification of the observed triangle’s side lengths, the algorithm gradually transforms
any initial triangle into one with a unique shortest side. This prepares the configuration
for controlled symmetry breaking.

2. Controlled Symmetry Breaking: Once a triangle with a unique shortest side is
achieved, the robot not adjacent to this side is eventually activated and may attempt to
move toward the other robots. However, this action is taken only when the perceived
length of the shortest side falls into Dggigen. This restriction ensures that the two-point
configuration created is well-structured and predictable in terms of how the observing
robot will behave.

3. Two-Point to Three-Point Cycling: When a two-point configuration is created, the
robot that initiated the move is now collocated with one of the other robots, while the
third robot is at a different location. The key insight is that based on the perceived
distance (again classified into Dgolden Or Dgather), robots either remain stationary or move
in small, controlled steps to create specific collinear three-point configurations. This
cycling between two-point and three-point formations allows the robots to coordinate
indirectly through geometry and ensures that enough variations of distance configurations
are explored.

4. Eventual Rigid Movement: Another critical component of the algorithm is that it
ensures a bounded decrease of the configuration diameter after a finite number of steps.
Because the system allows only non-increasing diameter movements, and the distance
thresholds used in the classification scheme are strictly decreasing with powers of ¢,
the configuration’s diameter eventually becomes smaller than any possible non-rigid
movement threshold. This guarantees that we can thereafter assume all robot moves to
be rigid.

5. Convergence to Gathering: After sufficiently many transitions between specific two-
point and three-point configurations, the robots arrive at a configuration where all three
perceive distances from Dgatner and are activated in one of a bounded number of scenarios.
Each of these is explicitly handled in the algorithm and shown to lead to gathering within a
finite number of steps, regardless of the scheduler’s choices or initial scale mismatches. <«

» Theorem 2. Distinct Gathering under ROUNDROBIN is possible for 3 robots with a self-
consistent compass and the otherwise default assumptions detailed in the introduction, even
if movement may be nonrigid.

Proof Sketch. The algorithm, which we have to defer to the future full paper due to the
space constraint, solves the Distinct Gathering problem under ROUNDROBIN for three robots
with self-consistent compasses, even when faced with nonrigid movement.

The overall strategy of the algorithm is structured in two main phases. The first phase
achieves a collinear configuration in which all robots possess a well-defined and consistent
sense of direction along the shared line. A robot derives such a sense of direction from its
self-consistent compass vector if this vector is not orthogonal to the line formed by the robot
positions. We can prove that such a collinear configuration with a self-consistent sense of
direction for all robots eventually emerges from any initial configuration. Furthermore, we
can show that the diameter of the configuration decreases over time as long as nonrigid
movements occur, thus guaranteeing that rigid movement can eventually be assumed without
loss of generality.

Once a collinear configuration as described is reached, the second phase of the algorithm
begins. This phase relies on the robots’ ability to break symmetry using their self-consistent
compasses. The robots restrict their movements to the line formed by them and behave
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Algorithm 1 An algorithm for Distinct Gathering under ROUNDROBIN for n = 3 robots that
works with potentially inconsistent but always self-consistent perception of unit length and for
nonrigid movement with an unknown minimum movement distance for each robot and otherwise
the default assumptions detailed in the introduction. We denote by ¢ the golden ratio 0.618...
solving the equation ¢ + @2 = 1. Moreover, we denote by Dgolden = nggz[npk“, <pk) and Dgather =
Ukt1e2z[@" ™, ©F) the two sets of the bipartition (Dgolden, Dgather) of the positive real numbers.

Input: A distinct configuration of robots in the Euclidean plane, observed in a Cartesian
coordinate system with the observing robot at the origin.

Output: A target location that the observing robot moves towards on a straight line, not
arriving at the target only when interrupted by nonrigid movement.

Algorithm:

(1) If a one-point configuration (i.e., a gathering) is observed, then no movement is made.

(2) If a two-point configuration is observed, then there are two possible behaviors and which
one is chosen depends on the perceived distance d between the two locations:

A. If d € Dgatner, then the opposite location is targeted.

B. If d € Dyolden, then the activated robot targets the point between the two locations
that is at perceived distance ¢2d from the observation point and thus at perceived
distance ¢d from the opposite location.

(3) If a collinear three-point configuration is observed, then the behavior depends on the
observed relative distances:

A. If the ratio between the two distances from the middle robot to the outer robots is
the golden ratio and the observing robot is not the middle one, the behavior depends

again on the observed distance d between the observing robot and the middle robot:

a. If d € Dgo1gen, then the robot stays where it is.

b. If d € Dgather, then the behavior depends on whether the middle robot is closer
to the observing robot or the other one.

a. If the middle robot is closer to the non-observing robot, then the target is
the middle robot.

3. If the middle robot is closer to the observing robot, then the trajectory goes
past the middle robot to the location between the middle robot and the other
non-observing robot that was from the middle robot a distance that is a factor
@ of the distance to the other non-observing robot.

B. If the observing robot is the middle one, the behavior depends on the ratio between
the two distances from the middle robot to the outer robots:

a. If the ratio is ¢ or 1/, then the target is the second location with the ratio ¢ or
1/ between the outer robots.

b. If the ratio is neither ¢ nor 1/¢, then the activated robot moves towards an
arbitrary one of the two points forming an isosceles right triangle with the outer
two robots.

(4) If a robot observes a non-collinear three-point configuration, then the behavior depends
on whether the observing robot is incident to any of the shortest sides in the triangle
formed by the three robot locations:

a. If the observing robot is incident to such a shortest side, then it targets the midpoint
of this shortest side, breaking potential ties arbitrarily.

b. If the observing robot is not incident to such a shortest side, then there is only one
shortest side and the behavior depends on the observed length d of this side:

a. If d € Dggiden, then the target is any arbitrary one of the two endpoints of the

unique shortest side.

B. If d € Dgather, then the robot stays where it is.
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differently depending on their observed relative positions and compass directions. The
correctness of this phase is verified through an exhaustive case analysis of all 48 possible
directional configurations that they eventually lead to a gathering.

Together, these two phases ensure that the algorithm terminates with all robots gathered
at a single location. <

3 Conclusion

We have explored the minimal assumptions required to make the Distinct Gathering of three
robots under ROUNDROBIN feasible. The most recent algorithm attempting to minimize
the assumptions still required rigidity of movement, a common unit distance, and additionally
memory. We have provided an algorithm that reduces all of this to only a self-consistent
unit length. We further have an algorithm that requires only a self-consistent compass
instead of the self-consistent unit. Both results highlight the importance of the commonly
neglected distinction between robot perceptions that are potentially not consistent but at
least self-consistent and fully volatile perceptions without any such guarantees.
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