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Abstract
We consider an asynchronous network of n message-sending parties, up to t of which are byzantine.
We study approximate agreement, where the parties obtain approximately equal outputs in the convex
hull of their inputs. In their seminal work, Abraham, Amit and Dolev [OPODIS ’04] solve this problem
in R with the optimal resilience t < n

3 with a protocol where each party reliably broadcasts a value in
every iteration. This takes Θ(n2) messages per reliable broadcast, or Θ(n3) messages per iteration.

In this work, we forgo reliable broadcast to achieve asynchronous approximate agreement against
t < n

3 faults with quadratic communication. In a tree with the maximum degree ∆ and the centroid
decomposition height h, we achieve edge agreement in at most 6h + 1 rounds with O(n2) messages of
size O(log ∆ + log h) per round. We do this by designing a 6-round multivalued 2-graded consensus
protocol and using it to recursively reduce the task to edge agreement in a subtree with a smaller
centroid decomposition height. Then, we achieve edge agreement in the infinite path Z, again with the
help of 2-graded consensus. Finally, we show that our edge agreement protocol enables ε-agreement
in R in 6 log2

M
ε

+ O(log log M
ε

) rounds with O(n2 log M
ε

) messages and O(n2 log M
ε

log log M
ε

) bits
of communication, where M is the maximum non-byzantine input magnitude.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Approximate agreement, byzantine fault tolerance, communication complexity

Digital Object Identifier 10.4230/LIPIcs.DISC.2025.61

Related Version Full Version: https://arxiv.org/abs/2408.05495 [10]

1 Introduction

We consider a fully connected asynchronous network of n message-passing parties P1, . . . , Pn.
Up to t of these parties are corrupted in a byzantine manner, while the rest are honest.

In an approximate (convex) agreement problem, the parties output approximately equal
values in the convex hull of their inputs. The most classical example is approximate agreement
in R, where the inputs/outputs are in R, and for some parameter ε > 0 the following hold:

validity: Each honest party output is between the minimum and maximum honest inputs.
ε-agreement: If any honest parties Pi and Pj output yi and yj , then |yi − yj | ≤ ε.

Approximate agreement in R was introduced in 1985 by Dolev, Lynch, Pinter, Stark and
Weihl [8]. Like byzantine agreement, in synchronous networks it is possible against t < n

2 faults
with setup [12], but only possible when t < n

3 if the network is asynchronous [1] or if perfect
(signature-free) security is desired [8]. What sets approximate agreement apart is that it is
determinism-friendly. While deterministic byzantine agreement takes t+1 rounds in synchrony
[7] and is impossible against just one crash in asynchrony [11], approximate agreement does not
share these limitations. Thus, approximate agreement protocols are customarily deterministic.

In [8], Dolev et al. achieve ε-agreement in R with a perfectly secure synchronous protocol
secure against t < n

3 corruptions. Simplifying things slightly, in their protocol the parties
estimate the spread S of their inputs (the maximum difference between any two inputs), and
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run for ⌈log2
S
ε ⌉ rounds. In each round each party sends its value to every other party, and

with this the parties halve the diameter of their values. After ⌈log2
S
ε ⌉ rounds, the spread is

at most 2−⌈log2(S/ε)⌉ ≤ ε
S of what it initially was, and thus ε-agreement is achieved. They

present an asynchronous version of this protocol as well, but only with the resilience t < n
5

as the parties can no longer wait to receive the value of each honest party in every iteration.
Asynchronous approximate agreement in R with the optimal resilience t < n

3 was first
achieved in 2004 by Abraham, Amit and Dolev [1], with a protocol that consists of O(log S

ε )
constant-round iterations. Each iteration involves one witness technique application where
each party reliably broadcasts its current value in R (with a reliable broadcast protocol such
as Bracha’s [5]), and obtains at least n− t reliably broadcast values. The technique ensures
that every two parties obtain the values of at least n−t common parties. Since the technique’s
introduction in [1], most asynchronous approximate agreement protocols have depended on
it. Some examples are [1, 12] for agreement in R, [14] for agreement in Rd when d ≥ 2 and
[15] for agreement in graphs (trees, chordal graphs, cycle-free semilattices). Note that this
list is not exhaustive; we mention some other examples in the full version [10].

The witness technique requires the parties to reliably broadcast their inputs. Since reliable
broadcast requires Ω(n2) messages for deterministic [9] or strongly adaptive [2] security
against t = Ω(n) faults, the witness technique requires Ω(n3) messages to be sent. Hence, the
optimally resilient approximate agreement protocol of Abraham, Amit and Dolev [1] costs
Θ(n3) messages per iteration. This is the case despite asynchronous approximate agreement
being possible with Θ(n2) messages per iteration, as demonstrated by the protocol of Dolev
et al. [8] which suboptimally tolerates t < n

5 faults. Therefore, we ask the following question:
Is there an asynchronous approximate agreement protocol that optimally tolerates t < n

3 faults
with only a quadratic (proportional to n2) amount of communication?

In this work, we answer this question affirmatively by abandoning the witness technique.
First, we achieve edge agreement (a discrete form of approximate agreement) in finite trees
[15] with the optimal resilience t < n

3 via multivalued 2-graded consensus iterations. Then,
we extend our protocol to achieve edge agreement in the infinite path Z. Finally, we show that
edge agreement in Z implies ε-agreement in R by reducing the latter to the former. Our final
protocol for ε-agreement in R takes 6 log2

M
ε +O(log log M

ε ) rounds (where M is the maximum
honest input magnitude), with O(n2) messages of size O(log log M

ε ) sent per round.
Our work is inspired by [13], which achieves exact convex agreement in Z with byzantine

agreement iterations in a synchronous network. We instead achieve edge agreement in Z with
graded consensus, which is much simpler than byzantine agreement, especially in asynchronous
networks. Note though that [13] supports large inputs with less communication than us.

2 Model & Definitions

We consider an asynchronous network of n message-sending parties P1, P2, . . . , Pn, fully
connected via reliable and authenticated channels. An adversary corrupts up to t < n

3 parties,
making them byzantine, and these parties become controlled by the adversary. The adversary
adaptively chooses the parties it wants to corrupt during protocol execution, depending on
the messages sent over the network. If a party is never corrupted, then we call it honest.

The parties do not have synchronized clocks. The adversary can schedule messages as it
sees fit, and it is only required to eventually deliver messages with honest senders. If a party
sends a message, then the adversary may corrupt the party instead of delivering the message.

To define asynchronous round complexity, we imagine an external clock. If a protocol runs
in R rounds, then the time elapsed between when every honest party running the protocol
knows its input and when every honest party outputs/terminates is at most R∆, where ∆ is
the maximum honest message delay in the protocol’s execution.
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Edge Agreement in a Tree
In edge agreement in a tree graph T = (V, E), each party Pi acquires an input vertex vi ∈ V ,
and outputs a vertex yi ∈ V . We want the following properties:

edge agreement: Every two honest output vertices are either equal or adjacent in T .
convex validity: For every honest output y, there exist some (possibly equal) honest
inputs vy and v′

y such that y is on the path which connects vy and v′
y in T .

Edge agreement in a tree generalizes edge agreement in a path, which is essentially the
same task as approximate agreement in an interval in R, but with the input/output domain
restricted to the integers (with adjacent integers representing adjacent path vertices).

Graded Consensus
In k-graded consensus, each party Pi acquires an input vi in an input domainM, and outputs
some value-grade pair (yi, gi) ∈ (M×{1, . . . , k}) ∪ {(⊥, 0)}. The following must hold:

agreement: If any honest parties Pi and Pj output (yi, gi) and (yj , gj), then |gi−gj | ≤ 1,
and if min(gi, gj) ≥ 1, then yi = yj .
intrusion tolerance: If (y, g) ̸= (⊥, 0) is an honest output, then y is an honest input.
validity: If the honest parties have a common input m ∈M, then they all output (m, k).

As [3] has noted before, k-graded consensus is equivalent to edge agreement in a particular
tree when the inputs must all be leaves of the tree.

(a, 2) (a, 1) (⊥, 0)

(b, 1)

(b, 2)

(c, 1) (c, 2)

Figure 1 Edge agreement in a spider tree with the center (⊥, 0) and a path ((m, 1), . . . , (m, k))
attached to it for each m ∈ M is equivalent to k-graded consensus when the parties can only have leaf
edge agreement inputs, with each leaf input (m, k) in bijection with the k-graded consensus input m.

In the full version [10], we construct a family of multivalued 2k-graded consensus protocols
GC20 , GC21 , GC22 , . . . which each take 3k + 3 rounds, with O(n2) messages of size O(log k +
log |M|) per round. These are the most efficient multivalued graded consensus protocols we
are aware of. In the full version we make use of the 6-round 2-graded consensus protocol GC2,
while in this brief announcement we present a simplified approximate agreement protocol
that uses 3-graded consensus, which the parties can reach by running the 9-round 4-graded
consensus protocol GC4 and subtracting 1 from their output grades if they obtain the grade 4.

3 Overview & Contributions

Our first contribution is a protocol for edge agreement in finite trees. Against byzantine
faults, this problem was first studied by Nowak and Rybicki [15]. It generalizes both edge
agreement in finite paths (the discrete version of ε-agreement in [0, 1]) and graded consensus.

Nowak and Rybicki achieve edge agreement in a finite tree T = (V, E) of diameter D with
⌈log2 D⌉+1 constant-round witness technique iterations and thus Θ(n3 log D(log |V |+log n))
bits of communication, where the log n term is due to the party IDs that identify each reliable

DISC 2025
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broadcast’s sender party. Meanwhile, we achieve edge agreement with at most h(T ) iterations
(6h(T ) + 1 rounds), where h(T ) (T ’s centroid decomposition [16] height) is a property we
define in the full version [10]. The integer value h(T ) can be anywhere in [⌊log2 D⌋, ⌈log2 |V |⌉],
which means that our protocol’s round complexity is for some trees (though not for spider
trees, trees with O(D) vertices etc.) worse than Nowak and Rybicki’s. However, our iterations
only cost O(n2) messages, each of size at most O(log ∆+log(h(T ))) where ∆ is T ’s maximum
degree. So, our protocol requires roughly n times less communication when h(T ) ≈ log2 D.

In the full version [10], we present a parametrized recursive protocol TC(T ) that achieves
edge agreement in any given finite tree T . On a high level, it works as follows:
1. If T has 1 or 2 vertices, then each party outputs its input vertex. This is the base case.
2. If T has s ≥ 3 vertices, then the parties let σ be a centroid vertex of T (whose deletion from

T results in a forest whose components all have at most s/2 vertices), and let w1, . . . , wd

be σ’s neighbors sorted by vertex index. Then, they run 2-graded consensus, where each
party’s input is either σ (if its edge agreement input is σ) or some neighbor wk of σ (if its
edge agreement input is in Hk, which is how we refer to the tree component of T \{σ} that
contains wk). If the parties reach consensus on σ, then they output σ. Otherwise, if they
reach consensus on some neighbor wk of σ, then the parties with input vertices outside Hk

adopt the new input wk, and we reduce the task to edge agreement in the subtree Hk.

There is a snag. The explanation above only works if the parties actually reach unanimous
agreement on either σ or on one of its neighbors wk. However, 2-graded consensus does not
guarantee this, since some parties might output (⊥, 0) from it. What allows us to overcome this
issue is that if anybody outputs (⊥, 0), then the parties all learn that they ran 2-graded consen-
sus with differing inputs, and thus learn that σ is a safe output vertex w.r.t convex validity.

Our approach for finite trees above corresponds to binary search when the tree is a path.
For example, the parties reach edge agreement in the path (0, . . . , 8) by either directly agreeing
on 4, or by reducing the problem to edge agreement in either (0, . . . 3) or (5, . . . , 8). Binary
search does not support the infinite path Z. Fortunately, 2-graded consensus also enables
exponential search. In the full version [10], we present a protocol for edge agreement in Z where
we use 2-graded consensus to implement a strategy based on (doubly) exponential search.

When the maximum honest input magnitude is M , our protocol for edge agreement in Z
takes 6 log2 M +O(log log M) rounds, with O(n2) messages of size O(log log M) per round.
In the full version [10], we reduce ε-agreement in R to edge agreement in Z to show that this
implies ε-agreement in R in 6 log2

M
ε +O(log log M

ε ) rounds with O(n2 log M
ε ) messages and

O(n2 log M
ε log log M

ε ) bits of communication in total. Note that the factor 6 in the round
complexity here stems from us using our 6-round 2-graded consensus protocol.

In terms of message and communication (though not round) complexity, our protocol for ε-
agreement in R is more efficient than that of Abraham et al. [1], who achieve ε-agreement in R
with O(log S

ε ) constant-round witness technique iterations (where S is the honest input spread,
i.e. the maximum difference of any honest inputs), and with Θ(n3 log S

ε ) messages in total.
Another notable protocol is Delphi, by Bandarupalli, Bhat, Bagchi, Kate, Liu-Zhang and

Reiter [4]. To efficiently achieve ε-agreement with ℓ-bit inputs in R, they assume an input
distribution (normal distribution for the following), and when the honest input spread is S

they achieve ε-agreement except with probability 2−λ in O(log( S
ε log S

ε )+log(λ log n)) rounds
with O(ℓn2 S

ε (log( S
ε log D

ε ) + log(λ log n))) bits of communication, while relaxing validity by
allowing outputs outside the range of the honest inputs by at most S. They use the security
parameter λ here to assume bounds on S that hold except with 2−λ probability thanks to their
input distribution assumptions. In comparison, we achieve ε-agreement in R without relaxing
validity or assuming any input bounds. As Table 1 shows, our protocol is also more efficient, in
particular since Delphi requires a cubic amount of communication per round when S ≥ n · ε.
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Table 1 Comparison of protocols for asynchronous ε-agreement in R when the parties have inputs
in [0, 1]. If vlo and vhi are the minimum and maximum honest inputs, then S = vhi − vlo and M = vhi.
To make the comparisons simple, we assume for [8], [1] and [4] that the inputs are all multiples of ε.

Threshold Bits Sent / Round Round Complexity Relaxationa Source
t < n

5 O(n2 log 1
ε
) ⌈log2

1
ε
⌉ 0 [8]

t < n
3 O(n3 log n

ε
)b O(log S

ε
) 0 [1]

t < n
3 O(n2 min( S

ε
, n log 1

ε
)) O(log( log(1/ε) min(1/ε,n)

ε
)) S [4]

t < n
3 O(n2 log log M

ε
)c O(log M

ε
) 0 this work

a) The relaxation is how far an honest output is allowed to be from the honest input range [vlo, vhi].
b) The first few rounds of [1] estimate the spread S, and this costs Θ(n4 log 1

ε
) bits of communication.

However, this can be reduced to Θ(n3 log n
ε

) with modern reliable broadcast protocols [6].
c) The log log M

ε
factor here is for tags that distinguish messages sent in different protocol iterations.

4 Simplified Approximate Agreement in [0, 1]

In this section, we present a simplified ε-agreement protocol that is better suited for a brief
announcement than the more complicated full protocol in the full version [10]. While the
full protocol uses 2-graded consensus, the simplified protocol in this section uses 3-graded
consensus, which makes it less round-efficient since (with our graded consensus constructions)
3-graded consensus takes 9 rounds while 2-graded consensus takes 6. Moreover, the simplified
protocol only supports inputs in bounded intervals rather than inputs in R. Still, the protocols
share the same core idea, which is that the parties repeatedly bisect the interval where their
values reside by reaching graded consensus on whether their values are low or high.

In Apx(a, b), the parameterized approximate agreement protocol we present in this section,
the parties reach ε-agreement in an interval [a, b] by using 3-graded consensus to recursively
reduce ε-agreement in [a, b] to ε-agreement in either [a, a+b

2 ] (reached via Apx(a, a+b
2 )) or

[ a+b
2 , b] (reached via Apx(a+b

2 , v)). The parties reach 3-graded consensus on whether their
inputs are below the midpoint a+b

2 or not. If they all have inputs below (resp. above) a+b
2 , then

they unanimously agree that this is the case, and so they run Apx(a, a+b
2 ) (resp. Apx( a+b

2 , b))
to reach approximate agreement. Otherwise, a+b

2 is in the honest input range, and this fact lets
us assign an appropriate behavior to each 3-graded consensus output so that the parties reach
approximate agreement no matter which two 3-graded consensus outputs they settle on.

When the parties run Apx(0, 1) for ε-agreement in [0, 1], they reach the base case of a recur-
sive Apx(a, b) instance where b−a ≤ ε (where they can just output their inputs) with ⌈log2

1
ε⌉

recursive Apx calls, or in other words ⌈log2
1
ε⌉ iterations of 3-graded consensus. In total, this

costs 9⌈log2
1
ε⌉ rounds, O(n2 log 1

ε ) messages and O(n2 log 1
ε log log 1

ε ) bits of communication.
Here, we have a log log 1

ε factor because the parties have to be able to tell to which 3-graded
consensus iteration each message belongs to, and this requires O(log log 1

ε )-bit message tags.

Note that Apx does not allow the parties to terminate (stop sending messages) after they
output, since some parties not sending the messages they are supposed to send could lead to
some other parties never obtaining outputs. We address this shortcoming in the full version
[10] with a simple constant-round quadratic-complexity termination procedure.

DISC 2025
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Protocol Apx(a, b)

Code for a party Pi with the input vi

1: if b− a ≤ ε then
2: output vi and do not run the rest of the protocol
3: run an instance of a 3-graded consensus protocol GC3 with the other parties where

your input is LEFT if vi < a+b
2 , and RIGHT if vi ≥ a+b

2
4: wait until you output some (k, g) from GC3
5: if g = 3 then
6: let vnext

i ← min(vi,
a+b

2 ) if k = LEFT, and let vnext
i ← max(vi,

a+b
2 ) if k = RIGHT

7: else
8: vnext

i ← a+b
2

9: if g ≤ 1 then
10: output a+b

2

11: if k = LEFT then
12: run an instance Apx(a, a+b

2 ) with the other parties where your input is vnext
i

13: when you output y from Apx(a, a+b
2 ), output y from Apx(a, b) if g ≥ 2

14: else if k = RIGHT then
15: run an instance Apx( a+b

2 , b) with the other parties where your input is vnext
i

16: when you output y from Apx( a+b
2 , b), output y from Apx(a, b) if g ≥ 2

If the parties all run Apx(a, b) with inputs in [a, a+b
2 ), then each party Pi runs GC3 with

the input LEFT, outputs (LEFT, 3) from GC3, and obtains its final output from an Apx(a, a+b
2 )

instance (that everybody runs) where its input is vnext
i = vi. So, Apx(a, b)’s security recursively

follows from Apx(a, a+b
2 )’s security. Likewise, if the parties all run Apx(a, b) with inputs in

[ a+b
2 , b], then they recursively reach ε-agreement via Apx( a+b

2 , b).
On the other hand, if neither [a, a+b

2 ) nor [ a+b
2 , b] contain all inputs, then a+b

2 is a safe
output value w.r.t. validity. Knowing this, we can prove Apx(a, b)’s security via case analysis.

If the parties all output (LEFT, 3) or (LEFT, 2) from GC3, then they all run Apx(a, a+b
2 ) with

inputs in [a, a+b
2 ] and obtain their outputs from it. So, security follows from Apx(a, a+b

2 ).
Some parties (those with Apx(a, b) inputs above a+b

2 and those with the GC3 grade 2)
run Apx(a, a+b

2 ) with the input vnext
i = a+b

2 instead of vi. This is fine because a+b
2 is safe.

If the parties all output (LEFT, 2) or (LEFT, 1) from GC3, then they all run Apx(a, a+b
2 )

with the input a+b
2 , and thus all output a+b

2 from it. The parties with the GC3 grade 2
output a+b

2 from Apx(a, b) once they output this from Apx(a, a+b
2 ), while the ones with

the GC3 grade 1 output a+b
2 from Apx(a, b) directly after they obtain the GC3 grade 1.

If the parties all output (LEFT, 1) or (⊥, 0) from GC3, then they all directly output a+b
2

from Apx(a, b) after they output from GC3. Here, it does not matter that the parties with
the GC3 grade 1 run Apx(a, a+b

2 ) while the rest do not, because the parties with the GC3
grade 1 do not care about their Apx(a, a+b

2 ) outputs.
The cases where some parties obtain the GC3 value RIGHT are similar to the cases above.

Future Work. It remains open to design a protocol for ε-agreement in R that tolerates t < n
3

faults in O(log S
ε ) rounds (where S is the honest input spread) with quadratic communication.

We do not know of any such protocol for even synchronous networks, let alone asynchronous
ones. The classical synchronous protocol in [8] which at first seems to fit the bill in fact takes
as many rounds as the adversary desires because its round complexity scales with the spread
of all inputs, including fake byzantine ones. It would be a good first step to solve this issue.
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