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Abstract
We present Carry-the-Tail, the first deterministic atomic broadcast protocol in partial synchrony
that, after GST, simultaneously guarantees two desirable properties: (i) a constant fraction of
commits are proposed by non-faulty leaders against tail-forking attacks, and (ii) optimal, worst-case
quadratic communication under a cascade of faulty leaders. The solution also guarantees linear
amortized communication, i.e., the steady-state is linear. Combining these two desirable properties
was not simultaneously achieved previously: on one hand, prior atomic broadcast solutions achieve
per-view linear word communication complexity. However, they face a significant degradation in
throughput under tail-forking attack. On the other hand, existing solutions to tail-forking attacks
require either quadratic communication steps or computationally-prohibitive SNARK generation.

The key technical contribution is Carry, a practical drop-in mechanism for streamlined protocols
in the HotStuff family. Carry guarantees good performance against tail-forking and removes most
leader-induced stalls, while retaining linear traffic and protocol simplicity. Carry-the-Tail implements
the Carry mechanism on HotStuff-2.
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1 Introduction

In a “streamlined” Byzantine Fault Tolerant (BFT) consensus approach, which was pioneered
by HotStuff [15], the consensus protocol has a simple and uniform structure: each view is
a single quorum exchange between a leader and voters, and each such exchange carries a
new leader proposal. Since a single quorum exchange does not suffice to achieve a consensus
decision, leaders have to rely on the next leader to drive a second exchange that commits
the previous proposal. HotStuff-like (HS-like) protocols [1, 2, 4, 9, 10, 13, 14, 15] are widely
adopted in modern blockchain and decentralized systems for their conceptual simplicity,
responsive liveness, linear communication, and censorship resistance.

BeeGees [5] exposed a vulnerability of the streamlined regime. In a tail-forking attack,
a malicious or sluggish next leader can skip over the previous leader’s proposal. Repeated
attacks by bad leaders might significantly degrade throughput.
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We present Carry, a lightweight, drop-in mechanism for HS-like protocols that defends
against tail-forking. The mechanism also boosts performance under straggler leaders by
ensuring safe progress with aggressive responsiveness without waiting for full quorums.
Notably, Carry incurs a linear communication overhead per view.

Carry is a generic mechanism. We demonstrate its application to HotStuff-2 to create
Carry-the-Tail, a full consensus solution that achieves the following two guarantees: ρ-
tail-resilience (see Definition 1) and liveness under hostile or sluggish leadership with O(n)
communication per view.

Previously, no solution simultaneously achieved both properties. Existing tail-forking
defenses either require expensive quadratic communication [5] or computationally heavy
SNARKs to prove the absence of quorum certificates [7, 8].

▶ Definition 1 (ρ-tail-resilience). We say that a proposal T is ρ-isolated if the view of T is
situated among a succession of ρ consecutive bad leaders. (After GST,) each proposal T by
an honest leader, which is not ρ-isolated, is guaranteed to be included in the global sequence.

2 Overview of Carry-the-Tail

Carry is a generic liveness-boost for protocols in the HotStuff family. The setting for this
work is described in the full paper [6]; briefly, the system consists of N = 3F + 1 replicas
with up to F Byzantine faulty, or Factual faulty in an actual execution, Factual ≤ F , and
partially synchronous communication. A full-fledged protocol referred to as Carry-the-Tail is
described here. It integrates the Carry approach into HotStuff-2.

Proposing and Voting

The Carry-the-Tail protocol operates in a view-by-view manner. Each view v has a known des-
ignated leader Lv performing a single quorum-exchange with replicas. The leader broadcasts
a proposal Bv to the replicas; replicas respond (subject to safety rules) with a NEW-VIEW
message carrying a signature-share on Bv. The signature-share is referred to as a vote on Bv.

A Quorum-Certificate (QC) consists of a threshold-signature by a quorum of 2F + 1
replicas. We say that the proposal is certified when QC(Bv) is formed. To form QCs, leaders
collect signature-shares for previous proposals and aggregate them. Broadcasting a QC incurs
only linear word-communication complexity.

Commit Safety and Liveness

Each proposal Bv includes an opaque payload and meta-information. The meta-information
references a history known to the leader. It includes Bv.QC prior to view v, the highest
known certified tail. Chaining proposals to one another using cryptographic certificates is
utilized along with protocol voting and commit rules to ensure safety.

Figure 1 depicts a failure-free flow of the protocol with leader proposals chained to one
another via QCs. Upon receiving a proposal Bv, a replica becomes locked on Bv.QC. Locking
is key to ensuring safety: in the future, the replica pledges that it will only accept proposals
that extend Bv.QC or a QC from a higher view. The figure shows a failure-free execution
snippet with four consecutive leaders chaining proposals one after another.

A commit necessitates two consecutive successful views. If a leader Lv forms QC(v − 1)
for the proposal Bv−1 immediately preceding it, then the proposal becomes committed once
there are 2F + 1 signature-shares on Bv, forming QC(v). Anyone can learn this commit
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Figure 1 Basic flow in a failure-free scenario.

decision by obtaining these votes. In particular, anyone observing a chain B∗.QC = QC(v),
Bv.QC = QC(v − 1) learns that Bv−1 has been committed. In Figure 1, B1 and B2 have
been committed, and anyone observing this chain can learn these decisions.

To guarantee liveness, a leader proposes if it received a QC from the immediately-
preceding view or a timeout. The timeout is implemented by a separate view-synchronization
(Pacemaker) module [3, 11, 12]. Any (linear) Pacemaker can be plugged here. The Pacemaker
guarantees that sufficient time has elapsed for all honest replicas to have entered view v and
for their NEW-VIEW messages to have arrived at the leader.

The problem with Failed Views and Tail-Forking

We first explain the tail-forking attack which was exposed in BeeGees [5], and later describe
how Carry prevents it.

Figure 2(a) depicts a scenario with failed view B2, zooming in on the transition from B2
to B3. In view 2, no replica succeeds to vote for B2. L3, the leader of view 3, times out
without having formed a QC for B2 and must skip B2.

The problem is that a malicious L3 could exploit this and omit votes for B2 to wrongfully
skip it. Figure 2(b) shows that B3 could ignore the 2F + 1 honest votes (the dashed arrows)
for B2 and wrongfully skip it. More generally, a view v suffers a tail-forking attack if 2F + 1
signature shares are sent by honest replicas on Bv, but the next leader Lv+1 intentionally
ignores and skips it. The attack can be caused by either a malicious or a sluggish leader.

Regardless of the cause for tail-forking, it causes significant performance degradation.
First, a proposal (e.g., B2) is unnecessarily dropped. Second, the latency to a commit decision
on pending earlier proposals increases. Moreover, tail-forking might occur frequently if there
are many malicious/sluggish leaders. In the worst case, F bad leaders perfectly interspersed
among honest views as depicted in Figure 4(perf1), where leaders L3, L5, ..., are bad. This
might cause O(N) throughput degradation and O(N) latency increase.

As explained below, the Carry method prevents the tail-foring attacks from happening.

Protecting the Tail

Because replicas send NEW-VIEW messages to the next leader, in lieu of a vote, they can
send a signature-share on an empty vote (“⊥”). In Carry, a justified skip over a tail Bv is
allowed if it is accompanied by an Empty Certificate (EC) consisting of a threshold signature
by 2F + 1 replicas on ⊥. An Empty Certificate cannot possibly be formed if F+1 honest
replicas voted for Bv; but if only F or fewer honest replicas voted for Bv, it could form, which
affects neither safety nor liveness. Figure 3(c) depicts shows how EC s justifies a skipped tail,
where L3 collects 2F + 1 empty votes (the yellow arrows) for view 2 and forms an EC(2).

DISC 2025
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(a) (b)

Figure 2 Without tail protection: (a) B2 failed and benignly skipped. (b) B2 tail-forked.

(c) (d)

Figure 3 With Carry protection: (c) B2 failed and EC-justified skipped. (d) B2 reinstated.

Reinstating Uncertified Tails

If there is neither a QC nor an EC, previous solutions (e.g., [5]) required leaders to justify
skipping the tail by using all the votes, resulting in cubic word-communication complexity in
the worst case with F consecutive malicious leaders.

Instead, the main idea in Carry is to force the next leader to reinstate the last (possibly
uncertified) voted block. To implement this, Carry introduces an optional field Bv.reinstate.
This field references an uncertified earlier proposal Bx that becomes an integral part of
Bv. As illustrated in Figure 3(d), L3 receives F+1 = 2 votes for B2 and two empty votes,
preventing the formation of either QC(2) or EC(2). Consequently, B2 is reinstated in B3.

With this new mechanism, as shown in Figure 4(perf2), a leader must justify skipping a
tail via an EC or else reinstate the tail. Notably, reinstating also helps if insufficient votes
arrive for Bv due to mere sluggishness.

ρ-Tail-Resilience

Reinstating protects the tail in case an EC cannot be formed on an immediately preceding
view. Unfortunately, tail-forking of Bv remains possible by having two consecutive malicious
leaders following Bv. Attacks by two consecutive malicious leaders, Lv+1 and Lv+2, are
depicted in Figure 4(perf3), e.g., L3 and L4. First, Lv+1 “fails” in view v + 1, not forming
QC(v). Next, Bv+2 uses EC(v + 1) to justify skipping Bv+1. Furthermore, Bv+2 skips Bv

because no justification is required to skip Bv and no replica is locked on it.
To protect against tail-forking by two or more consecutive bad leaders, we apply the Carry

method to the last ρ views. The NEW-VIEW messages from replicas should carry their votes,
possibly empty, for the last ρ views. This protects a tail unless it is followed by ρ consecutive
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(perf1) (perf2)

(perf3) (perf4)

Figure 4 (perf1) Performance Degradation due to Tail-Forking. (perf2) Improvement with
Reinstating. (perf3) Degradation under Two-Leader Attacks. (perf4) Improvement with ρ-Tail-
Resilience.

bad views. Hence, in each view rotation, all but (Factual/ρ) proposals are protected from
tail-forking. This property is referred to as ρ−Tail−Resilience. 2−Tail−Resilience is
depicted in Figure 4(perf4). Importantly, for modest values of ρ, the chance of incurring ρ

consecutive bad views in practice is very small, especially if leader rotation is randomized.
The overhead incurred is O(ρN) word communication.

Comparison with AHL

BeeGees formulated a property called “Any-Honest-Leader commit” (AHL): after GST, once
an honest leader proposes in a view, that block will be committed after at most k subsequent
honest-leader views1. BeeGees employs a complex leader handover in order to satisfy AHL
(in one variant, it incurs quadratic word-communication per view, and in a second variant, it
relies on computationally-prohibitive SNARK proofs for compressing communication).

The property ρ-tail-resilience guarantees, under a reasonably small choice of ρ (e.g. ρ = 6),
that a large constant fraction of honest leader proposals become committed even against the
worst-case tail-forking attacks. It is worth noting that by setting ρ = f , we get the same
AHL property in Carry as in BeeGees, while incurring the same communication burden.
However, arguably Carry has simpler logic and also allows ρ to be a tunable parameter in
production.

3 Carry

In this section, we show how Carry is implemented, including the Empty Certificate Justific-
ation and Reinstate mechanisms. Replicas carry their votes (which are possibly empty) for
the last ρ views in their NEW-VIEW messages, and the new leader must reinstate the last
uncertified proposal.

1 k is a protocol parameter indicating the number of phases to reach a commit; typically, k = 2 or k = 3.

DISC 2025
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Carry Implementation
Carry Rule. A valid proposal Bv from the leader Lv of view v has the following format:
Highest QC: the highest quorum certificate QC(x) known to Lv is attached as Bv.qc =

QC(x);
Reinstate: if Lv received fewer than 2F+1 votes for the highest tail T extending Bx, and

v − x ≤ ρ, then T is reinstated (in full) as Bv.reinstated = T ;
Justification: If v − x ≤ ρ, then empty-certificates are attached to Bv for each view between

x and v, which Bv does not extend. It is worth noting that if Bv.reinstated exists,
empty-certificates for views preceding the reinstated block are recursively attached within
the chain of reinstated blocks.

Voting Rule. A replica accepts and votes for the proposal Bv from leader Lv of view v if:
1. Bv.qc has a higher or equal view than the replica’s lock,
2. Bv adheres to the Carry Rule above.

Carry retains from HotStuff-2 the Commit Rule and Leader Proposal Rule.

3.1 The Carry-the-Tail Protocol
Akin to HotStuff-2, the Carry-the-Tail protocol flows view-by-view. At the end of each view,
the replicas and the incoming leader perform a handover protocol as follows 2:

Replica −→ incoming leader. Each replica sends an incoming leader a NEW-VIEW message
that carries
1. the next view number
2. the replica’s highest QC (its lock)
3. its votes (possibly empty) in the past ρ views.3

Leader −→ replicas. On satisfying the Leader Proposal Rule, the leader of view v proposes
a block Bv that
1. extends the highest QC it has collected, potentially freshly aggregated from NEW-VIEW

messages, as Bv.qc,
2. reinstates T in full as Bv.reinstated, provided that the highest QC is from the past ρ

views and the highest voted block T extends the highest QC,
3. attaches empty-certificates for each view between view(T ) and v.
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