Hierarchical Consensus: Scalability Through
Optimism and Weak Liveness

Pedro Antonino £
The Blockhouse Technology Ltd., Oxford, UK

Antoine Durand &
The Blockhouse Technology Ltd., Oxford, UK

A. W. Roscoe &
The Blockhouse Technology Ltd., Oxford, UK
University College Oxford Blockchain Research Centre, UK

—— Abstract

Scalability is a central concern of Byzantine Fault Tolerant (BFT) distributed protocols. The
ubiquitous approach to work around the well-known Dolev-Reischuk Q(n?) communication complexity
lower bound is to use a random selection process to draw a hopefully small committee from a
population of agents to run the communication-heavy protocol. We propose a notion of hierarchical
consensus that combines two sub-protocols: an optimistic primary sub-protocol that can tolerate
less than 1/2 failures and a fallback secondary protocol that can tolerate less than 1/3 failures; we
achieve the higher failure threshold by requiring a weaker notion of liveness for the primary. This
distinction between the level of fault tolerance between primary and secondary is reflected in the
size of committees implementing these protocols. For a population of agents with close to 2/3 of
honest agents, we need to select a committee with hundreds of agents to reach the level of tolerance
expected for the primary, whereas we need thousands to reach the level expected for the secondary
with a very small probability of error e. Our hierarchical construct is such that if the primary comes
to a decision, it can simply propagate it to the secondary protocol, so it does not need to properly
engage in an agreement protocol independently. Our architecture is flexible and allows us to use our
technique for most protocols that are based on random sampling. By studying hierarchical protocols,
we discovered new theoretical results of independent interest. Specifically, the ability to handover
from a primary protocol requires a new Justifiability property that allows agents to pre-decide on a
value, such that if the protocol decides, it must be on that pre-decided value.

2012 ACM Subject Classification Networks — Network protocol design; Theory of computation —
Distributed algorithms

Keywords and phrases Hierarchical, Handover, Justifiability, Consensus, Distributed Systems,
Blockchain

Digital Object Identifier 10.4230/LIPIcs.DISC.2025.6

1 Introduction

The scalability of Byzantine fault-tolerant (BFT) protocols [20, 6, 14] has been the sub-
ject of renewed attention since the advent of large-scale distributed applications such as
blockchains [23, 27, 19]. Permissionless protocols allow in principle an unbounded number
participants, so their communication cost (i.e. the number of bits sent by honest agents)
must not overwhelm the network.

Deterministic BFT consensus protocols are subject to the well-known Dolev-Reishuk Q(n?)
lower bound on communication cost [18, 8], where n is the number of agents participating in
the protocol. Scalable agreement protocols try to work around this lower bound by randomly
selecting committees: members are picked randomly and independently from an underlying
population of agents with a defined proportion of honest-to-Byzantine agents. The goal of
this process is to minimise the size n of the committee selected: find the smallest n such
? Pedro Antonino, Aptoine Durand,.and A. W. Roscoe;

37 icensed under Creative Commons License CC-BY 4.0
39th International Symposium on Distributed Computing (DISC 2025).
Editor: Dariusz R. Kowalski; Article No. 6; pp. 6:1-6:20

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:pedro@tbtl.com
mailto:antoine@tbtl.com
mailto:awroscoe@gmail.com
https://doi.org/10.4230/LIPIcs.DISC.2025.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

6:2

Hierarchical Consensus: Scalability Through Optimism and Weak Liveness

that the committee has the expected ratio of honest-to-Byzantine agents. Of course, by
minimising n, the communication cost 2(n?) is reduced. However, selecting a committee size
that ensures with high probability that more than 2/3 agents are honest — the lower bound for
partially synchronous protocols — from a population of agents with a similar ratio of honest
agents leads to committee sizes in the thousands, hindering the end goal of scalability.

Our work stems from the observation that it is possible to have much smaller committees
if we select, instead, committees with more than 1/2 honest agents in a population with
roughly a 2/3 probability of an agent being honest. We rely on the observation from Momose
and Ren [22] that BFT protocols can set different fault thresholds ¢y, and ty,e for their
safety and liveness properties, respectively; protocols that do not use this multi-threshold
approach implicitly make ¢4 = tve. The committee size can be set to guarantee fewer
than t,qf faults, while keeping a reasonable probability that there are fewer than #;,. faults
as well. Since t,qf can be set to a value that is higher than ., the committee can be much
smaller. For instance, we can have that ¢s,7. < n/2 whereas for traditional (single-threshold)
protocols tsefe = tiwe < 1/3.

We propose the notion of hierarchical consensus as a framework to create efficient
BFT consensus protocols by exploring this threshold flexibility. Although the concept of
a hierarchical architecture itself is not novel, it presents an extension of the traditional
notion of agreement protocols in the sense that it allows some protocol agents to output
values that are not decisions. Intuitively speaking, this concept combines two sub-protocols:
an optimistic primary protocol that is safe and only weakly live, and a fallback secondary
protocol that is safe and live. By only requiring weak liveness in non-optimistic executions,
the secondary can be guaranteed to execute when necessary. Thus, in optimistic executions
of this protocol, the primary sub-protocol comes to a decision that is simply propagated to
the secondary protocol; the latter does not have to be active at all. It is important to note
here that ¢4 also ensures weak liveness for the primary; this notion allows the fallback to
be started when the primary agents do not reach a decision.

We introduce the notion of a Justifiable reliable broadcast (JRBC) protocol as a way
to characterise protocols that can be used as a primary. It captures the safety and weak
liveness requirements that enable a safe handover to the secondary sub-protocol in the case
that the primary is unable to decide. We show that for a JRBC protocol, it must be that
2tsqafe + tive < M, whereas non-Justifiable protocols are only bound by the strictly weaker
relation tgqfe + 2tiwe < m. This impossibility shows for the first time that there are extra
constraints when implementing such primary/secondary optimistic architecture. We also
propose an implementation psync JRBC of a partially synchronous JRBC that demonstrates
that this bound is tight. Notably, a similar multi-threshold approach to consensus has been
tried [11], but that attempt falls short of reaching the same performance gains, precisely
because the Justifiability requirements that we identified were not met. In [25, 26], the
authors propose handover protocols that are similar in nature to ours but different in design:
they rely on a different handover mechanism and communication model.

We propose the handover construction P that creates a hierarchical consensus protocol
by combining a Justifiable RBC protocol P, (with participant agents A,) and a consensus
protocol P; (with participant agents A;). Our psync JRBC implementation can be combined
with a consensus implementation of choice using this construction to create a hierarchical
consensus implementation. Our psync JRBC implementation shows that JRBC protocols
can tolerate up to L%J faults while remaining safe and weakly live as opposed to the L"TAJ
failure tolerance level for live consensus protocols; this difference in their ability to tolerate

failures is crucial to achieve efficiency. In an optimistic run, the agents implementing P, can



P. Antonino, A. Durand, and A. W. Roscoe

come to a decision independently of the agents in P;. Thus, by minimising the size of A,, we
can improve P,’s communication complexity. As an additional bonus, although optimistic
executions can happen with up to ;. faults, the probability of having an optimistic execution
only depends on the actual number of faults. Of course, non-optimistic runs can be inefficient
as both sub-protocols attempt to reach agreements in succession.

We employ a notion of stochastic reasoning to demonstrate the impact that these levels
of tolerance have on the size of committees — that is, A, and A; — necessary to implement P,
and P;. For an error parameter €, a probability p of drawing an honest agent in a population
of agents, and a threshold ¢ of Byzantine agents, we can calculate the smallest size n such
that for a collection of n agents randomly and independently drawn from this population of
agents the probability that this collection has more than ¢ is at most €. Thus, by choosing €
exponentially small in the security parameter, the probability that this collection does not
respect the tolerance level ¢ is negligible. As a concrete example, for p = 0.68 and € = 10718,
t= L”T_lj can be achieved with committee size n = 543 whereas t = L”T_lj is achieved with
n = 94366. This demonstrates the significant efficiency gains that can be achieved by our
framework. In the context of blockchains, we can implement (financial) incentive structures
to encourage even Byzantine agents to participate in the decision of P,. Note that Byzantine
agents in A, can prevent P, from reaching a decision, but they cannot prevent P from
reaching one. Thus, the incentive structure must be designed to make delaying a decision
(from P, to P;) not worthwhile.

We summarise our contributions below:

A hierarchical consensus framework that can be used to design efficient agreement

protocols by combining a primary (tolerating < 1/2 failures) and a secondary (tolerating

< 1/3 failures) protocol, the former of which does not need to be strictly live.

A characterisation of primary protocols via the notion of Justifiable protocols and an

impossibility result that demonstrates some notion of Justifiability is necessary for

hierarchical consensus. We additionally show that partially synchronous JRBC protocols

must respect 2tsqfc + tiive < n, and we build the implementation psync JRBC that also

demonstrates the tightness of this bound.

A handover construction that demonstrates how a JRBC protocol and consensus protocol

implementations can be combined to implement a hierarchical consensus protocol.

A stochastic analysis of (randomly sampled) committee sizes for typical primary and

secondary protocols that demonstrates the level of efficiency gains (in terms of com-

munication complexity) that can be realised by selecting smaller committees for the

primary.

Paper organisation. Section 2 reviews the research literature that is closely related to our
paper. In Section 3, we present the necessary background to make the paper self-contained.
Section 4 presents our framework for efficient BFT agreement using hierarchical consensus
in detail. In Section 5 we show how to instantiate that framework. Finally, we present our
concluding remarks in Section 6.

2 Related Work

De la Rocha et al. [12] have proposed a hierarchical architecture for consensus protocols.
They focus on running independent, arbitrary consensus instances where the hierarchical
relation concerns the instances’ trust assumptions. So, their technical contributions are vastly
different from ours.

6:3

DISC 2025



6:4

Hierarchical Consensus: Scalability Through Optimism and Weak Liveness

Similar techniques. The work from Bernardo et al. [11] is closest to ours. They also split
the tolerance thresholds into ts.f and ty,. to sample committees (called shards) of smaller
size, with the same resulting probability of being live. They have a control shard which is
large enough to always guarantee liveness and safety, like our secondary protocol. The main
difference with our work is that they do not require Justifiability (or anything equivalent),
and enjoy the weaker, common restriction of ¢s.p + 2t10e < 1 instead of 2t,4pe + tiwe < n.
However, their solution is thereby bound by the impossibility in Theorem 9, and they cannot
build a handover-like mechanism. Instead, the output of the smaller shards must always
be fed to the control shard, meaning that the large committee runs an agreement protocol
for every finality decision, even when the optimistic protocol is live. This related work
illustrates well how our Justifiability notion is critical to achieving the efficiency benefits of
multi-threshold BFT protocols.

In [25, 26], the authors propose handover protocols that are similar in intent to ours but
different in design. For instance, while we have the primary triggering the handover, in those
papers, the secondary does that, usually via a timeout. Even though the secondary triggers
the handover, their system still enjoys the same optimistic behavioural pattern whereby the
primary can come to a decision at which point the secondary protocol does not need to run.
Also, the communication model employed there is different to ours: while they make use of
signals (i.e. single-writer multiple-readers shared memory locations for storing signals), we
use point-to-point communication.

Optimistic efficiency. More generally, our work aims to offer a lower communication cost
under favourable executions, which falls into the realm of optimistically efficient protocols,
also known as protocols with adaptive communication cost. Although such protocols have
received less interest than optimistically low-latency (e.g., responsive) protocols, there are
notable contributions.

The protocol from Gelles and Komargodski [17] has an overall communication cost that
is constant in fully honest executions, and a (balanced) O(n%) otherwise. On the other
hand, their protocol is in the unauthenticated, strongly synchronous setting, whereas ours is
authenticated, partially synchronous. Cohen et al. [10] proposed a O(nf) algorithm where f
is the actual number of faults, using threshold signatures. This was subsequently improved
upon by Civit et al. [7] and Elsheimy et al. [15] to different variants of consensus and to extend
the efficiency gains to the input size. Their protocols are synchronous and tolerate up to a %
fraction of Byzantine agents. Interestingly, except for our work, there is no optimistically
efficient partially synchronous protocol that we know of. In addition, one appeal of our
technique is that it can be applied to any committee-sampling protocol, which is orthogonal
to the technique employed by other optimistically efficient protocols.

Justifiability concepts. Interestingly, although our Justifiability notion is new, similar
concepts can be found in somewhat unrelated parts of the literature. We expect that fully
relating those concepts could lead to deeper insights. Abraham et al. [1] proposed a Binding
property which is almost the same as the existence of a pre-decision, except that it is in
the context of Crusader Agreement. Deligios et al. [13] proposed a similar primary/fallback
architecture, but dually to our work, the fault thresholds are split depending on network
synchronicity instead of liveness/safety properties. They show analogous feasibility and
impossibility results for their synchronous/asynchronous fallback architecture. More generally,
there are a few other works in other contexts that explore the trade-offs dealing with liveness
and Byzantine agreement[16, 5, 21].



P. Antonino, A. Durand, and A. W. Roscoe

3 Background

A distributed protocol P is an algorithm that makes computational steps and has an interface
to receive and send external data, i.e. messages, input/output to the protocol, and time-
related information. We analyse distributed protocols involving a set of agents A that interact
by exchanging messages. In the following, we define the network that is used to exchange
these messages, the types of faults that we expect from these agents, and some cryptographic
assumptions.

Network model. We assume that agents have synchronised clocks, and they communicate
through a point-to-point complete partially synchronous network. A partially synchronous
network behaves asynchronously — that is, messages can be delayed arbitrarily — until an
unknown point in time, called the Global Stabilisation Time, denoted by GST. From this
point onwards, the network behaves synchronously, i.e., there is a known bound A on the
message delay. Messages are always eventually delivered, and never duplicated.

Fault model. Non-faulty agents, namely, agents that follow the protocol, are called honest.
Some other agents may present Byzantine faults and behave arbitrarily as a consequence.
Our protocols tolerate an adversary that can corrupt agents statically, i.e., at the protocol
onset.

Cryptographic assumptions. We rely on an asymmetric digital signature scheme to au-
thenticate messages sent between agents. Moreover, we assume the existence of a public-key
infrastructure (PKI) that identifies the cryptographic keys of agents in the protocol. Hence,
we may use the identity of an agent in the place of a cryptographic key, and we implicitly
assume in our algorithms that all messages are signed and checked for validity. We assume
ideal cryptography, namely, that Byzantine agents cannot forge or tamper with digital
signatures.

3.1 Agreement protocols

In this paper, we propose and analyse a number of agreement protocols. We use the term
agreement protocol to broadly describe a distributed protocol where participants interact
to select a common output value; this property is also sometimes called consistency in the
literature. In the following, we precisely define a number of traditional agreement protocols,
together with the properties that they must follow. They are later used in our exposition of
hierarchical consensus protocols. For all our protocols, we require that both n = |A| > 2 and
|[V| > 2, where | S| gives the cardinality of set S, we use V as the set of decision values of the
protocol.

Reliable broadcast protocol (RBC). A reliable broadcast protocol is an agreement protocol
where a special participant, called the leader, disseminates a value amongst the participating
agents. Formally, a protocol P with participating agents A, a known set of valid decision
values V, a leader agent a; € A, and a leader input value vy, € V is a reliable broadcast
protocol if and only if the following properties hold:
Safety:

Consistency: If two honest agents a and a’ output values v and v/, respectively, then

v="1'

Integrity: If the leader is honest, an honest agent cannot output v such that v # vy.

6:5

DISC 2025



6:6

Hierarchical Consensus: Scalability Through Optimism and Weak Liveness

Liveness:
Validity: If the leader is honest, an honest agent eventually outputs a value.
Totality: If an honest agent outputs a value, all honest agents eventually output a
value.
Note that this protocol is consistent, as any agreement protocol must be.

Consensus protocol. We will use consensus as a sub-protocol in our constructions. A
consensus protocol is an agreement protocol where agents must eventually output a single
agreed-upon value. Formally, a protocol P with participating agents A, a chosen set of valid
decision values V, and where each agent a; € A has an input value v; € V is a consensus
protocol if and only if the following properties hold:
Safety:
Consistency: If two honest agents a and a’ output values v and v’, respectively, then
v="1.
Weak Validity: If all agents are honest and have the same input value v, then they
can only output v.
Liveness:
Termination: All honest agents eventually output a value.
In this work, we demonstrate how to use a hierarchical architecture to efficiently achieve
consensus. Our techniques should be easily generalisable to a wide range of agreement
protocols, but for simplicity and presentation purposes, we chose to focus on this weak
version of consensus, as it is a versatile building block for other distributed applications and
particularly state-machine replication.

Multi-threshold protocols. A protocol P is said to be t-resilient if it can tolerate up to ¢
Byzantine faults, that is, in the presence of up to ¢ Byzantine agents, the protocol can still
satisfy its prescribed properties; ¢ can also be seen as a fault threshold for the protocol. In
this paper, we make use of the notion of multi-threshold protocols to take advantage of our
hierarchical consensus architecture. Multi-threshold protocols have been first investigated by
Blum et al. [2, 3, 4] and more comprehensively studied by Momose and Ren [22]. A multi-
threshold protocol P has two fault thresholds t,qf and ;. such that, given a categorisation
of its properties into Safety and Liveness, it must be the case that:

P satisfies at least its Safety properties in the presence of at most tqp faults;

‘P satisfies both its Safety and Liveness properties in the presence of at most ¢y, faults.
Note that this definition implies that 4z > tiive-

Momose and Ren [22] consider the resilience of the same protocol when executed in a
synchronous network (with thresholds ¢% ;, and ¢, .) or a partially synchronous network

saje
(with thresholds t¢,, and tf;,,). They try tofestablish relations involving these four thresholds.
In this paper, however, we only analyse (and use thresholds related to) partially synchronous
protocols.
The usual theorems for Byzantine fault tolerance can be extended to multi-threshold
protocols, with the main result being that partially synchronous multi-threshold agreement
protocols require tsqfe + 2t 0. < 1 [22], even when assuming the existence of digital signatures

and a PKI.

Publicly verifiable protocols. The outputs of publicly verifiable protocols are endowed
with verifiability, namely, outputs are intrinsically supported by a publicly verifiable proof.
Given a predefined and protocol-specific publicly verifiable predicate Verify(m,v) that checks
whether 7 is a valid proof for output value v, output verifiability means that an honest agent



P. Antonino, A. Durand, and A. W. Roscoe

outputs v if and only if it has a proof 7 such that Verify(m,v) holds. A consequence of this
definition is that the reception of a proof by an honest agent is equivalent to outputting
the associated supported value. So, verifiability can be used to achieve a sort of totality by
relying on the propagation of a proof.

For instance, a publicly verifiable reliable broadcast protocol is defined as being an RBC
protocol which has a publicly verifiable function Verify(m,v), and, in addition to its Safety
and Liveness properties, the following Verifiability property:

Verifiability: An honest agent a € A outputs v € V if and only if it has a proof 7 such

that Verify(m,v).

The equivalence of outputting and obtaining a proof for a value arising from output
verifiability in combination with the consistency property prevents honest agents from
obtaining proofs supporting two different values for the same execution. These proofs allow
third parties who do not take part in the protocol to validate its output: inconsistent proofs
cannot be produced even by Byzantine agents. Verifiability is more of a structural property
of the protocol as opposed to a safety property, but we place it in the Safety category for
convenience as we expect it to be required for both failure thresholds ¢4 and t;,.. A publicly
verifiable reliable broadcast protocol must respect the following inequality ¢sqfe + tiive < 1
[22], which also implies #,. < % in our case.

4 Hierarchical Consensus: a framework for scalable BFT agreement

In this section, we present the notion of hierarchical consensus (HC). Intuitively speaking,
this consensus protocol combines two agreement protocols: one optimistic that does not
necessarily reach a decision, and a fallback one that is triggered if the optimistic fails to
decide. The optimistic protocol is designed to come to a decision more efficiently than the
fallback one. By giving up liveness in a strict sense (i.e., not requiring a decision to be
eventually made), we can increase the resilience of our optimistic protocol — i.e., its ability
to tolerate faulty agents — and, as a consequence, we can have a protocol that operates with
a smaller number of agents if compared to a live consensus protocol as it is the case with the
fallback.

4.1 Hierarchical consensus

We start off with a general definition of protocols that follows an hierarchical architecture,
and we will refine this definition as needed for our results next. This definition uses Weak
Validity, but it can be restated to use other validity notions, if preferred.

» Definition 1. A protocol P with participating agents A, a set A; C A of live agents, a
known set of valid decision values V, where each agent a; € A has an input value v; € V,
and a publicly verifiable function Verify(w,v) is a hierarchical consensus protocol if and only
if the following properties hold:
Safety:
Consistency: If two honest agents a,a’ € A output values v and v', respectively, then
v=1.
Weak Validity: If all agents in A are honest and have the same input value v, an honest
agent cannot output v’ such that v’ # v.
Verifiability: An honest agent a € A outputs v if and only if it has a proof m such that
Verify(m,v).
Liveness:
Termination: All honest agents in A; eventually output a value.

6:7

DISC 2025



6:8

Hierarchical Consensus: Scalability Through Optimism and Weak Liveness

The hierarchical nature of this protocol appears in the separation of its agents. One
can understand this definition as abstractly relying on two sub-protocols: one implemented
by agents A; and another implemented by agents in A, = A\ A;, where X \ Y denotes
set difference between sets X and Y. The agents in A, implement a not-necessarily-live
(optimistic) sub-protocol, whereas agents in A; implement a live (fallback) one, and the
overarching definition enforces their safety, both locally (within these sub-protocols) and
globally (across these sub-protocols).

If we consider the publicly verifiable version of HC and consensus, we can see that
they can both be used to solve the other: agents in A, can be guaranteed to terminate by
simply waiting for A;’s output. This (feasibility) equivalence between HC and consensus
implies, for instance, that bounds on failure thresholds for one definition must apply to the
other. However, this equivalence does not imply that these two definitions must lead to
protocols with the same executions, especially if we are interested in optimistic (i.e. best-case)
executions. In this paper, we are interested in optimistic cases where HC can reach an
agreement with less overhead compared to consensus. We are interested in the case where
agents A, finish of their own accord, as opposed to waiting for A;’s decision.

4.2 Handover

In this section, we devise a variant of hierarchical consensus where A, is expected to output
first.

» Definition 2. A handover protocol P is a hierarchical consensus protocol with agents A,
live agents A;, and A, = A\ A;, where communication between A, and A; is unidirectional
from A, to Aj, namely, agents in A, cannot receive messages from Aj.

We call it a handover protocol because, with the abstract view that A, and A; implement
two sub-protocols, this protocol has to account for the safe handing over of control from A,
to A;. This definition allows agents in A, to agree on a value and pass this decision on to
agents in 4;, at which point they can just propagate the agreed-upon value. However, agents
in A; must also be able to detect when agents in A, are unable to come to a decision, at
which point agents in A; must take over and decide on a value. The intuitive idea behind
this notion is that by lifting the (strict) liveness requirement for agents in A,, they can
implement a (sub)protocol that is more efficient than a live one, while relying on a fallback
(sub)protocol implemented by agents in A; to rescue them when they are unable to come to
a decision. One intuitive way to think about the hierarchical consensus and its handover
counterpart is: the former is a flexible composition of two sub-protocols, whereas the latter
is a type of chaining operator where the outputs of A, are used by the agents in A; to set
their inputs.

4.3 Justifiable protocol

What types of protocols can agents in A, implement in order to create a handover protocol?
A safe Justifiable Reliable Broadcast (JRBC) protocol meets the requirements that we are
after for the behaviour of the agents in A,. The (agents in this) protocol can output a
decision, an indecision (i.e. the inability to reach a decision), and even a pre-decision; a
guarantee that if the protocol decides, it must be on that pre-decided value. For a set of
decision values V, the outputs of agents are captured by the corresponding set of output
values O that is a (disjoint) union of decision outputs on V (i.e. {decv | v € V}), the



P. Antonino, A. Durand, and A. W. Roscoe

pre-decision outputs on V (i.e. {pre.v | v € V}), and the indecision output {L}. We use a
decision (and pre-decision) on v to denote dec.v (and pre.v, respectively). We also require
public verifiability. The addition of pre-decisions means that, in contrast to usual agreement
protocols, Justifiable protocols can make multiple outputs. Of course, these outputs must
still respect the properties of the protocol, e.g., consistency.

» Definition 3. A protocol P with participating agents A, a known set of valid decision
values V and output values O, a special designated leader agent ap € A with input value vy,
a publicly verifiable predicate Verify(m,o) for outputs, is a Justifiable reliable broadcast if
and only if the following properties hold:

Safety:

Consistency: If honest agents a and o’ output decisions on v and v', respectively, then
v=u.

Pre-decision consistency: If honest agent a outputs a pre-decision on v and honest
agent a’ outputs a pre-decision or decision on v', then v =v'.

Indecision consistency: If honest agent a outputs 1 and honest agent a’ outputs o,
then either o = 1 or o is a pre-decision.

Verifiability: An honest agent a makes an output o if and only if it has a proof m such
that Verify(m,o0). o can be a decision, a pre-decision, or an indecision.

Integrity: If the leader is honest, an honest agent cannot output a decision on v such
that v # vy,.

Pre-decision Integrity: If the leader is honest, an honest agent cannot output a pre-
decision on v such that v # vy,.

Weak Termination: All honest agents eventually output (at least) a value. It can be a
pre-decision, a decision, or an indecision.

Liveness:

Validity: If the leader is honest, an honest agent eventually outputs a decision.

Totality: If an honest agent outputs a decision, all honest agents eventually output a

decision.
Note that Indecision consistency and verifiability implies that an indecision output by any
agent is a proof of indecision for the protocol. That is, if an agent outputs an indecision
value, it must be that no agent has outputted or will output a (verifiable) decision. In this
definition, we have added weak termination as part of the Safety category of properties,
even though this is, strictly speaking, a liveness property. This is to emphasise that weak
termination is required to hold up to tsqp faults.

The ability to output a pre-decision releases agents from the obligation of reaching a
strictly coordinated decision. The addition of pre-decision outputs allows the (safe version of
the) protocol to separate executions reaching a potential decision from those that do not, to
enable a safe handover, while being compatible with a weaker notion of liveness.

Impossibility theorems. We present two impossibility results that together show that
Justifiability is a fundamental concept for handover protocols. First, we present a claim (that
is more formally stated as Theorem 9 in Appendix A) that states that for any protocol P
that can be used as a primary in a handover, P must satisfy some form of Justifiability.

> Claim 4. A handover protocol can only be constructed if the agents in A, implement a
justifiable protocol.

6:9

DISC 2025



6:10

Hierarchical Consensus: Scalability Through Optimism and Weak Liveness

Furthermore, Justifiability adds a weak liveness requirement even when there are up to
tsafe faults if compared to RBC protocols. Thus, an argument similar to the one demonstrating
that a RBC protocol must satisfy tsqfe + 2t10e < n [22] can be applied to show that a JRBC
protocol must satisfy 2ts.e + tiwe < n. AS tsefe > tiive, the latter relation is strictly more
restrictive than the former.

» Theorem 5. A partially synchronous multi-threshold JRBC' protocol must satisfy 2tqpe +
tiive < M.

The proof is essentially the same as in [22], except that one of the executions that is
required to be live with ¢, faults is replaced with an execution that is weakly live with ¢4,
faults.

Proof. We proceed by contradiction. Let us assume that there is a partially synchronous
multi-threshold Justifiable RBC protocol P such that 2¢s.f. + tive = n; the following proof
can be trivially extended to the case 2ts4fc + tive > n.

Let S, Lo and L; be sets partitioning the set of agents A, such that |S| = |Lo| = tsqfe,
|L1| = tiiwe and the sender ay, is in S. Let F, Fy and E; be three executions as follows.

In Ey, agents in Ly crashed and do not send any message, the remaining agents behave
honestly, and ar has input vyg. By weak liveness and t,qf faults, honest agents in Fy,
including agents in L, eventually output either an indecision, a pre-decision on vg, or a
decision on wvg; let Ty be the time when the last honest agent outputs in Ey. E; is the same as
Fy but with L; crashed instead of Lo and ay, input being v; such that v; # vg. By liveness
and ;. faults, honest agents in F1, including agents in L, eventually output a decision for
v1; let 17 be the time when the last honest agent outputs in Ej.

In E, agents in S are Byzantine while the remaining agents behave correctly. Messages
between Ly and L; are not delivered until GST = maxz(Ty, T1), and agents in S behave
towards each L; for ¢ € {0,1} as in Fy_;, with the same respective network delays. Thus,
agents in L; cannot distinguish between E;_; and S until GST, and so they must output as
per E1_;. So, agents in Ly must output a decision on v; as per F;, whereas agents in L
must output either an indecision, a pre-decision on g, or a decision on vy as per Fy. If an
agent in L; outputs an indecision, we have a violation of Indecision consistency. Similarly,
the output of a pre-decision (decision) on vy by an agent in L, would violate Pre-decision
(Decision, respectively) consistency. Hence, P cannot be a JRBC protocol. |

Our proposed implementation for a partially synchronous JRBC, presented later, shows

that this bound is tight. Given this bound, we have that when Zs,z goes from % to 4, our

JRBC protocol is limited to ;. going from % to 0 whereas non-justifiable ones may have
tiive going from % to § (and ¢4 go above § as well).

The notion of justifiability can also be applied to consensus protocols. Similarly to JRBC,
Justifiable consensus protocols would have the three types of outputs (decisions, pre-decision,
and indecision), the associated consistency, validity, verifiability, and weak termination
notions. Unlike JRBC, it does not have an agent with the role of a leader and the properties
associated with this role (e.g., integrity, totality, and termination based on leader honesty).

A Justifiable reliable broadcast can be constructed from a Justifiable consensus protocol
in the typical way: the leader value is used to set up the initial values of the agents in
the Justifiable consensus, and their consensus outputs become outputs for the Justifiable
broadcast protocol construction. So, any impossibility for Justifiable reliable protocols must
apply to Justifiable consensus protocols too.



P. Antonino, A. Durand, and A. W. Roscoe

5 Instantiating a hierarchical consensus protocol

5.1 Handover construction

In the following, we demonstrate a construction that creates a handover protocol by combining
a JRBC protocol P, with a consensus one P;. Intuitively speaking, the agents implementing
P; wait for the agents P, to come to a decision. If they are unable to do so, the agents in P;
take over and decide. The intricate element in implementing this behaviour is ensuring that
the handing over from agents in P, to agents in P; is safe.

» Definition 6. Given a multi-threshold JRBC protocol P, and a single-threshold consensus
protocol P;, one can construct the handover protocol PH(Py, P,) with agents A, live agents
A; and remaining agents A, = A\ A; as follows:
Agent A, € A, runs P, to obtain output o, and proof w, and then:
if 0, s a decision, it outputs o, and sends o, and associated proof 7w, to all agents in
Ai;
if 0, is a pre-decision or indecision, it sends 0, and associated proof m, to all agents
in A;.
The decision set for Py is given by V; = {v € V, | Verify(m,, prev)} U{v € V, |
Verify(m,, L)}, where V, is the decision set of P,.
An agent in a; € A; behaves as follows:

Upon receiving a verifiable decision, it outputs this value and propagates it to agents in

Ai;

Upon receiving a verifiable pre-decision on v, it starts to behave as per P, with input

value v.

Upon receiving an indecision, it starts to behave as per P; with input value v;.

Upon Py outputting some value v, output v.
Note that the decision set V; for P; depends on the verifiable outputs of P,, namely, P; can
only decide on values that have been supported by the outputs of P, as per V;. For instance,
a proof of indecision allows agents in P; to decide on any decision value in V,, whereas a
pre-decision proof for v supports only the decision value v. To enforce that a decision value
v for P; conforms to V;, we can require that it be accompanied by a supporting proof 7,
from P,. We omit this step from our construction for conciseness. Also, note that if P; is
publicly verifiable, we can make P publicly verifiable as well by outputting the proof m
generated by P;.

The protocol PH allows the agents A, to decide and simply propagate their decision
to the agents in A;; this sort of optimal behaviour is the main motivation for proposing
handover protocols. Of course, in the worst-case scenario, if the agents in A, are unable
to reach a decision, the consensus protocol P; has to run in addition to P,. Note that the
protocol P does not output the indecision or pre-decisions output by P,; it merely uses
them internally as part of the handover mechanism we devise. Thus, only decisions are
required to be publicly verifiable. Also, for convenience, we have that the execution of P, by
an agent returns an output and a proof.

We show that PH is indeed a handover protocol next.

» Theorem 7. For a safe Justifiable reliable broadcast protocol P, with safety threshold
tsafe and a consensus protocol Py with liveness threshold thives the protocol PH (P, P,) is a
handover protocol.

6:11

DISC 2025



6:12

Hierarchical Consensus: Scalability Through Optimism and Weak Liveness

Proof. The messages sent between A, and A; flow only from the former to the latter. So,
we only need to demonstrate that P (P, P,) satisfies all the properties of a hierarchical
consensus protocol.
Consistency: P, and P; enforce local consistency, namely, no two agents within these
protocols can decide on different values. The definition of V; predicated on the outputs
of P, ensures inter-protocol consistency. Let us assume that an agent a, € A, outputs
a decision on v'. By the consistency properties of P,, it must be that all agents in A,
output either a pre-decision or a decision on that value. Hence, the decision set V; for
agents in A; can contain only the value v’. Therefore, P; can only output v'.
Weak Validity: If all the agents in A, are honest and have the same input value v, if
they output a pre-decision or decision, it must be on v’, by their integrity properties. So,
the agents in A; receive from agents in A; enough messages to support v’ as their initial
value or enough indecision so they use their own initial value, which is also v’. By P,
own notion of validity, we have that agents in .4; can only output v’ too.
Verifiability: Decisions of P are verifiable by relying on the publicly verifiable functions
of the underlying protocols P, and P;.
Termination: If an agent in A, outputs a decision, it will eventually be propagated to all
agents in A. Otherwise, by weak termination of P,, each honest agent in A; is guaranteed
to eventually receive either a pre-decision or an indecision (with accompanying proof)
from agents in A,. Therefore, all honest agents in A; will eventually run P; with some
input value. By termination of P, they all eventually output the value from P;. <

Note that we do not use the (strong) liveness property of JRBC to show Termination for
PH_ This property is proven using only JRBC’s weak liveness. On the other hand, JRBC’s
Liveness guarantees that when t;,. is met, the optimistic protocol will succeed, provided
that the timeout is large enough.

To complete the construction of a handover protocol, we propose a partially synchronous
JRBC protocol implementation; many well-known consensus protocol implementations exist,
of course.

5.2 Partially synchronous JRBC (psync-JRBC)

Algorithm 1 depicts the behaviour of an honest agent for a JRBC protocol, which we call
psync-JRBC. This protocol behaves similarly to a traditional RBC protocol, but it relies on
a timeout to ensure agents output a value even if they are yet unaware of a decision being
reached. The timeout should be tuned to the network delay as best as possible, but note
that its value only impacts performance.

Psync-JRBC is implemented in two rounds of voting to ratify the proposal of the leader;
the message (PROPOSAL, v) denotes the proposal of value v. In the first round, agents use
message (PREPARE, v) to ratify the value v. When an agent receives a quorum of containing
more than half of distinct honest agents PREPARE-ratifying the same value v, it has obtained
a pre-decision for v; these PREPARE messages form a proof for this pre-decision. Reaching
this quorum (before a timeout) triggers the second round of voting, which relies on message
(CoMMIT, v) to ratify v the pre-decided value v. A quorum including 2¢,4s + 1 honest agents
CommiIT-ratifying the same value v means that a decision has been reached; these COMMIT
messages represent a proof for a decision. If the timeout happens before a pre-decision is
obtained, the agent aborts by sending an ABORT message. A quorum of n — 2t,4s abort
messages from distinct honest agents represents a proof of indecision. If the timeout happens



P. Antonino, A. Durand, and A. W. Roscoe

Algorithm 1 Implementation of protocol psync JRBC.

local variables: upon receiving (COMMIT, v) from Tg = 2tsqpe + 1
A. The protocol agents. distinct senders do
v;. The agent input. send (dec.v, ) to A;
a;. The agent identity. output dec.v;
ar,. The leader identity. end
timer. An object that expires after some timeout upon receiving (ABORT) from To = n — tsafe
duration. distinct senders do
procedure start() send (L, 7;) to A;
start timer; output 1;
if a; = ar, then end
| send (PROPOSAL,v;) to A; upon timer ezpires do
end if (ComMIT, ) not sent then
upon receiving (PROPOSAL, v) from ar, do | send ABORT to A;
if (PREPARE, ) not sent then if (ComMIT,v) was sent for some v then
| send (PREPARE,v) to A; send (pre.v,mp) to A;
end output pre.v;
upon receiving (PREPARE,v) from end
T, = {w distinct senders do end
if timer not expired then upon receiving (o, ) where Verify(w, o)
| send (ComMIT,) to A; do
end send (o, 7) to A;
‘ output o;
end

after a pre-decision, the agent outputs the pre-decision. The agent outputs a decision or an
indecision as soon as it has obtained a proof for it. We assume that signature creation and
verification are being carried out as messages are sent and received.

» Theorem 8. The protocol psync-JRBC' is a JRBC protocol with thresholds tsqp. € [O, L%H
and time = min({n — T, n — Ty, tsepe}), where min returns the minimal element of the set.

Proof. We show that psync-JRBC satisfies all Safety properties of a JRBC protocol for t,4s €

[O, L%’lﬂ and both Safety and Liveness properties for ¢, = min({n — T, n — Ty, tsefe})-
Consistency: We prove this by contradiction. So, let us assume that two honest agents
output decisions on v and v" such that v # v’. For each of these decisions, at least one
honest agent must have COMMIT for each of these values. Let us call them a and a for
values v and v’, respectively. Thus, a and o’ must have obtained pre-decisions for v and

tsafetn+1
f—‘ agents,

v', respectively. However, a pre-decision requires a quorum of ), = [
namely, it requires the participation of more than half of the honest agents. Hence, by
a quorum intersection argument, it must be that an honest agent has sent a PREPARE
message for both values v and v’, which contradicts our algorithm.

Pre-decision consistency: We can use the pre-decision quorum intersection argument
again to show here that two pre-decisions cannot be obtained for two distinct values. We
can prove the other case, i.e., that a decision and a pre-decision output by honest agents
cannot support different values, using a similar argument. Let us assume that agent a
has obtained a pre-decision for v and that agent a’ has obtained a decision for v'. The
quorum required for a decision must include at least one honest agent; let us call this
agent a*. This agent must have, then, obtained a pre-decision for v'. That contradicts
the fact that two pre-decisions for distinct values cannot be obtained for the same run of
the protocol.

Indecision consistency: We prove this by contradiction. Let us assume that agent a
outputs L and agent a’ outputs a decision on v. By our algorithm, for a to output L, it
must be that n — 2t,4s distinct honest agents have aborted. For the decision on v, by

6:13

DISC 2025



6:14

Hierarchical Consensus: Scalability Through Optimism and Weak Liveness

our algorithm, there must have been ¢, + 1 distinct honest agents who have obtained a
pre-decision for v. There are Ty + To = (n — tsafe + 2tsafe + 1 — 1) = toape + 1 overlapping
agents in the intersection of these two quorums, but an honest agent cannot both abort
and possess a pre-decision, a contradiction.

Decision, Pre-decision, and indecision verifiability: A proof of a decision is a collection of
Ty = 2tqfc +1 COMMIT messages from distinct agents; a proof of a pre-decision is a set of
T, = w PREPARE messages from distinct agents; and a proof of indecision is a set
of Ty, = n — tsqfe ABORT messages from distinct agents. Given that ¢pe < tsafe, to satisfy
the public verifiability requirement of ¢y4fe + tiive < 1, it must be that t,qp € [07 L"T_lﬂ
Integrity: If the leader ay, is honest, honest agents can only send PREPARE messages
for vr,. Given that a pre-decision quorum requires the participation of honest agents, a
pre-decision can only be for vy, and, as a consequence, a decision can only be for vy,.
Pre-decision integrity: As per the previous property.

Weak termination: The timer of honest agents will eventually expire. When that happens,
two cases can arise. If an honest agent has obtained a pre-decision, it will propagate this
pre-decision, eventually compelling all honest agents to output this pre-decision. If no
honest agent has obtained a pre-decision, they will all send abort messages. Given that
there are n — t5,. honest agents, they can eventually obtain an abort proof and output
1.

Termination: Our requirement ¢, = min({n — T, n — Ty, tsqfe }) means that we have
enough honest agents to meet the quorum for a pre-decision and a decision. Hence, if the
leader is honest and the timer lasts for enough time, the algorithm will converge after
GST to a decision on the leader’s input value. |

5.3 Putting it all together

With our handover construction PH on Def. 6 and our psync-JRBC protocol in Alg. 1 used
as P,, we have a protocol that relies on the creation of committees for A, and A; with the
appropriate failure thresholds. The benefit of our approach is apparent when these collections
of agents are obtained via random sampling with repetition, i.e., when they are selected
randomly and independently from an underlying (larger) population of agents. The precise
mechanism by which agents are sampled is irrelevant to our construction, as long as each
agent has a probability p > % to be honest.

Stochastic reasoning. The higher fault tolerance for JRBC (i.e. primary) protocols allows
them to rely on small committees if compared to typical consensus protocols. In this section,
we dive into a probabilistic approach to choose committees to implement (i.e. run) our
deterministic protocols. That does not make our protocols stochastic, but that means that
our correctness guarantees become probabilistic. We rely on a notion of stochastic reasoning
to bound the probability with which correctness may be violated. We use the error parameter
€ as the upper bound on correctness violation, which should be negligible in the security
parameter. In our context, a violation arises if we select a committee with the wrong
proportion of honest agents. This error parameter can be understood as the probability with
which we will select a committee with the wrong proportion of honest agents.

We select agents for our committees from a population of agents with a probability p of
being honest. We rely on a process that selects randomly and independently (with repetition)
n agents from this population. The probability that this set has k& honest agents is governed by
a binomial distribution with parameters (n, p). The probability that this collection has up to k



P. Antonino, A. Durand, and A. W. Roscoe

honest agents is equal to the cumulative distribution F(k;n,p) = S (M)p'(1—p)"~*. This

i=0 \1¢

probability is equivalent to the probability of the collection having at least n — k Byzantine

agents, and so the probability that it has at most n — k — 1 Byzantine agents is 1 — F(k;n, p).

So, by minimising F'(k;n,p), we increase the probability that n — k — 1 bounds the number
of Byzantine agents in this collection, and F'(k;n,p) can be seen as the probability that
n —k — 1 is not a correct bound. We use K(n,p,e) = max({k € {0...n} | F(k;n,p) < €})
to find the k, if it exists, that represents the tightest k + 1 lower bound to the number of
honest agents in the committee, respecting the error probability e. For a given probability p
of agents to be honest, a target maximum number of Byzantine fault ¢ and error threshold e,
we compute the committee size n¢(p,t) as the smallest number, if it exists, that guarantees
less than ¢ faults, i.e., n°(p,t) = min({n e N | k = K(n,p,e) An—k—1<t}).

In Table 1, we illustrate how the ability to tolerate more Byzantine agents can lead to
smaller committee sizes. We present the values of n¢(p,t) for some values of p and ¢ and
for failure thresholds ¢ = L%J and t = L%J, we choose 0.68 as a starting value for p
because of the need for a 2/3 ratio of honest agents to implement consensus. These values
demonstrate the substantial impact that tolerating more failures can have in the size of the
committees being randomly selected. For instance, for p = 0.68 and € = 10~'*, a primary
protocol would require a committee of size 411, whereas the secondary protocol would require
the participation of 72061 agents; the secondary committee size would be about 17500%
that of the primary. As expected, the discrepancy between committee sizes reduces as the
probability of an agent being honest increases.

Communication cost. We examine the communication complexity of handover protocols,
i.e. the number of bits sent by honest agents. We note C”(n) the communication cost of
protocol P as a function of the number of participating agents. It is straightforward to see
that CP" (JA]) = CP* (| A,|) +CP: (| Al]) + O(| A, ||4;]) in general, and for optimistic executions
CP" (|A]) = CP(|Ao]) + O(|Ao]|Ai]). This shows that there are gains to be expected from
the optimistic executions, although the handover can, in some situations, incur a cost higher
than just running the fallback. More generally, since our technique yields a constant factor
improvement in the committee size, we cannot analyse them using asymptotic notation.
Depending on the protocols at hand, tail bounds on the binomial distribution (e.g., the
Chernoff bound) may be used instead. Increasing ty.s for P, makes |A,| smaller, at the
expense of decreasing t;;,. and therefore the probability of making P, (strongly) live.

We intended to use our hierarchical protocol as a consensus engine for blockchains. In
this context, we could set up incentive structures that can be naturally implemented in these
distributed systems to encourage optimistic executions. For instance, they could financially
reward more favourably these executions against fallback ones. These incentive structures

Table 1 Tables depicting the committee size n®(p,t) for different values of p and e contrasting

the size requirements for committees tolerating L”T_lj and those tolerating L"?_IJ

e=10""" e=10""" e=10"""
b [ [ [[=] b [ [ [[=] b [ [ [[=]
0.68 | 281 [ 49795 0.68 | 411 [ 72061 0.68 | 543 | 94366
0.72 | 179 2944 0.72 | 265 4276 0.72 | 351 5608
0.76 | 123 901 0.76 | 179 1303 0.76 | 237 1720
0.8 87 403 0.8 | 125 592 0.8 | 167 769
0.84 | 61 214 0.84 | 89 313 0.84 | 121 415
0.88 | 45 124 0.88 | 65 181 0.88 | 87 238
092 | 31 70 092 | 45 106 092 | 59 142

6:15

DISC 2025



6:16

Hierarchical Consensus: Scalability Through Optimism and Weak Liveness

can be used to optimise another aspect of our construction. Note that when ¢y.p > ti;pe for
P,, it only takes a small number of Byzantine agents (n — 2tsq) to prevent the primary
from reaching a decision. For instance, for n = 2¢,4f + 1, it only takes one Byzantine agent
(being silent, for example) to prevent P, from being live. Of course, weak liveness still holds
for the primary, so the Byzantine agents in P, can delay a PH decision, but they cannot
prevent it. Thus, once more, incentive structures can be set up to ensure that delaying a
decision is not worthwhile, encouraging, then, the Byzantine agents in A, to cooperate in
reaching a P, decision.

6 Conclusion

In this paper, we introduce the notion of hierarchical consensus as a framework to create
efficient BFT consensus protocols by combining an optimistic efficient primary sub-protocol
that is safe and only weakly live with a fallback (not as efficient) secondary protocol that is
safe and live. Giving away (strict) liveness is the price paid for the efficiency of the primary
protocol.

We propose the notion of a Justifiable RBC' protocol, and justifiability more generally,
as a way to characterise primary sub-protocols: it captures the safety and weak liveness
requirements necessary for a safe handover to the secondary sub-protocol. We show that
for a Justifiable RBC protocol, it must be that 2¢s.fe + tive < n; this inequality should be a
useful guide for designers of such protocols. Moreover, we devise a JRBC implementation
that shows that this is a tight bound.

We also introduce the handover construction P that creates a hierarchical consensus
protocol by combining a Justifiable RBC protocol P, and a consensus protocol P;. This
construction can combine our psync JRBC implementation with a consensus implementation
of choice to create a hierarchical consensus implementation. We show that JRBC protocols
can tolerate up to L%J faults while remaining safe and weakly live as opposed to the
L%J failure tolerance level for live consensus protocols; this difference is crucial to achieve
efficiency.

We employ a notion of stochastic reasoning to demonstrate the impact that these levels
of tolerance have on the size of committees implementing P, and P;. Our calculation show
that, for a very small € and p close to 0.68 (i.e. the probability of drawing an honest agent is
close for 2/3), the size for a committee where t = L”EIJ is in the hundreds of agents, whereas

n—1

for t = L%J it is usually in the thousands. This demonstrates the significant efficiency

gains that can be achieved by our framework.

Future work. The area of hierarchical consensus seems very rich and not yet well explored.
We intend to analyse the handover mechanisms in [25, 26, 24] within our framework. Addi-
tionally, while we provide a single instantiation of our framework, we believe there are many
more that could be of interest. One could consider a handover to another optimistic protocol
instead of a secondary. This could be retried some number of times or indefinitely, depending
on the efficiency of the various protocols involved. Similarly, so far we have only instantiated
a Justifiable Reliable Broadcast, whereas Justifiability could be added to consensus and
its variants, e.g., to avoid the reliance on leaders. Going further, we plan to enhance the
modularity of our framework by making the notion of Justifiability generically applicable to
any agreement protocol, as well as to remove any specific notion of Validity for consensus
and hierarchical consensus, instead relying on the insights from Civit et al. [9]. Adding to
the theoretical exploration of Justifiability, we expect to complete its characterisation with



P. Antonino, A. Durand, and A. W. Roscoe

tighter feasibility results, and to show to possibility of compiling any agreement protocol
into a Justifiable one.

Other avenues of research include taking full advantage of multi-threshold protocols for
more resilient primary and/or secondary, as well as better analysis to determine the best
trade-off between t.5. and the probability to make the protocol live, depending on the
protocols at hand. In the context of using our hierarchical protocol as a consensus engine
for blockchains, we plan to more formally analyse the incentive structures that can be put
in place to encourage optimistic executions. Our architecture is particularly suited to this
because we can readily detect optimistic executions simply by observing the provenance of
the output.

—— References

1 Ittai Abraham, Naama Ben-David, and Sravya Yandamuri. Efficient and adaptively secure
asynchronous binary agreement via binding crusader agreement. In Alessia Milani and Philipp
Woelfel, editors, PODC ’22: ACM Symposium on Principles of Distributed Computing, Salerno,
Ttaly, July 25 - 29, 2022, pages 381-391. ACM, 2022. doi:10.1145/3519270.3538426.

2 FErica Blum, Jonathan Katz, and Julian Loss. Synchronous consensus with optimal asyn-
chronous fallback guarantees. In Dennis Hofheinz and Alon Rosen, editors, Theory of Cryp-
tography - 17th International Conference, TCC 2019, Nuremberg, Germany, December 1-5,
2019, Proceedings, Part I, volume 11891 of Lecture Notes in Computer Science, pages 131-150.
Springer, 2019. doi:10.1007/978-3-030-36030-6_6.

3 Erica Blum, Jonathan Katz, and Julian Loss. Tardigrade: An atomic broadcast protocol for
arbitrary network conditions. In Mehdi Tibouchi and Huaxiong Wang, editors, Advances in
Cryptology - ASIACRYPT 2021 - 27th International Conference on the Theory and Application
of Cryptology and Information Security, Singapore, December 6-10, 2021, Proceedings, Part
11, volume 13091 of Lecture Notes in Computer Science, pages 547-572. Springer, 2021.
doi:10.1007/978-3-030-92075-3_19.

4  FErica Blum, Chen-Da Liu Zhang, and Julian Loss. Always have a backup plan: Fully secure
synchronous MPC with asynchronous fallback. In Daniele Micciancio and Thomas Ristenpart,
editors, Advances in Cryptology - CRYPTO 2020 - 40th Annual International Cryptology
Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings,
Part II, volume 12171 of Lecture Notes in Computer Science, pages 707—731. Springer, 2020.
doi:10.1007/978-3-030-56880-1_25.

5 Manuel Bravo, Gregory V. Chockler, and Alexey Gotsman. Making byzantine consensus live.
Distributed Comput., 35(6):503-532, 2022. doi:10.1007/S00446-022-00432-Y.

6  Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proactive recovery.
ACM Trans. Comput. Syst., 20(4):398-461, November 2002. doi:10.1145/571637.571640.

7  Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic,
and Manuel Vidigueira. DARE to agree: Byzantine agreement with optimal resilience and
adaptive communication. In Ran Gelles, Dennis Olivetti, and Petr Kuznetsov, editors,
Proceedings of the 43rd ACM Symposium on Principles of Distributed Computing, PODC

2024, Nantes, France, June 17-21, 2024, pages 145-156. ACM, 2024. doi:10.1145/3662158.

3662792.

8 Pierre Civit, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, Anton Paramonov, and
Manuel Vidigueira. All byzantine agreement problems are expensive. In Ran Gelles, Dennis
Olivetti, and Petr Kuznetsov, editors, Proceedings of the 43rd ACM Symposium on Principles
of Distributed Computing, PODC 2024, Nantes, France, June 17-21, 2024, pages 157-169.
ACM, 2024. doi:10.1145/3662158.3662780.

9  Pierre Civit, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, and Manuel Vidigueira. On
the validity of consensus. In Rotem Oshman, Alexandre Nolin, Magnis M. Halldérsson, and
Alkida Balliu, editors, Proceedings of the 2028 ACM Symposium on Principles of Distributed

6:17

DISC 2025


https://doi.org/10.1145/3519270.3538426
https://doi.org/10.1007/978-3-030-36030-6_6
https://doi.org/10.1007/978-3-030-92075-3_19
https://doi.org/10.1007/978-3-030-56880-1_25
https://doi.org/10.1007/S00446-022-00432-Y
https://doi.org/10.1145/571637.571640
https://doi.org/10.1145/3662158.3662792
https://doi.org/10.1145/3662158.3662792
https://doi.org/10.1145/3662158.3662780

6:18

Hierarchical Consensus: Scalability Through Optimism and Weak Liveness

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Computing, PODC 2023, Orlando, FL, USA, June 19-28, 2023, pages 332—-343. ACM, 2023.
doi:10.1145/3583668.3594567.

Shir Cohen, Idit Keidar, and Alexander Spiegelman. Make every word count: Adaptive
byzantine agreement with fewer words. In Eshcar Hillel, Roberto Palmieri, and Etienne
Riviere, editors, 26th International Conference on Principles of Distributed Systems, OPODIS
2022, December 13-15, 2022, Brussels, Belgium, volume 253 of LIPIcs, pages 18:1-18:21. Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik, 2022. doi:10.4230/LIPICS.0PODIS.2022.18.
Bernardo David, Bernardo Magri, Christian Matt, Jesper Buus Nielsen, and Daniel Tschudi.
Gearbox: Optimal-size shard committees by leveraging the safety-liveness dichotomy. In Heng
Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2022, Los Angeles,
CA, USA, November 7-11, 2022, pages 683—696. ACM, 2022. doi:10.1145/3548606.3559375.
Alfonso de la Rocha, Lefteris Kokoris-Kogias, Jorge M. Soares, and Marko Vukolic. Hierarchical
consensus: A horizontal scaling framework for blockchains. In 42nd IEEE International
Conference on Distributed Computing Systems, ICDCS Workshops, Bologna, Italy, July 10,
2022, pages 45-52. IEEE, 2022. doi:10.1109/ICDCSW56584.2022.00018.

Giovanni Deligios, Martin Hirt, and Chen-Da Liu-Zhang. Round-efficient byzantine agreement
and multi-party computation with asynchronous fallback. In Kobbi Nissim and Brent Waters,
editors, Theory of Cryptography - 19th International Conference, TCC 2021, Raleigh, NC,
USA, November 8-11, 2021, Proceedings, Part I, volume 13042 of Lecture Notes in Computer
Science, pages 623-653. Springer, 2021. doi:10.1007/978-3-030-90459-3_21.

Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in the presence of
partial synchrony. J. ACM, 35(2):288-323, 1988. doi:10.1145/42282.42283.

Fatima Elsheimy, Giorgos Tsimos, and Charalampos Papamanthou. Deterministic byzantine
agreement with adaptive O(n - f) communication. In David P. Woodruff, editor, Proceedings
of the 2024 ACM-SIAM Symposium on Discrete Algorithms, SODA 202/, Alexandria, VA,
USA, January 7-10, 2024, pages 1120-1146. STAM, 2024. doi:10.1137/1.9781611977912.43.
Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander Spiegelman, and Zhuolun
Xijang. Jolteon and ditto: Network-adaptive efficient consensus with asynchronous fallback.
ArXiv, abs/2106.10362, 2021. arXiv:2106.10362.

Yuval Gelles and Ilan Komargodski. Scalable agreement protocols with optimal optimistic
efficiency. In Security and Cryptography for Networks - 14th International Conference, SCN
2024, Amalfi, Italy, September 11-13, 2024, Proceedings, Part I, volume 14973 of Lecture Notes
in Computer Science, pages 297-319. Springer, 2024. doi:10.1007/978-3-031-71070-4_14.
Vassos Hadzilacos and Joseph Y. Halpern. Message-optimal protocols for byzantine agreement.
Math. Syst. Theory, 26(1):41-102, 1993. doi:10.1007/BF01187074.

Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros:
A provably secure proof-of-stake blockchain protocol. Cryptology ePrint Archive, Report
2016/889, 2016. URL: https://eprint.iacr.org/2016/889.

Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem.
Transactions on Programming Languages and Systems (TOPLAS), 4(3):382-401, 1982. doi:
10.1145/357172.357176.

Andrew Lewis-Pye, Joachim Neu, Tim Roughgarden, and Luca Zanolini. Accountable liveness.
arXiv preprint arXiv:2504.12218, 2025.

Atsuki Momose and Ling Ren. Multi-threshold byzantine fault tolerance. In CCS 721,
Virtual Fvent, Republic of Korea, November 15 - 19, 2021, pages 1686-1699. ACM, 2021.
doi:10.1145/3460120.3484554.

S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.
pdf, 2008.

A. W. Roscoe. Understanding Decentralised Systems: Fundamentals and Blockchain. Springer,
2026 (to appear).


https://doi.org/10.1145/3583668.3594567
https://doi.org/10.4230/LIPICS.OPODIS.2022.18
https://doi.org/10.1145/3548606.3559375
https://doi.org/10.1109/ICDCSW56584.2022.00018
https://doi.org/10.1007/978-3-030-90459-3_21
https://doi.org/10.1145/42282.42283
https://doi.org/10.1137/1.9781611977912.43
https://arxiv.org/abs/2106.10362
https://doi.org/10.1007/978-3-031-71070-4_14
https://doi.org/10.1007/BF01187074
https://eprint.iacr.org/2016/889
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/3460120.3484554
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

P. Antonino, A. Durand, and A. W. Roscoe

25 A. W. Roscoe, Pedro Antonino, and Jonathan Lawrence. The Consensus Machine: Formalising
Consensus in the Presence of Malign Agents, pages 136—162. Springer Nature Switzerland,
Cham, 2023. doi:10.1007/978-3-031-40436-8_6.

26 A. W. Roscoe, Pedro Antonino, and Jonathan Lawrence. Abstracting and Verifying De-
centralised Systems in CSP, pages 172-202. Springer Nature Switzerland, Cham, 2024.
doi:10.1007/978-3-031-67114-2_8.

27  G. Wood. Ethereum: A secure decentralised generalised transaction ledger. http://gavwood.

com/Paper . pdf.

A Impossibility Theorem for Justifiability

Before stating our proof, we add some slight precisions to our execution model. An execution
E of the protocol P is represented by a potentially infinite list of events. Events in E
are accessed by an index i € N, that we also call point or instant. An event may be one
of the following: sending/reception of a message by some agent (Byzantine or not), local
input/output to P by some honest agent, and the emission of a tick event measuring the
passage of time. We say that E can be completed into another execution E’ at a point i € N
if E and E’ are both executions of P and for k < 4, their kth events are equal. We call an
execution terminating if some honest agent makes an output. We say that a pre-decision
exists in an execution F, if there is a point 4 in that execution where all completions of F
from ¢ that terminate decide the same value vg.

» Theorem 9. Let HY be a protocol that takes as a parameter an input protocol P, and
the nodes in Ay, must only execute P. P is also allowed to send external messages, e.g., to
agents in Ay, and those messages are implicitly sent to A, as well. If HY is a handover
protocol, then we can build a protocol P’ that is exactly P with the addition of local output,
such that P' must eventually output a proof that there exists a pre-decision value.

Proof. Without loss of generality, we will consider H” to be a protocol with a single agent
in A; that is always honest. This is possible because, if there cannot be a handover from P
using a trusted party, then no handover protocol such as H” can exist. We name the agent
a; € A,
Assume that there is an execution X of P, where:
1. No honest agent ever makes an output in X.
2. At any point i in X, X can be completed into two other executions X¢ and X7, such that
in X} and X7, all honest agents outputs vy (respectively, v1), and vg # vy.
Then, in an execution of H” where P is running X, H” must eventually output a value vy,
at some point ¢ in X. At that point, X can be completed into X} or X;f, with j € {0,1} such
that vy, # v;. This is a violation of Consistency for H P therefore such X does not exist.
The non-existence of X can be precisely stated as follows: For all executions E of P,
either
1. Some honest agent a eventually makes an output in F.
2. There is a point i in E, such that for all pairs of completions of E E§ and Ei, either one
of those do not make an output, or they output the same value v.
This can be simplified to say that the following statement holds: for all of P’s executions
E, if E does not terminate, then there is a point ¢ in E such that all completions of E
from ¢ that do terminate must all output the same value noted vg, i.e. all non terminating
executions have a pre-decision. Because all terminating executions have a pre-decision, we
conclude that all executions have a pre-decision.

6:19

DISC 2025


https://doi.org/10.1007/978-3-031-40436-8_6
https://doi.org/10.1007/978-3-031-67114-2_8
http://gavwood.com/Paper.pdf
http://gavwood.com/Paper.pdf

6:20

Hierarchical Consensus: Scalability Through Optimism and Weak Liveness

We have shown that P must reach a state where a pre-decision exists, but we have not
shown that honest nodes must know when that has happened. We do so below.

Consider an execution E of P, and let ¢ be the earliest instant (i.e. the smallest index) in
E when there is a pre-decision noted vg. Because of Liveness, a; have to eventually output a
value v, let j be the instant when that happens. If j < i, then there is either no pre-decision
at that instant, or there is a completion from j with a different decision. Both statements
imply that there is an additional completion of E from j that output a different values
v’ # vg. Either v/ # v or vg # v, hence one of those executions creates a contradiction with
consistency. Therefore, j > 1.

In other words, for all executions F, a; will eventually know that a pre-decision exists.
Building P’ is therefore trivial: Run a;’s code along with P. Whenever a; outputs a value,
we are guaranteed that a pre-decision exists. The messages fed to a;’s code constitute the
proof of this fact, |



	1 Introduction
	2 Related Work
	3 Background
	3.1 Agreement protocols

	4 Hierarchical Consensus: a framework for scalable BFT agreement
	4.1 Hierarchical consensus
	4.2 Handover
	4.3 Justifiable protocol

	5 Instantiating a hierarchical consensus protocol
	5.1 Handover construction
	5.2 Partially synchronous JRBC (psync-JRBC)
	5.3 Putting it all together

	6 Conclusion
	A Impossibility Theorem for Justifiability

