Brief Announcement: Asynchronous Approximate
Agreement with Quadratic Communication

Mose Mizrahi Erbes &
ETH Ziirich, Switzerland
Roger Wattenhofer =
ETH Ziirich, Switzerland

—— Abstract

We consider an asynchronous network of n message-sending parties, up to t of which are byzantine.
We study approximate agreement, where the parties obtain approximately equal outputs in the convex
hull of their inputs. In their seminal work, Abraham, Amit and Dolev [OPODIS ’04] solve this problem
in R with the optimal resilience ¢ < % with a protocol where each party reliably broadcasts a value in
every iteration. This takes @(n2) messages per reliable broadcast, or 6(n3) messages per iteration.

In this work, we forgo reliable broadcast to achieve asynchronous approximate agreement against
t < % faults with quadratic communication. In a tree with the maximum degree A and the centroid
decomposition height h, we achieve edge agreement in at most 6h + 1 rounds with O(nz) messages of
size O(log A + log h) per round. We do this by designing a 6-round multivalued 2-graded consensus
protocol and using it to recursively reduce the task to edge agreement in a subtree with a smaller
centroid decomposition height. Then, we achieve edge agreement in the infinite path Z, again with the
help of 2-graded consensus. Finally, we show that our edge agreement protocol enables e-agreement
in R in 6log, % + O(loglog %) rounds with O(n?log %) messages and O(n?log % log log %) bits
of communication, where M is the maximum non-byzantine input magnitude.

2012 ACM Subject Classification Theory of computation — Distributed algorithms
Keywords and phrases Approximate agreement, byzantine fault tolerance, communication complexity
Digital Object Identifier 10.4230/LIPIcs.DISC.2025.61

Related Version Full Version: https://arxiv.org/abs/2408.05495 [10]

1 Introduction

We consider a fully connected asynchronous network of n message-passing parties Py, ..., P,.
Up to t of these parties are corrupted in a byzantine manner, while the rest are honest.

In an approximate (convex) agreement problem, the parties output approximately equal
values in the convex hull of their inputs. The most classical example is approximate agreement
in R, where the inputs/outputs are in R, and for some parameter € > 0 the following hold:

validity: Each honest party output is between the minimum and maximum honest inputs.

e-agreement: If any honest parties P; and P; output y; and y;, then |y; — y;| <e.

Approximate agreement in R was introduced in 1985 by Dolev, Lynch, Pinter, Stark and
Weihl [8]. Like byzantine agreement, in synchronous networks it is possible against ¢ < 7 faults
with setup [12], but only possible when ¢ < % if the network is asynchronous [1] or if perfect
(signature-free) security is desired [8]. What sets approximate agreement apart is that it is
determinism-friendly. While deterministic byzantine agreement takes t+1 rounds in synchrony
[7] and is impossible against just one crash in asynchrony [11], approximate agreement does not
share these limitations. Thus, approximate agreement protocols are customarily deterministic.

In [8], Dolev et al. achieve e-agreement in R with a perfectly secure synchronous protocol
secure against ¢ < % corruptions. Simplifying things slightly, in their protocol the parties
estimate the spread S of their inputs (the maximum difference between any two inputs), and

© Mose Mizrahi Erbes and Roger Wattenhofer;

licensed under Creative Commons License CC-BY 4.0
39th International Symposium on Distributed Computing (DISC 2025).
Editor: Dariusz R. Kowalski; Article No. 61; pp.61:1-61:7

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:mmizrahi@ethz.ch
https://orcid.org/0009-0009-9771-0845
mailto:wattenhofer@ethz.ch
https://orcid.org/0000-0002-6339-3134
https://doi.org/10.4230/LIPIcs.DISC.2025.61
https://arxiv.org/abs/2408.05495
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

61:2

B. Announcement: Async. Approx. Agreement with Quadratic Communication

run for [log, g] rounds. In each round each party sends its value to every other party, and
with this the parties halve the diameter of their values. After [log, §1 rounds, the spread is
at most 2~ log2(5/9)1 < < of what it initially was, and thus e-agreement is achieved. They
present an asynchronous version of this protocol as well, but only with the resilience ¢ < ¥
as the parties can no longer wait to receive the value of each honest party in every iteration.

Asynchronous approximate agreement in R with the optimal resilience ¢ < 5 was first
achieved in 2004 by Abraham, Amit and Dolev [1], with a protocol that consists of O(log g)
constant-round iterations. Each iteration involves one witness technique application where
each party reliably broadcasts its current value in R (with a reliable broadcast protocol such
as Bracha’s [5]), and obtains at least n — ¢ reliably broadcast values. The technique ensures
that every two parties obtain the values of at least n—t common parties. Since the technique’s
introduction in [1], most asynchronous approximate agreement protocols have depended on
it. Some examples are [1, 12] for agreement in R, [14] for agreement in R? when d > 2 and
[15] for agreement in graphs (trees, chordal graphs, cycle-free semilattices). Note that this
list is not exhaustive; we mention some other examples in the full version [10].

The witness technique requires the parties to reliably broadcast their inputs. Since reliable
broadcast requires 2(n?) messages for deterministic [9] or strongly adaptive [2] security
against t = Q(n) faults, the witness technique requires Q(n?) messages to be sent. Hence, the
optimally resilient approximate agreement protocol of Abraham, Amit and Dolev [1] costs
©(n?) messages per iteration. This is the case despite asynchronous approximate agreement
being possible with ©(n?) messages per iteration, as demonstrated by the protocol of Dolev
et al. [8] which suboptimally tolerates ¢ < % faults. Therefore, we ask the following question:
Is there an asynchronous approximate agreement protocol that optimally tolerates t < % faults
with only a quadratic (proportional to n?) amount of communication?

In this work, we answer this question affirmatively by abandoning the witness technique.
First, we achieve edge agreement (a discrete form of approximate agreement) in finite trees
[15] with the optimal resilience ¢ < % via multivalued 2-graded consensus iterations. Then,
we extend our protocol to achieve edge agreement in the infinite path Z. Finally, we show that
edge agreement in Z implies e-agreement in R by reducing the latter to the former. Our final
protocol for e-agreement in R takes 6log, % +0O(log log %) rounds (where M is the maximum
honest input magnitude), with O(n?) messages of size O(log log %) sent per round.

Our work is inspired by [13], which achieves exact convex agreement in Z with byzantine
agreement iterations in a synchronous network. We instead achieve edge agreement in Z with
graded consensus, which is much simpler than byzantine agreement, especially in asynchronous
networks. Note though that [13] supports large inputs with less communication than us.

2 Model & Definitions

We consider an asynchronous network of n message-sending parties Py, Ps, ..., P,, fully
connected via reliable and authenticated channels. An adversary corrupts up to t < 7 parties,
making them byzantine, and these parties become controlled by the adversary. The adversary
adaptively chooses the parties it wants to corrupt during protocol execution, depending on
the messages sent over the network. If a party is never corrupted, then we call it honest.

The parties do not have synchronized clocks. The adversary can schedule messages as it
sees fit, and it is only required to eventually deliver messages with honest senders. If a party
sends a message, then the adversary may corrupt the party instead of delivering the message.

To define asynchronous round complexity, we imagine an external clock. If a protocol runs
in R rounds, then the time elapsed between when every honest party running the protocol
knows its input and when every honest party outputs/terminates is at most RA, where A is
the maximum honest message delay in the protocol’s execution.

M. Mizrahi Erbes and R. Wattenhofer

Edge Agreement in a Tree

In edge agreement in a tree graph 7' = (V, E), each party P; acquires an input vertex v; € V,
and outputs a vertex y; € V. We want the following properties:
edge agreement: Every two honest output vertices are either equal or adjacent in T
convex validity: For every honest output y, there exist some (possibly equal) honest
inputs v, and v; such that y is on the path which connects v, and v; inT.

Edge agreement in a tree generalizes edge agreement in a path, which is essentially the
same task as approximate agreement in an interval in R, but with the input/output domain
restricted to the integers (with adjacent integers representing adjacent path vertices).

Graded Consensus

In k-graded consensus, each party P; acquires an input v; in an input domain M, and outputs
some value-grade pair (y;,¢g;) € (M x {1,...,k})U{(L,0)}. The following must hold:
agreement: If any honest parties P; and P; output (y;, g;) and (y;, g;), then |g; —g;| < 1,
and if min(g;, g;) > 1, then y; = y;.
intrusion tolerance: If (y,g) # (L,0) is an honest output, then y is an honest input.
validity: If the honest parties have a common input m € M, then they all output (m, k).

As [3] has noted before, k-graded consensus is equivalent to edge agreement in a particular
tree when the inputs must all be leaves of the tree.

(b,2)
|
(b, 1)
|

(a,2) — (a,1) — (L,0) — (¢, 1) — (¢,2)

Figure 1 Edge agreement in a spider tree with the center (L,0) and a path ((m,1),...,(m,k))
attached to it for each m € M is equivalent to k-graded consensus when the parties can only have leaf
edge agreement inputs, with each leaf input (m, k) in bijection with the k-graded consensus input m.

In the full version [10], we construct a family of multivalued 2¥-graded consensus protocols
GCyo,GCy1,GCy:2, ... which each take 3k + 3 rounds, with O(n?) messages of size O(log k +
log | M) per round. These are the most efficient multivalued graded consensus protocols we
are aware of. In the full version we make use of the 6-round 2-graded consensus protocol GCo,
while in this brief announcement we present a simplified approximate agreement protocol
that uses 3-graded consensus, which the parties can reach by running the 9-round 4-graded
consensus protocol GC4 and subtracting 1 from their output grades if they obtain the grade 4.

3 Overview & Contributions

Our first contribution is a protocol for edge agreement in finite trees. Against byzantine
faults, this problem was first studied by Nowak and Rybicki [15]. Tt generalizes both edge
agreement in finite paths (the discrete version of e-agreement in [0,1]) and graded consensus.

Nowak and Rybicki achieve edge agreement in a finite tree T' = (V, E) of diameter D with
[log, D]+ 1 constant-round witness technique iterations and thus ©(n3log D(log |V | +logn))
bits of communication, where the logn term is due to the party IDs that identify each reliable

61:3

DISC 2025

61:4

B. Announcement: Async. Approx. Agreement with Quadratic Communication

broadcast’s sender party. Meanwhile, we achieve edge agreement with at most h(7T) iterations
(6h(T) + 1 rounds), where h(T) (T’s centroid decomposition [16] height) is a property we
define in the full version [10]. The integer value h(T) can be anywhere in [|log, D], [logs |V]1],
which means that our protocol’s round complexity is for some trees (though not for spider
trees, trees with O(D) vertices etc.) worse than Nowak and Rybicki’s. However, our iterations
only cost O(n?) messages, each of size at most O(log A+log(h(T))) where A is T’s maximum
degree. So, our protocol requires roughly n times less communication when h(T) ~ log, D.
In the full version [10], we present a parametrized recursive protocol TC(T') that achieves
edge agreement in any given finite tree 7. On a high level, it works as follows:
1. If T has 1 or 2 vertices, then each party outputs its input vertex. This is the base case.
2. If T has s > 3 vertices, then the parties let o be a centroid vertex of T' (whose deletion from
T results in a forest whose components all have at most s/2 vertices), and let wy, ..., wq
be ¢’s neighbors sorted by vertex index. Then, they run 2-graded consensus, where each
party’s input is either o (if its edge agreement input is o) or some neighbor wy, of o (if its
edge agreement input is in Hy,, which is how we refer to the tree component of 7'\ {o} that
contains wy). If the parties reach consensus on o, then they output o. Otherwise, if they
reach consensus on some neighbor wy, of o, then the parties with input vertices outside Hy,
adopt the new input wg, and we reduce the task to edge agreement in the subtree Hy.

There is a snag. The explanation above only works if the parties actually reach unanimous
agreement on either ¢ or on one of its neighbors w;. However, 2-graded consensus does not
guarantee this, since some parties might output (L, 0) from it. What allows us to overcome this
issue is that if anybody outputs (L, 0), then the parties all learn that they ran 2-graded consen-
sus with differing inputs, and thus learn that o is a safe output vertex w.r.t convex validity.

Our approach for finite trees above corresponds to binary search when the tree is a path.
For example, the parties reach edge agreement in the path (0, ..., 8) by either directly agreeing
on 4, or by reducing the problem to edge agreement in either (0,...3) or (5,...,8). Binary
search does not support the infinite path Z. Fortunately, 2-graded consensus also enables
exponential search. In the full version [10], we present a protocol for edge agreement in Z where
we use 2-graded consensus to implement a strategy based on (doubly) exponential search.

When the maximum honest input magnitude is M, our protocol for edge agreement in Z
takes 6log, M + O(loglog M) rounds, with O(n?) messages of size O(loglog M) per round.
In the full version [10], we reduce e-agreement in R to edge agreement in Z to show that this
implies e-agreement in R in 6log, % + O(loglog %) rounds with O(n? log %) messages and
O(n?log % log log %) bits of communication in total. Note that the factor 6 in the round
complexity here stems from us using our 6-round 2-graded consensus protocol.

In terms of message and communication (though not round) complexity, our protocol for e-
agreement in R is more efficient than that of Abraham et al. [1], who achieve e-agreement in R
with O(log g) constant-round witness technique iterations (where S is the honest input spread,
i.e. the maximum difference of any honest inputs), and with ©(n?log %) messages in total.

Another notable protocol is Delphi, by Bandarupalli, Bhat, Bagchi, Kate, Liu-Zhang and
Reiter [4]. To efficiently achieve e-agreement with ¢-bit inputs in R, they assume an input
distribution (normal distribution for the following), and when the honest input spread is S
they achieve e-agreement except with probability 27 in (’)(log(g log g) +log(Alogn)) rounds
with (’)(ﬁnzg(log(g log g) + log(Alogn))) bits of communication, while relaxing validity by
allowing outputs outside the range of the honest inputs by at most S. They use the security
parameter A here to assume bounds on S that hold except with 27 probability thanks to their
input distribution assumptions. In comparison, we achieve e-agreement in R without relaxing
validity or assuming any input bounds. As Table 1 shows, our protocol is also more efficient, in
particular since Delphi requires a cubic amount of communication per round when S > n - e.

M. Mizrahi Erbes and R. Wattenhofer

Table 1 Comparison of protocols for asynchronous e-agreement in R when the parties have inputs
in [0, 1]. If v and vh are the minimum and maximum honest inputs, then S = vh — vio and M = vp;.
To make the comparisons simple, we assume for [8], [1] and [4] that the inputs are all multiples of e.

Threshold | Bits Sent / Round Round Complexity Relaxation® Source
t< g O(n*log 1) [log, 11 0 8]
t< 2 O(n®log 2)" O(log 2) 0 [1]
t< 2 O(n?min(2,nlog 1)) | O(log(eel/minl/zn)y) s [4]
t<z O(n”loglog &)° O(log &) 0 this work

a) The relaxation is how far an honest output is allowed to be from the honest input range [vio, Uni.

b) The first few rounds of [1] estimate the spread S, and this costs ©(n” log 1) bits of communication.
However, this can be reduced to ©(n®log 2) with modern reliable broadcast protocols [6].

¢) The loglog % factor here is for tags that distinguish messages sent in different protocol iterations.

4 Simplified Approximate Agreement in [0, 1]

In this section, we present a simplified e-agreement protocol that is better suited for a brief
announcement than the more complicated full protocol in the full version [10]. While the
full protocol uses 2-graded consensus, the simplified protocol in this section uses 3-graded
consensus, which makes it less round-efficient since (with our graded consensus constructions)
3-graded consensus takes 9 rounds while 2-graded consensus takes 6. Moreover, the simplified
protocol only supports inputs in bounded intervals rather than inputs in R. Still, the protocols
share the same core idea, which is that the parties repeatedly bisect the interval where their
values reside by reaching graded consensus on whether their values are low or high.

In Apx(a, b), the parameterized approximate agreement protocol we present in this section,
the parties reach e-agreement in an interval [a,b] by using 3-graded consensus to recursively
reduce e-agreement in [a,b] to e-agreement in either [a, “E?] (reached via Apx(a, £%)) or
(£t b] (reached via Apx(%E2,v)). The parties reach 3-graded consensus on whether their
inputs are below the midpoint %% or not. If they all have inputs below (resp. above) “7“’, then

they unanimously agree that this is the case, and so they run Apx(a,
-~ is in the honest input range, and this fact lets

b b
«42) (resp. Apx(%52,0))
a+b
us assign an appropriate behavior to each 3-graded consensus output so that the parties reach

2
2

to reach approximate agreement. Otherwise, 412

approximate agreement no matter which two 3-graded consensus outputs they settle on.

When the parties run Apx(0, 1) for e-agreement in [0, 1], they reach the base case of a recur-
sive Apx(a, b) instance where b—a < & (where they can just output their inputs) with [log, 1]
recursive Apx calls, or in other words [log, %] iterations of 3-graded consensus. In total, this
costs 9[log, 1] rounds, O(n?log 1) messages and O(n?log L loglog 1) bits of communication.
Here, we have a loglog % factor because the parties have to be able to tell to which 3-graded
consensus iteration each message belongs to, and this requires O(loglog %)—bit message tags.

Note that Apx does not allow the parties to terminate (stop sending messages) after they
output, since some parties not sending the messages they are supposed to send could lead to
some other parties never obtaining outputs. We address this shortcoming in the full version
[10] with a simple constant-round quadratic-complexity termination procedure.

61:5

DISC 2025

61:6

B. Announcement: Async. Approx. Agreement with Quadratic Communication

Protocol Apx(a, b)

Code for a party P; with the input v;
1: if b —a < ¢ then
2: output v; and do not run the rest of the protocol

W

run an instance of a 3-graded consensus protocol GC3 with the other parties where
your input is LEFT if v; < a+b , and RIGHT if v; > a;b
wait until you output some (k, g) from GCj
if g = 3 then
let V7t < min(v;, 242) if k = LEFT, and let v)®* + max(v;, %2) if k = RIGHT

else
next a+b
U’i $— —

if ¢ <1 then

. +b
10: output “3~
11: if k = LEFT then
12: run an instance Apx(a, ‘%"b) with the other parties where your input is v;
13: when you output y from Apx(a, “'QH’) output y from Apx(a,b) if g > 2
14: else if &k = RIGHT then
15: run an instance Apx(‘”‘b b) with the other parties where your input is v}
16: when you output y from Apx(a+b b), output y from Apx(a,b) if g > 2

next

next

If the parties all run Apx(a,b) with inputs in [a, ”+b) then each party P; runs GC3 with
the input LEFT, outputs (LEFT, 3) from GCs, and obtains its final output from an Apx(a, “'H’)
instance (that everybody runs) where its input is v** = v;. So, Apx(a, b)’s security recursively

“+b) s security. Likewise, if the parties all run Apx(a,b) with inputs in
a+b b)

follows from Apx(a,

[“TH’, b], then they recursively reach e-agreement via Apx (3>
On the other hand, if neither [a, “TH’) nor [a;b,b] contaln all inputs, then ‘ZTH’ is a safe

output value w.r.t. validity. Knowing this, we can prove Apx(a,b)’s security via case analysis.
If the parties all output (LEFT, 3) or (LEFT, 2) from GCj, then they all run Apx(a, $2) with
inputs in [a, “—H’] and obtain their outputs from it. So, security follows from Apx(a, ‘ITH’)
Some parties (those with Apx(a,b) inputs above “t® and those with the GC3 grade 2)
run Apx(a, 22) with the input v = 2£2 instead of v;. This is fine because %£2 is safe.
If the parties all output (LEFT,2) or (LEFT 1) from GCs, then they all run Apx(ath)
with the input %, and thus all output “t* from it. The parties with the GC3 grade 2
output %*b from Apx(a,b) once they output this from Apx(a, ‘”b) while the ones with
the GC3 grade 1 output “T*b from Apx(a, b) directly after they obtain the GC3 grade 1.
If the parties all output (LEFT, 1) or (L,0) from GCs, then they all directly output “7“’
from Apx(a,b) after they output from GCs. Here, it does not matter that the parties with
the GC3 grade 1 run Apx(a, ‘”b) while the rest do not, because the parties with the GCs
grade 1 do not care about their Apx(a, ‘H'b) outputs.
The cases where some parties obtain the GC3 value RIGHT are similar to the cases above.

Future Work. It remains open to design a protocol for e-agreement in R that tolerates t < %
faults in O(log g) rounds (where S is the honest input spread) with quadratic communication.
We do not know of any such protocol for even synchronous networks, let alone asynchronous
ones. The classical synchronous protocol in [8] which at first seems to fit the bill in fact takes
as many rounds as the adversary desires because its round complexity scales with the spread
of all inputs, including fake byzantine ones. It would be a good first step to solve this issue.

M. Mizrahi Erbes and R. Wattenhofer

—— References

1

10

11

12

13

14

15

16

Ittai Abraham, Yonatan Amit, and Danny Dolev. Optimal resilience asynchronous approximate
agreement. In Proceedings of the 8th International Conference on Principles of Distributed

Systems, OPODIS 04, pages 229-239, Berlin, Heidelberg, 2004. Springer-Verlag. doi:10.

1007/11516798_17.

Ittai Abraham, T-H. Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass, Ling Ren, and
Elaine Shi. Communication complexity of byzantine agreement, revisited. In Proceedings of the
2019 ACM Symposium on Principles of Distributed Computing, PODC 19, pages 317-326, New
York, NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3293611.3331629.
Hagit Attiya and Jennifer L. Welch. Multi-Valued Connected Consensus: A New Perspective
on Crusader Agreement and Adopt-Commit. In 27th International Conference on Principles
of Distributed Systems (OPODIS 2023), volume 286 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 6:1-6:23, Dagstuhl, Germany, 2024. Schloss Dagstuhl — Leibniz-
Zentrum fiir Informatik. doi:10.4230/LIPIcs.0PODIS.2023.6.

Akhil Bandarupalli, Adithya Bhat, Saurabh Bagchi, Aniket Kate, Chen-Da Liu-Zhang, and
Michael K. Reiter. Delphi: Efficient Asynchronous Approximate Agreement for Distributed
Oracles. In 2024 54th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pages 456—469, Los Alamitos, CA, USA, June 2024. IEEE Computer
Society. doi:10.1109/DSN58291.2024.00051.

Gabriel Bracha. Asynchronous byzantine agreement protocols. Information and Computation,
75(2), 1987. doi:10.1016/0890-5401(87)90054-X.

Jinyuan Chen. Ociorcool: Faster byzantine agreement and reliable broadcast, 2024. doi:
10.48550/arXiv.2409.06008.

D. Dolev and H. R. Strong. Authenticated algorithms for byzantine agreement. SIAM Journal
on Computing, 12(4):656—666, 1983. doi:10.1137/0212045.

Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W. Stark, and William E. Weihl.
Reaching approximate agreement in the presence of faults. J. ACM, 33(3):499-516, May 1986.
doi:10.1145/5925.5931.

Danny Dolev and Riidiger Reischuk. Bounds on information exchange for byzantine agreement.
J. ACM, 32(1):191-204, January 1985. doi:10.1145/2455.214112.

Mose Mizrahi Erbes and Roger Wattenhofer. Asynchronous approximate agreement with
quadratic communication, 2025. doi:10.48550/arXiv.2408.05495.

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374-382, April 1985. doi:10.1145/3149.
214121.

Diana Ghinea, Chen-Da Liu-Zhang, and Roger Wattenhofer. Optimal synchronous approximate
agreement with asynchronous fallback. In Proceedings of the 2022 ACM Symposium on
Principles of Distributed Computing, PODC 22, pages 70-80, New York, NY, USA, 2022.
Association for Computing Machinery. doi:10.1145/3519270.3538442.

Diana Ghinea, Chen-Da Liu-Zhang, and Roger Wattenhofer. Communication-optimal convex
agreement. In Proceedings of the ACM Symposium on Principles of Distributed Computing,
PODC 25, pages 39-49, New York, NY, USA, 2025. Association for Computing Machinery.
do0i:10.1145/3732772.3733551.

Hammurabi Mendes and Maurice Herlihy. Multidimensional approximate agreement in
byzantine asynchronous systems. In Proceedings of the Forty-Fifth Annual ACM Symposium
on Theory of Computing, STOC 13, pages 391-400, New York, NY, USA, 2013. Association
for Computing Machinery. doi:10.1145/2488608.2488657.

Thomas Nowak and Joel Rybicki. Byzantine Approximate Agreement on Graphs. In 33rd
International Symposium on Distributed Computing (DISC 2019), volume 146 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 29:1-29:17, Dagstuhl, Germany, 2019.
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik. doi:10.4230/LIPIcs.DISC.2019.29.

A simple introduction to centroid decomposition. A Simple Blog, 2020. Accessed: 2025-08-15.
URL: https://robert1003.github.io/2020/01/16/centroid-decomposition.html.

61:7

DISC 2025

https://doi.org/10.1007/11516798_17
https://doi.org/10.1007/11516798_17
https://doi.org/10.1145/3293611.3331629
https://doi.org/10.4230/LIPIcs.OPODIS.2023.6
https://doi.org/10.1109/DSN58291.2024.00051
https://doi.org/10.1016/0890-5401(87)90054-X
https://doi.org/10.48550/arXiv.2409.06008
https://doi.org/10.48550/arXiv.2409.06008
https://doi.org/10.1137/0212045
https://doi.org/10.1145/5925.5931
https://doi.org/10.1145/2455.214112
https://doi.org/10.48550/arXiv.2408.05495
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3519270.3538442
https://doi.org/10.1145/3732772.3733551
https://doi.org/10.1145/2488608.2488657
https://doi.org/10.4230/LIPIcs.DISC.2019.29
https://robert1003.github.io/2020/01/16/centroid-decomposition.html

	1 Introduction
	2 Model & Definitions
	3 Overview & Contributions
	4 Simplified Approximate Agreement in [0,1]

