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Abstract
We give new, improved bounds for approximating the sparsest cut value or in other words the
conductance ϕ of a graph in the CONGEST model. As our main result, we present an algorithm
running in O(log2 n/ϕ) rounds in which every vertex outputs a value ϕ̃ satisfying ϕ ≤ ϕ̃ ≤

√
2.01ϕ.

In most regimes, our algorithm improves significantly over the previously fastest algorithm for
the problem [Chen, Meierhans, Probst Gutenberg, Saranurak; SODA 25]. Additionally, our result
generalizes to k-way conductance.

We obtain these results, by approximating the eigenvalues of the normalized Laplacian matrix
L := I − Deg−1/2 A Deg−1/2, where, A is the adjacency matrix and Deg is the diagonal matrix with
the weighted degrees on the diagonal. We show our algorithms are near-optimal by proving a lower
bound for computing the smallest non-trivial eigenvalue of L, even in the stronger LOCAL model

The previous state of the art sparsest cut algorithm is in the technical realm of expander
decompositions. Our algorithms, on the other hand, are relatively simple and easy to implement. At
the core, they rely on the well-known power method, which comes down to repeatedly multiplying
the Laplacian with a vector. This operation can be performed in a single round in the CONGEST
model.

All our algorithms apply to weighted, undirected graphs. Our lower bounds apply even in
unweighted graphs.
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1 Introduction

A graph cut is a partition of the vertices into two disjoint subsets, where the size of the cut
is the total number of edges crossing between them, and the sparsity of the cut measures
how small this cut is relative to total edge weight of the smaller side, i.e., in comparison
to the sum of its vertex degrees. Graph cuts are a central object in theoretical computer
science and algorithm design. Cuts are especially important in communication networks
because they represent the capacity for information to flow between different parts of the
system. A sparse cut – where only a few edges connect two large subsets – can become a
bottleneck, severely limiting bandwidth or throughput. A central question for guaranteeing
the performance of network algorithms is to determine the minimum sparsity of cuts in
a given communication network. For example the runtime of the famous PUSH-PULL
protocol depends on the sparsest cut value [11]. More generally, graphs without sparse cuts
support fast mixing of random walks [20], and enable efficient routing due to their strong
connectivity [9, 10]. This motivates the use of expander decompositions, which partition a
graph into high-conductance clusters (i.e, no sparse internal cuts), and sparse inter-cluster
connections. Such decompositions are powerful algorithmic tools: thanks to efficient routing,
many algorithms run significantly faster on high-conductance subgraphs, allowing problems
to be solved locally within clusters before handling the sparse inter-cluster parts.

In this work, we present simple, time and bandwidth efficient distributed algorithms to
approximate the sparsest cut value. Our randomized algorithms run in the classic CONGEST
model of distributed computing where a communication network is abstracted as an n-
vertex graph with vertices being computing entities and edges serving as bandwidth-limited
communication links. Communication happens in synchronous rounds, in each of which each
vertex can send a O(log n)-bit message to each of its neighbors and the complexity measure
is the number of communication rounds until the vertices have computed their outputs, e.g.,
until they have output an approximate value of the sparsest cut.

Formally, the sparsity of a set (or cut) S ⊆ V in a graph G = (V, E) is defined as as

ϕ(S) := |E(S, V \ S)|
min{Vol(S), Vol(V \ S)} ,

where the volume Vol(S) of a set of vertices S is the sum of of the degrees of the vertices in
the set

∑
v∈S deg(v). The value ϕ(S) is also known as the conductance of the set S. The

sparsest cut ϕ(G) ∈ [0, 1] of a graph G is the minimum sparsity of a subset S ⊆ V . This is
also known as the conductance of the graph.

The relative notion ϕ(G) can be viewed as a normalized quantification of cut size. In
contrast to computing minimum cuts, which quantify the absolute size of a cut, determining
the sparsest cut or the conductance is not only NP-complete [17] but also APX-hard under
the unique games conjecture [6]. Consequently, although no polynomial-time algorithm can
approximate the optimum arbitrarily well (unless P = NP ), a variety of approximation
algorithms with provable – albeit weaker – guarantees have been developed across different
computational models. Next, we present our results and compare them with the state of the
art in the field. As the sparsest cut and the conductance have been extensively studied we
provide further background and related work in the full version.
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2 Our Contribution on Sparsest Cut Approximation

Our first result is an efficient CONGEST algorithm to approximate the sparsest cut.

▶ Theorem 1. There is a randomized CONGEST algorithm that, given an undirected weighted
n-node graph with sparsest cut ϕ, w.h.p. gives an approximation of the sparsest cut in
O(log2 n/ϕ) rounds. In particular, every vertex outputs ϕ̃ such that ϕ ≤ ϕ̃ ≤

√
2.01ϕ.

In general, there are two approaches for developing approximation algorithms for the sparsest
cut, the flow approach, that we detail in the full version, and the spectral approach, which we
use to prove Theorem 1. On a high-level, one computes the spectrum (or parts of it) of the
graph, i.e., its eigenvalues, and then uses Cheeger’s Inequality2 to derive an approximation
of ϕ(G) from the eigenvalues. Due to the limitations imposed by Cheeger’s Inequality, the
best possible approximation achievable through spectral methods is

√
2ϕ. Our technical

result is slightly stronger than Theorem 1. In fact, we can attain this theoretical bound – up
to an arbitrarily small additive error – in O(log2 n/ε2 + log n/ε4) rounds. See the proof of
Theorem 1 for the details.

For unweighted graphs, we compare our result against the previously best algorithm
by Chen, Meierhans, Probst Gutenberg, and Saranurak that provides a O(ϕ log2 n)-
approximation of ϕ [7]3. Our approximation is more precise than [7] when ϕ = Ω(1/ log4 n),
and is faster in all cases: [7] takes O(poly log n/ϕ4) rounds. Upon inspection of their
poly log n, they have a total round complexity of at least O(log20 n) in the regime where
their approximation is better.

Prior to [7], Das Sarma, Molla, and Pandurangan [19] gave a different algorithm to
approximate the sparsest cut, which also works for weighted graphs. They computed an
O(
√

ϕ poly log n)-approximation in O( 1
b (n + 1

ϕ ) log2 n) rounds if the graph has a sparse cut
of balance b, i.e., both sides S of the cut satisfy Vol(S) ≥ 2b|E|. Building on the methods of
[19], Kuhn and Molla improved the approximation ratio to O(

√
ϕ log n) and the runtime to

O(D + log2 n
bϕ ) [14]. For balanced cuts b = Ω(1), we improve their approximation ratio by a

factor
√

log n, while matching their running time. For unbalanced cuts, also their algorithm
can take as much as Ω(n2) time, so we do not only improve the approximation ratio, but
also the running time exponentially.

k-Way Sparsest Cut. There exists a natural generalization of the sparsest cut to multi-
cuts [15]: the k-way sparsest cut or k-way conductance ϕk is defined follows:

ϕk := min
V1,V2,...,Vk⊂V

max
i=1,...,k

|E(Vi, V \ Vi|
Vol(Vi)

,

where the minimum is taken over disjoint, non-empty Vi. Note that ϕ2 = ϕ. The k-way
conductance captures how well-connected a graph is across multiple parts; it can describe
multi-partition bottlenecks, which standard conductance may miss. This is in particular
relevant for real-world networks that usually consists of multiple clusters.

We prove the following theorem for approximating the k-way sparsest cut.

2 Cheeger’s Inequality [2, 1, 21] relates the second-smallest eigenvalue λ2 of the normalized Laplacian to
the graph’s conductance ϕ, showing that 1

2 λ2 ≤ ϕ ≤
√

2λ2.
3 They do not state this result explicitly, but they implement the cut-matching game from [18] (see

Appendix A) in the distributed setting. As stated in [18], this cut-matching game gives such an
approximation.

DISC 2025



60:4 Brief Announcement: Distributed Sparsest Cut via Eigenvalue Estimation

▶ Theorem 2. There is a randomized CONGEST algorithm that, given a constant k ≥ 2
and undirected weighted graph with k-way sparsest cut ϕk, w.h.p. gives an approximation of
the k-way sparsest cut in O(log2 n poly(ϕ−1

k )) rounds. In particular, every vertex outputs ϕ̃k

such that ϕk ≤ ϕ̃k ≤ O(
√

ϕk).

To the best of our knowledge, we are the first to study the k-way conductance in the
distributed setting.

Lower bounds on approximating sparse cuts. Generally, it is known that approximating
the sparsest cut takes Ω(D) rounds. In particular, Das Sarma, Molla, and Pandurangan [19]
show a Ω̃(D +

√
n) CONGEST lower bound for any multiplicative approximation in weighted

graphs. They reduce the spanning connected subgraph problem to a sparsest cut instance
with edge weights that are either 0 or 1. This means that the lower bound shows that it
is hard to decide whether ϕ = 0 holds or not. For ϕ bounded away from zero, there is no
such lower bound. Our upper bound of O(log2 n/ϕ) rounds, Theorem 1, indeed takes D

rounds, since D = O(log n/ϕ). However, for ϕ = ω(1/
√

n), the upper bound does not have a√
n-term.

We prove a Ω(D) lower bound that holds even for unweighted graphs and in the LOCAL
model. LOCAL is identical to CONGEST, except that there is no bound on the message size.
Even for a class of fixed diameter, any algorithm needs Ω(D) time for a O(n)-approximation.

▶ Theorem 3. Let D ≤ n/2 be a parameter and consider the class of graphs with diameter
D. An algorithm that with probability > 1

2 satisfies that every vertex v of a graph G outputs
a value ϕ̃v ≥ ϕ(G), for sparsest cut ϕ(G), and at least one vertex has ϕv ≤ Θ(n · ϕ) needs
Ω(D) rounds in LOCAL.

Note that the Ω(D) lower bound in Theorem 3 holds even in the case where only a single
vertex needs to witness the cut.

The above proof is about discerning graphs with sparsity 1/n and 1/n2. If every vertex
needs to output a correct estimation, a diameter lower bound exists for larger values of ϕ.

▶ Theorem 4. Let 0 < ε < 1 be a constant and let ϕ > 1/n1−ε. An algorithm that with
probability > 1

2 satisfies that every vertex v outputs a value ϕ̃v such that ϕ ≤ ϕ̃ ≤ O(n1+ε ·ϕ),
where ϕ is the sparsest cut value of the graph needs at least Ω(D) rounds in the LOCAL
model.

Our CONGEST upper bound for approximating the sparsest cut w.h.p. is O(log2 n/ϕ) – only
a factor log n away from optimal, since the graphs from the above observation have sparsest
cut ϕ and diameter Θ(log n/ϕ) [8]. We note that with constant probability, we match the
lower bound, see the full version for details.

3 Our Contributions on Spectrum Approximation

Our core technical contributions are efficient CONGEST algorithms to compute the approx-
imate (partial) spectrum of a graph. In essence, Theorems 1 and 2 then follow as direct
consequences via Cheeger’s Inequality. Nevertheless, we chose to present these theorems first,
as they are more accessible to a broader audience and can be compared with prior work.

Eigenvalues of the Normalized Laplacian. The normalized Laplacian of a graph is the
matrix defined as L := I −Deg−1/2 A Deg−1/2, where A is the adjacency matrix and Deg is
the (weighted) degree matrix. Its spectrum captures many central properties of the graph,
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e.g., various types of its connectedness like k-way conductance [15] and small set expansion [3],
or how close it is to being bipartite [4, 16]. We provide the following theorem to compute an
approximation of that spectrum.

▶ Theorem 5 (Eigenvalue estimation). Let ε > 0 be a parameter and k ∈ N be a con-
stant. There are randomized CONGEST algorithms that, given an undirected, weighted graph
G = (V, E), with high probability approximate the eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn of the
graph’s normalized Laplacian as follows:
1. λ1, . . . , λk: an additive ε-approximations in O(log2 n · poly(ε−1)) rounds,
2. λ2: an additive ε-approximation in O

(
log2 n

ε + log n
ε ·

⌈
λ2
ε

⌉)
= O

(
log2 n

ε + log n
ε2

)
rounds,

3. λn: a multiplicative (1± ε)-approximation in O
(

D + log2 n
ε

)
rounds.

Eigenvalue λ2 is the eigenvalue approximating the sparsest cut via Cheeger’s Inequality. It
could either be approximated via the second algorithm, or slightly slower via the first.

For the smaller eigenvalues, Theorem 5 states additive approximations avoiding the
diameter dependence, e.g., when ε is an arbitrarily small constant Theorem 5 approximates
λ2 in O(log2 n) rounds even though the diameter may be up to linear in n.

As ε can be arbitrary in Theorem 5, we can obtain multiplicative approximations by
setting ε = ε′λ2 for any ε′ > 0. However, this does not circumvent the diameter lower bound
of Theorem 6 presented below. D = O(log n/λ2) holds for any graph, so the diameter term
is then always asymptotically smaller than the overall runtime of the algorithm.

To the best of our knowledge, the only prior distributed eigenvalue computation is
via computing a spectral sparsifier, i.e., a sparse subgraph H with Õ(n/ε2) edges that
approximately preserve the graph’s spectrum. Next, the sparsifier H can be gathered at
one vertex of the graph that can locally compute the eigenvalues of H and hence obtain
approximations of all eigenvalues of G. Computing H is actually relatively fast and only
requires poly(log n, ε−1) rounds [13]. Collecting H at a single vertex is the expensive part,
requiring Õ(n/ε2) rounds. This is exponentially slower than Theorem 5, though this more
general method immediately computes the full spectrum while we focus on single eigenvalues.

We note that all our upper bounds even hold in the more restricted Broadcast CONGEST
model in which a vertex needs to send the same message to all of its neighbors in each round.
All our algorithms become a log n-factor faster if we only ask for constant probability as
typical in property testing, see the discussion in the full version.

Lower Bound. All of our multiplicative upper bounds take diameter time. This means
that at the end of the algorithm, every vertex can easily output the same eigenvalue or
sparsest cut estimate. One may ask whether one can obtain faster algorithms if the output
is more local. Perhaps every vertex outputs the sparsest cut it sees in some neighborhood,
and there is a guarantee that at least one vertex will see an approximately sparsest cut. In
Theorem 3, we showed that this is not true for sparsest cut approximation. We also show
that approximating λ2 at even one node requires Ω(D) rounds.

▶ Theorem 6. Any algorithm that with probability > 1
2 ensures that all vertices output a

value λ̃2 ≥ λ2, and at least one vertex additionally satisfies λ̃2 ≤ 2λ2 requires Ω(D) rounds.

An Ω(D) lower bound could also follow from our sparsest cut lower bounds via Cheeger’s
Inequality, but such an approach incurs an inherent quadratic loss due to the approximation
gap in Cheeger’s.

DISC 2025
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4 Techniques: The Power Method

As mentioned, Theorems 1 and 2 follow as direct consequences from our eigenvalue estimation
results via Cheeger’s Inequality. Here, we focus on our core technical contribution: efficient
CONGEST algorithms to compute the approximate (partial) spectrum of a graph. The main
ingredient of our algorithms is the well-known power method for approximating the largest
eigenvalue of a matrix. Let M be any matrix. The power method, also known as power
iteration or Von Mises iteration, starts with a random vector and converges to the eigenvector
corresponding to the largest eigenvalue of M . It is a standard technique in numerical linear
algebra, see, e.g., [12]. The procedure is as follows:

Power Method

1: Input: Matrix M ∈ Rn×n, number of iterations k.
2: Initialize: A random vector x0 ∈ Rn.
3: for i = 1 to k do
4: xi ←Mxi−1.
5: Output:

Approximate dominant eigenvalue: λ ≈ xT
k Mxk

xT
k

xk
;

Approximate dominant eigenvector: xk.

With constant probability over the randomness of the start vector x0, the power method
outputs a vector xk whose Rayleigh coefficient xT

k Mxk

xT
k

xk
is close to the largest eigenvalue of

the matrix M . In the full version, we provide both intuition and a formal proof.
In community detection, [5] used an algorithm that is in the same spirit as the power

method but not entirely equal. In case of a sufficiently small balanced cut, and some
additional technical assumptions, they can provide an approximate sparsest cut. Since the
approximation factor depends on the technical assumptions, we will not state their exact
guarantees here.

In the full version, we describe the power method in detail, provide a proof, and discuss
the challenges of implementing it in a distributed setting.
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