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Abstract
Total Store Order (TSO) is one of the most popular relaxed memory model in multiprocessor
architectures, widely implemented, for example, in Intel’s x86 and x64 platforms. It delays write
visibility via store buffers, thereby allowing a significant improvement in efficiency. This, however,
complicates reasoning about correctness, as executions may violate sequential consistency. We present
a semantic framework that provides effective tools that can pinpoint when such synchronization is
necessary under TSO. We define a TSO-specific occurs-before relation, adapting Lamport’s happens-
before to TSO, and prove that events at different sites can be temporally ordered only via an
occurs-before chain. Analyzing how fences and RMWs create these chains lets us identify when they
are unavoidable. We present in this BA how these results impact linearizable implementations of
registers, capturing information flow and causality in TSO. The full version of this work provides
details as well as results regarding the need for synchronization in linearizable implementations of
additional objects.
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1 Introduction and Related Work

Modern multiprocessors rely on relaxed memory models to improve performance through
techniques such as store buffering and out-of-order execution. Among these, Total Store
Order (TSO) – used in Intel’s x86 and x64 architectures – is one of the most widely deployed.
TSO increases efficiency by allowing writes to be held temporarily in per-process store
buffers, deferring their visibility to other processors. However, this optimization breaks
sequential consistency (SC) [11], making reasoning about correctness more difficult: a program
correct under SC may fail under TSO due to delayed write visibility. To ensure correct
behavior under TSO, programmers can use synchronization primitives such as memory
fences (F) and read-modify-write (RMW) operations. These enforce memory ordering by
flushing buffers or performing atomic accesses. While effective, they limit concurrency and
reduce performance [4, 9, 17]. Determining when such synchronization is truly necessary is
therefore a central question in the study of weak memory models such as TSO.

Lamport’s happens-before relation [10] is central in asynchronous computing, underlying
vector clocks, race detection, causal memory [12, 7, 1], and more. Happens-before was origi-
nally defined in asynchronous message-passing models, and it captures all of the information
about timing that processes can obtain in such settings. In a recent paper, we proved a
theorem called Delaying the Future (DtF) that provides a close formal connection between
happens-before and the ability to reorder actions and events in asynchronous message-passing
systems [14]. Roughly speaking, DtF implies that if there is no message chain between an
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operation A and an operation B in a given run r, then there is a run r′ that is indistin-
guishable to all processes from r in which A takes place after B does in real-time. This is of
importance, for example, when considering linearizable implementations of concurrent objects,
since the real-time order of event invocations and completions plays a central role in the
definition of Linearizability [8]. The happens-before relation has been considered in different
models, including TSO [3]. In this work, we introduce a new definition for the analogue of
happens-before in TSO, which we call the occurs-before relation. One of the differences is
that our definition stems from an operational model of TSO, whereas previous definitions
such as in [3] are formulated using declarative models. As a result, our approach employs a
lower level of abstraction, making it easier to derive concrete implementation constraints.
We demonstrate the analogy between the classical happens-before relation of message chains
to our occurs-before relation by proving a version of the DtF theorem for TSO, which is
obtained by replacing “happens before” by “occurs before.” This makes it possible to prove
necessary conditions on the use of synchronization in linearizable TSO implementations, much
in the spirit and style that [14] does for linearizable register implementations in asynchronous
message passing.

Related Work. Prior work has tackled the need for synchronization actions in weak memory
models from both practical and theoretical perspectives. Automated tools attempt to
minimize fences while preserving correctness [2, 17], and impossibility results show that
synchronization is sometimes unavoidable.

Attiya et al. [4] and Castañeda et al. [6] are most directly related to our TSO results.
Both works establish conditions on when linearizable implementations require the use
of synchronization operations. In [4], covering arguments are used to show that precise
communication patterns involving reads and writes are unavoidable in implementing classic
and widely used specifications. Their results apply to objects whose methods are strongly
non-commutative – such as sets, queues, or stacks – but not to registers. The more recent
[6] proves a mergeability theorem for TSO and related weak memory models traces and
applies it to obtain results about objects with one-sided non commutative methods such as
registers. They show that linearizable TSO implementations of objects, including registers,
must use fences or RMWs in some executions. In [14], a DtF theorem is proved for asynchronous
message-passing systems. It is then used to prove the need to construct message chains
between operations in linearizable register implementations in that model.

The current paper can be viewed as performing an analogous analysis for TSO to that
of [14]. Our analysis highlights the role of synchronization primitives, extending lower bounds
on the use of synchronization primitives in TSO. Practically, such lower bounds identify
the synchronization mechanisms implementations must employ and indicate when further
attempts to remove them would be futile.

2 Model and Preliminary Definitions

This section outlines the main features of our model; the reader should consult the full version
[15] for additional details. The model is based on the operational definition of TSO given in
[6]. (Similar, though slightly different, operational models for TSO have appeared, e.g., in
[16, 5].) It consists of a set Π = {1, ... , n} of n processes and a finite set Var of variables. A
basic TSO state is a pair σ = ⟨m, buf⟩, where m ∈ Var → Val describes the main memory
and buf ∈ Π → (Var × Val)∗ assigns a queue called a store buffer to every process. Processes
can perform actions from the set {R[x], W[x, v], F, RMW[x, vexp, vnew], ⊥}. These correspond,
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respectively, to reading the value of x (from local buffer if it contains an unexecuted write
to x and from the physical variable x in memory otherwise), writing the value v in x (v is
appended to the local buffer), performing a fence (which occurs only when the local buffer
is empty), performing a read-modify-write action RMW[x, vexp, vnew] (which occurs only if the
buffer is empty and the value of x in the memory is vexp. Its effect is to write vnew directly to
the memory). To account for propagating values from the store buffer to variables in memory,
we associate with each i ∈ Π a “local dispatcher” component di with a single action prop,
whose impact is to propagate a write command from the buffer queue to the memory. We
denote Ag ≜ Π ∪ {di}i∈Π and call its elements agents. Reads and writes are always enabled,
while fences, RMW and prop actions can take place only if specific preconditions hold.

We think of an action taking place as being an event. It is convenient to consider two
types of read events: RfB(x, v) and RfM(x, v). The former is when the value of x is read from
the store buffer, and the latter is when the value of x is read from the variable x ∈ m in
memory. In both instances, the value returned by the read action is v ∈ Val. Using β|x to
denote the restriction of a store buffer β to pairs of the form ⟨x, _⟩ involving writes to x ∈ m,
the preconditions and effects of the event of a single action being performed in a TSO state
σ = ⟨m, buf⟩ are defined as follows:

write
e = i : W(x, v)

buf′ = buf[i 7→ buf(i) · ⟨x, v⟩]
⟨m, buf⟩ e−→ ⟨m, buf′⟩

read-from-buffer
e = i : RfB(x, v)

buf(i)|x = _ · ⟨⟨x, v⟩⟩
⟨m, buf⟩ e−→ ⟨m, buf⟩

read-from-memory
e = i : RfM(x, v)

buf(i)|x = ε m(x) = v

⟨m, buf⟩ e−→ ⟨m, buf⟩

rmw
e = i : RMW(x, vexp, vnew)

buf(i) = ε m(x) = vexp

⟨m, buf⟩ e−→ ⟨m[x 7→ vnew], buf⟩

fence
e = i : F

buf(i) = ε

⟨m, buf⟩ e−→ ⟨m, buf⟩

propagate
e = di : prop(x, v)

buf(i) = ⟨⟨x, v⟩⟩ · β

m′ = m[x 7→ v] b′ = b[i 7→ β]
⟨m, buf⟩ e−→ ⟨m′, buf′⟩

A TSO action is considered a memory access of the variable x if it is either a RMW[x, ·], a
prop action resulting in prop(x, ·), or a read action R[x] resulting in RfM(x, ·).

Runs and Protocols. A protocol P = (P1, ... , Pn) maps each process’ local state to a
nonempty set of enabled actions. Local states record the sequence of actions observed so far.
A global state is (σ, ℓ1, ... , ℓn) with σ being the TSO state and ℓi the local state of process i.
A run is an infinite sequence of global states, starting with empty buffers and initial local
states; each step applies a joint action of process, dispatcher, and environment actions, with
no conflicting memory accesses to the same variable. A run is of P if every process action in
it is allowed by P . We make two liveness assumptions: (i) every enabled prop eventually
occurs, ensuring fences terminate, and (ii) any process with an enabled action eventually
moves.

Nodes and Tags. A node θ = ⟨b, t⟩ denotes agent b at time t; θ.α is b’s action at time t

(possibly a null action). The kth write W(x, v) by i is taken to have a tag W.tag = ⟨i, k⟩; the
matching prop, RfB, and RfM on that value inherit the same tag.

3 The Occurs-before Relation in TSO

In asynchronous message-passing systems, the only way that a protocol can ensure that an
action takes place later than a specific event at another process, is by forcing the action
to be delayed until a message chain from the second process has been constructed. This
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is Lamport’s happens-before relation ([10]). We now define an analogous relation for TSO,
where scheduling and propagation are asynchronous and processes lack direct knowledge
of event timing. Complicating matters is the fact that distinct processes can read different
values of a variable x at the same time. Our occurs-before relation, also builds chains across
process timelines,1 and is defined as follows:

▶ Definition 1 (TSO occurs before). Let t < t′, let i, j ∈ Π and let b, c ∈ Ag. We define the
binary occurs before relation ob

⇝r between nodes in r as follows:
1. ⟨b, t⟩ ob

⇝r ⟨b, t′⟩ for every agent b.
2. ⟨i, t⟩ ob

⇝r ⟨di, t′⟩ if ⟨i, t⟩.α ∈ {W, RfB}, ⟨di, t′⟩.α = prop and ⟨i, t⟩.α.tag = ⟨di, t′⟩.α.tag.
3. ⟨b, t⟩ ob

⇝r ⟨c, t′⟩ if ⟨b, t⟩.α and ⟨c, t′⟩.α are both memory access of the same variable unless
a. ⟨b, t⟩.α and ⟨c, t′⟩.α are both RfM actions, or
b. b = di, c = i, ⟨di, t⟩.α = prop and ⟨i, t′⟩.α = RfM.

4. ⟨di, t⟩ ob
⇝r ⟨i, t′⟩ if ⟨di, t⟩.α = prop and ⟨i, t′⟩.α ∈ {F, RMW}.

5. θ
ob
⇝r θ′ if θ

ob
⇝r θ̂ and θ̂

ob
⇝r θ′ for some node θ̂.

What makes ob
⇝r interesting and useful is the fact that, in a precise sense, it covers all

the information that may be available to the processes regarding the ordering of events. We
will show that, roughly speaking, if an event e in r is not related by ob

⇝r to another event e′

in r, then there is a run r′ that is indistinguishable from r in which e′ takes place strictly
before e does. We now turn to prove a more general result which will imply this fact.

4 Delaying the Future in TSO and its implications

Our goal is to use the occurs-before relation to prove lower bounds and necessary conditions
on protocol structure. First, we show that processes cannot guarantee a specific event order
without an occurs-before chain. If a process has the same local state at two execution points
where it moves, it will take the same action at both points; events that did not modify its
state cannot affect its behavior. This motivates the definitions of Pastr(S), the set of nodes
in the causal past of S and of runs local equivalence.

▶ Definition 2 (The past).2 For a set of nodes S in a run r, we define
Pastr(S) ≜ {θ : θ

ob
⇝r θ′ for some θ′ ∈ S} and Past+

r (S) ≜ Pastr(S) ∪ S.

▶ Definition 3 (Local Equivalence). Two runs r and r′ are called locally equivalent, denoted
by r ≈ r′, if for every process j, a local state ℓj of j appears in r iff ℓj appears in r′.

We can now show:

▶ Theorem 4 (Delaying the future in TSO). Let r be a TSO run of a protocol P , let S be a
set of nodes of r, and let ∆ ≥ 0. Then there exists a TSO run r′ ≈ r of the same protocol P

such that:
(a) Every agent b ∈ Ag performs exactly the same actions in the same order in both runs;

moreover, an action that b performs at time t in r is performed in r′ at time t if
⟨b, t⟩ ∈ Pastr(S), and it is performed at time t + ∆ otherwise.

1 We do not call this relation “happens-before” because the latter has become synonymous with message
chains over the last five decades, and the new relation in TSO has a different flavor.

2 See Figure 1 for an illustration.
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Figure 1 S = {θ1, θ2} and Pastr(S) is composed of all the nodes in the yellow part. Past+
r (S)

contains in addition the nodes on the black curve, delimiting the nodes in past of S from the other
nodes. (b) represents the run r′ guaranteed to exist by Theorem 4.

(b) Every process j’s local states are shifted accordingly:

rj(t) =
{

r′
j(t) for all ⟨j, t⟩ ∈ Past+

r (S)
r′

j(t + ∆) otherwise.

Intuitively, Theorem 4 implies that everything outside the Pastr of a node (or set of
nodes) can be moved forward in time by an arbitrary amount, while preserving the timing
of events in this past. This implies that without an ob

⇝ connection, events and operations
preceding a given operation can be shifted to no longer precede it, without changing its
outcome. If changing the real-time order of two operations can affect the correctness of a
given execution, as it typically does when linearizability is required, then implementations
must ensure that operations whose order should not be changed are related by ob

⇝. In some
cases, e.g., when a process runs solo, it is possible to show that establishing ob

⇝ requires
a process to perform explicit synchronization operations. This is the subject of the next
section.

5 Implementing Linearizable Operations in TSO

Roughly speaking, an implementation I of an object is a protocol satisfying the object’s
specification. It is said to be linearizable if in every execution of I, operations appear to
occur instantaneously in a way that is consistent with the original execution and that satisfy
the sequential specification of the object. See [8] for a formal definition.

Registers. We consider implementations of a multi-writer multi-reader register, where every
process may perform (linearizable) Read and Write operations, in the TSO memory model.
For obstruction-free register implementations, techniques used in the proof of Theorem 4
and in [13] can be used to show:

▶ Corollary 5. Let n ≥ 2 and let I be an obstruction-free linearizable implementation of a
register in TSO for n processes. Then for every m > 0 there must be a run rm of I in which
exactly m Write operations are performed, and each of the Writes performs a fence F or an
RMW.

We remark that Castañeda et al. prove in [6] that spec-available implementations of lin-
earizable registers in TSO must contain a run in which at least one Read or Write operation
performs an F or RMW action. Since every obstruction-free implementation is in particular
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spec-available, the same follows for obstruction-free implementations. For obstruction-free
implementations, Corollary 5 provides sharper bounds. In [15] Theorem 4 (DtF) is applied
in the style of Theorem 6 of [14] to show that linearizable register implementations must
create ob

⇝ relations between Write operations, to ensure linearizability. In addition, DtF is
applied to the analysis of linearizable implementations of snapshot objects.

The Need for Synchronization to Establish Occurs Before. In a precise sense, Corollary 5
makes use of the fact that a process performing a linearizable Write must guarantee that the
value it is writing is recorded in memory. We can show that the only way for a process to
know that the value it wrote can be read by others is either by way of a read that provides it
with feedback from other processes or by synchronization.

▶ Definition 6 (feedback loop). We say that there is a feedback loop between nodes ⟨i, t1⟩
and ⟨i, t2⟩ in run r (and write ⟨i, t1⟩ ⟲r ⟨i, t2⟩) if there is a node ⟨b, t⟩ with b /∈ {i, di} such
that ⟨i, t1⟩ ob

⇝r ⟨b, t⟩ ob
⇝r ⟨i, t2⟩. We say that an operation X contains a feedback loop in r if

X.s ⟲r X.e.

▶ Theorem 7. Let X be an operation in r containing a write with a tag κ = ⟨i, k⟩. If
1. X does not contain a feedback loop, and
2. i does not perform a F or RMW action during X.
Then there is a run r′ ≈ r in which κ is not propagated to memory before X.e.

This is a powerful result. In TSO, a process shares information only by writing to memory
and making the write visible. If completing an operation requires others to observe it, the
process must either obtain feedback from another process or use a F or RMW operation. In
obstruction-free protocols, feedback can not be guaranteed, so fences or RMW become necessary
to ensure visibility before operations can be completed.

6 Discussion

While we focus in this BA on registers, the full version [15] also covers snapshots, and
extending the approach to the study of linearizable implementations of other shared objects
appears promising. The register results of [6] exploit the fact that Read operations are
one-sided non-commutative with respect to Write operations, yielding (roughly) that there
exist runs where at least one of two adjacent write–read operations must contain a F or
RMW. Our framework strengthens this: we prove that there exist runs where in fact Write
s must contain a F or RMW. In typical register implementations, Writes complete with an
acknowledgment independently of preceding Writes, meaning they are not one-sided non-
commutative. Nevertheless, our tools show that there are runs where Writes must contain F
or RMW. In addition, the DtF theorem and its uses, both in the TSO setting and in [14], raise
the question of whether similar results hold in other memory models. Finally, we observe that
although our ob

⇝ relation in TSO is analogous to happens-before in message passing, it differs
in that ob

⇝ does not necessarily convey information, even under full information, whereas
happens-before does. Nevertheless, like happens-before, the ob

⇝ relation remains a necessary
condition for ordering in many cases. This fundamental difference is both interesting and
worth deeper investigation.
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