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Abstract
Approximate Byzantine Agreement (ABA) protocols enable nonfaulty replicas with different initial
values to derive a values within a ϵ-neighborhood of each other, despite the presence of Byzantine
behavior. While they give strong guarantees for this ϵ-agreement property, they tend to have weaker
guarantees that the derived value is accurate with respect to some ground truth. Worse, they often
have impractical requirements such as large replica sets proportional to data dimensionality, or a
priori knowledge of the maximum distance between nonfaulty values.

In Stochastic Byzantine Agreement (SBA), the distribution of the nonfaulty values is the result
of a stochastic process influenced by sensor measurement error or other sources of noise that affect
system outputs. For these scenarios, we present Proximal Byzantine Agreement (PBA), a stochastic
Byzantine agreement protocol which infers the most likely output of replicated computation based on
the proposed values observed by each replica. Unlike ABA protocols, PBA prioritizes accuracy over
agreement. PBA accuracy is relative to the variance of nonfaulty values, yielding comparatively more
accurate results for noisy data, particularly when noise is asymmetric. Our evaluations demonstrate
this accuracy scales with data dimensionality, outperforming or only mildly underperforming methods
that require quorums with up to 10× more replicas and 4× to 124× more computation time per
agreement decision, even at relatively low dimensions (d = 4 to d = 18).
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1 Introduction

Reliably controlling systems and devices that interact with the physical environment is
challenging in any context, but especially in edge networks. Volatile communication, power,
and operating conditions demand greater fault tolerance, and edge devices and sensors are
often more vulnerable to malicious manipulation than those in secure, monitored facilities.
These realities complicate the coherent design of sensor data-processing pipelines, distributed
control systems, and multi-agent robotics applications – scenarios that are functionally similar
but operationally require ad hoc mitigation techniques to tolerate deployment conditions.

The growing demand for such systems spans consumer-facing devices such as home-
automation sensors and controls, personal health monitoring devices and drug-delivery
systems, and automotive telemetry and safety systems, as well as industrial and agricultural
platforms for monitoring and controlling mechanical, physical, and biological processes. In
all of these domains, the quality and reliability of sensor and sensor-derived data is central
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to effective operation. When that data is delayed, missing, or corrupted – whether from
environmental noise, hardware faults, or malicious interference – the consequences can range
from suboptimal performance to catastrophic, even unsafe, failures.

Despite shared characteristics, a divergence occurred between communities that prioritize
agreement “regardless of what they agree upon” originally proposed by Lamport [9], and
communities that also want guarantees on the accuracy of some quantity being approximated.
Whereas most agreement protocols give validity [5] specifications on their output in terms of
the initial values proposed by nonfaulty replicas, accuracy [12] specifications are with respect
to a true quantity approximated by the outputs. Much subsequent work on approximate
agreement does not explicitly consider accuracy, with some notable exceptions [1, 3] in
the sensor fusion community. In all cases, relatively strong assumptions are made about
nonfaulty values such as the maximum pairwise distance [10], maximum width of a containing
interval [12], or the true value is contained in the intersection of ranges of nonfaulty replicas [3].
Violating these assumptions affects accuracy and can lead to arbitrary protocol failure.

This paper restores focus on the accuracy of an important subset of approximate Byzantine
agreement (ABA) problems under weaker, more realistic assumptions. Since phenomena
measured by sensors can often be modeled as stochastic processes [17], we define Stochastic
Byzantine Agreement (SBA), a refinement of the ABA problem. In the SBA problem, “true”
values are generated by a stochastic process with an unknown output distribution, and the
observations of those values proposed by nonfaulty replicas are perturbed by noise drawn from
an unknown error distribution. Byzantine replicas act arbitrarily, and thus their proposed
values are not generated – or even effectively approximated – by any distribution. Our SBA
protocol, Proximal Byzantine Agreement (PBA), uses a novel value selection process, how
replicas select outputs based on the messages they receive, that borrows techniques from
robust statistics [7]. As long as a majority of these messages are stochastically distributed,
the influence of arbitrarily selected values on the inference process is limited to a fixed bound.

This brief announcement reports on progress following our initial evaluation [18] of the
feasibility of this value selection technique. Previously, only one-dimensional, normally
distributed distributions were explored, and probabilistic protocol properties were described
informally. Here we give formal, geometric definitions and theorems with rigorous guarantees,
including evaluations comparing PBA to multiple ABA protocols on multidimensional data.
These evaluations indicate a surprising degree of scalability with respect to dimensionality:
only minor losses in accuracy compared to ABA protocols that require 10× more replicas and
4× to 124× more computation time per agreement decision, even at relatively low dimensions
(d = 4 to d = 18). Since each additional output offers more information from the unknown
output distribution, our results indicate PBA can extract more information from observations,
reinforcing the tradeoff [12] between high-precision agreement and statistical accuracy.

2 Proximal agreement as a probability maximization

Replicas participating in Approximate Byzantine Agreement (ABA) protocols (e.g.,[5, 14, 19])
start with an arbitrary real value and reach an output solution satisfying two properties:
1. ϵ-Agreement: all nonfaulty replicas eventually output values within ϵ of each other.
2. Validity: these values are bound (in some sense) by the initial values of nonfaulty replicas.

Mahaney and Schneider [12] distinguish Inexact Agreement (IA) from classical ABA by
redefining the validity property in terms of accuracy. Outputs are instead bound by their
distance to a true value v̂, which each nonfaulty replica’s initial value vi approximates.
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Our work concerns a new class of protocols that make an additional assumption, often
satisfied by the underlying data processed by IA systems. Stochastic Byzantine Agreement
(SBA) protocols require that v̂ and nonfaulty vi are – or can be effectively approximated as
being – distributed according to probability distributions. No assumptions are made about
the nature of Byzantine values. The two distributions are distinct and potentially unknown,
but correlated since vis approximate v̂. SBA protocols also satisfy ϵ-agreement, but ϵ in SBA
is larger than the ϵ values in classical ABA protocols. This difference in ϵ-agreement is by
design and unavoidable due to tradeoffs between accuracy and high-precision agreement [12].
The goals of these protocols are close enough that we argue ABA is an appropriate umbrella
term, with IA and SBA refining properties 1 and 2 as described above.

The key characteristic of our SBA protocol, Proximal Byzantine Agreement (PBA), is
that each replica uses the set R of received values vi ∈ R to find a quorum of values r and
a candidate v̂ such that v̂ would be the most likely true value if we knew that the quorum
values were nonfaulty. Selecting the highest-probability v̂ conditioned on the observations in
r, ensures that if any (minority of) values in r turn out to be faulty, then the quorum r (and
thus the inferred v̂) is at least a likely as a quorum containing only nonfaulty values. At a
high level, this process is described by the probability maximization in Def. 2.1.

▶ Definition 2.1 (Proximal Byzantine Value Selection). For received values R ⊆ Rn and
quorum size s, select a set r from the s-sized subsets of R, and a value x that maximizes the
likelihood that x is the true value given observations in r.

PBA(R, s) ≜ argmax
r∈[R]s

x∈Rn

P (x | r)

Our chosen approximation of Proximal Byzantine Value Selection (PBVS) uses the
geometric median of each r as a robust estimator for the expected value of the unknown
distribution of observations in r, thus approximating the candidate x. Below we will just
use PBA(R, s) to refer to our approximation of PBVS to avoid additional notation. The
geometric median [16] is well-suited for estimating the expected value of a broad class of
distributions [15, 16], and remains robust even when < 1

2 of the samples are arbitrarily
corrupted. We compare the conditional likelihoods P (x | r) for each r and x with a similarity-
based approximation of conditional probabilities [2]. This is necessary for multidimensional
data since the covariance matrix is unknown, but is a reasonable approach since each nonfaulty
replica output is an approximation of the same underlying value.

More specifically, for each quorum r, we compute its median x = Gm(r) and evaluate
the likelihood P̂ (x | r) using a similarity measure adapted from Blok et al. [2]. P̂ (x | r)
approximates the affect of the unknown covariance matrix and joint probability of q on
the independent probability of x with an exponent α to score similarity between x and
quorum values on a [0, 1) scale. We chose this approach after discovering that computing the
geometric median and then approximating its likelihood is significantly faster than iteratively
evaluating P̂ (X = x | r) to find maximal values, and had almost no impact on accuracy.

2.1 Geometric properties
Approximation of a true value introduces a degree of uncertainty for systems that use those
approximations to make decisions. We are unaware of any ABA protocols that estimates
the uncertainty of its outputs.1 In many scenarios, it may be better to perform no action at
all than to act on very uncertain data. Therefore, calculating a concrete guarantee on each
output is an important feature of PBA protocols.

1 In a sense, the strong assumptions of existing IA protocols [12, 4, 3] act as inputs about uncertainty.
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A well-known result [11] is that the displacement of the geometric median Gm(Q) of a
set of nonfaulty values is bounded when up to |F | < |Q| faulty values are added to the set.

▶ Lemma 2.2 (Theoretical maximum displacement [6, 11]). Let R = Q ∪ F , |Q| = s and
|F | = f such that s > f with geometric medians Gm(Q) = mQ and Gm(R) = mR. Let
∆Q = maxqi∈Q ||qi − Gm(Q)||2 and C

(s,f)
0 = s√

s2−f2
. Then the maximum displacement is

||mQ − mR||2 ≤ C
(s,f)
0 ∆Q

However, the contents of Q is unknown, so the bound implied by Lemma 2.2 cannot be
directly calculated from the information available. Instead, Lemma 2.3 presents a
computable bound guaranteed to contain the geometric median of the nonfaulty values, but
is based only on the received values and the system parameters (i.e., n, f , and s).

▶ Lemma 2.3 (Computable maximum displacement). Let R = Q ∪ F , |Q| = s and |F | = f

such that s > 2f with Gm(Q) = mQ and Gm(R) = mR, and C(s,f) = s√
2sf−f2

. Then

||mQ − mR||2 ≤ C(s,f)∆R
f

The computable displacement is used to compute the region guarantee for a given PBA
result. The fact that PBA only produces outputs with region guarantees containing the true
output is our instantiation of an accuracy [12] property.

▶ Definition 2.4 (Region Guarantee). For any set R ⊆ Rd, |R| > s + f where s > f , define
R(f,x) ⊆ R by removing the f elements of R furthest from x. Let ∆R

f = maxri∈R(f,Gm(R)) ||ri −
Gm(R)||2. The region guarantee RG(R, s, f) is a d-dimensional ball centered at x with radius
2C(s,f)∆R

f .

▶ Lemma 2.5 (Accuracy). For any R = (Q ∪ F ) containing |Q| = s > 2f nonfaulty and at
most |F | = f faulty values, let PBA(R, s) = (x, R′). Then Gm(Q) ∈ RG(R, s, f) and

||mQ − x||2 ≤ C
(s,f)
0 ∆R′

+ C
(s,f)
0 ∆Q ≤ 2C(s,f)∆R

f

2.2 OneShot PBA Agreement and Termination
For this brief announcement, we describe OneShot PBA, a protocol that prioritizes accuracy.
It infers the potential distances between the true value, its output, and other replica outputs
using only the messages it receives, without additional coordination. Clients can receive
proposed values directly from replicas and execute our PBVS algorithm locally to select
values. Like most IA protocols [3, 4, 13], but unlike other ABA protocols [5, 12, 14, 19],
OneShot does not iterate to converge on a single answer. Doing so would obscure the initial
values, sacrifice accuracy, and undermine the fidelity of the region guarantees.

The termination conditions are thus straightforward: OneShot PBA requires s+f values
where s ≥ 2f +1, so termination for the asynchronous case requires at least n ≥ s+2f ≥ 4f +1
replicas. Otherwise, f faulty replicas could withhold values without being distinguished from
f nonfaulty replicas experiencing a network partition, and halt progress.

PBA OneShot’s requirements on replica set size compare favorably to other ABA proto-
cols (Table 1), particularly when considering its lack of dependency on data dimensionality
and weak assumptions regarding the range of correct values. Unlike prior work that tend to
improve accuracy with more replicas, a distinguishing characteristic of PBA value selection is
that more replicas are not required to ensure the safety or liveness properties of the system,
yet still benefits from the increase in accuracy.
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Table 1 Replica set size. d is number of data dimensions.

Algorithm n ≥
OneShot 4f + 1
ABA [5] 5f + 1
IA [12] 3f + 1
BI [3, 4] 2df + 1
BVC [14, 19] (d + 2)f + 1

(a) Gaussian samples, Byzantine attack. (b) Exponential samples, Byzantine attack.

Figure 1 Empirical simulations measuring PBA’s accuracy compared to baseline algorithms given
data distributed by a Gaussian (symmetric) and Exponential (asymmetric) distributions.

Despite the absence of inter-replica coordination or iteration, the PBA values derived
by consumers from different subsets are bounded with respect to their distance to the true
expected value. This bound is in terms of the displacement properties of the geometric
median discussed in §2.1, and contingent on quorum sizes representing a sufficiently large
fraction of the nonfaulty replicas, in this case > |Q|

2 .

It is taken for granted in other protocols that quorums must contain at least half of all
nonfaulty replicas since these protocols ensure all quorums intersect. We only make this
size requirement explicit for agreement because not all instances of PBA necessarily involve
multiple consumers. For example, there is no need for agreement if a system controller is
the only consumer of replica outputs, as is often the case in industrial control systems. For
contrast, note that accuracy (Lemma 2.5) only requires quorum membership to be more
than twice the number of faulty replicas.

▶ Lemma 2.6 (Agreement). For any Ri = (Qi ∪ F i) ⊆ R = (Q ∪ F ), let r = |Ri|, s = |Qi|,
f = |F |, and PBA(Ri, s) = (xi, Ri

∗). If s >
⌈

|R|
2

⌉
and r ≥ s + f , then for any other subset

Rj = (Qj ∪ F j) ⊆ R where |Rj | ≥ r and PBA(Rj , s) = (xj , Rj
∗), ||xi − xj || ≤ 2C

(s,f)
0 ∆Q.

DISC 2025
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Figure 2 Runtime benchmark (Pi Zero).

3 Evaluation

PBA accuracy compared to baseline. We perform repeated simulations on Chameleon
Cloud [8], comparing PBA under several quorum sizes against approximate Byzantine Vector
Consensus (BVC) [19] and Brooks-Iyengar (BI) [4]. Here we present only the Byzantine attack
scenario. Each trial samples n − f d-dimensional replica outputs xi from a random Gaussian
or Exponential distribution (with a fixed, low variance) and multiplies each element-wise
by a noise vector yi independently sampled from an error distribution with E[Y ] = 1 and
(uniformly-sampled) standard deviation from 0.01 to 0.09. We compute the agreement vector
of each protocol and report the median percent error with respect to xi across 1000 trials.

Figure 1a compares results when n − f outputs are sampled from a Gaussian distribution
under an optimal Byzantine attack with f = 1. While BVC remains highly robust, PBA
achieves comparable accuracy with just n = 4f + 1 = 5 (small n) outputs, versus BVC’s
n = (d + 2)f + 1 = 13 (large n) outputs. This indicates that at least some of BVC’s accuracy
may result from its reliance on more samples, but any ABA protocol will improve in accuracy
with more samples: aggregating values concentrates outputs around the true value. PBA
approaches the true value with fewer samples (i.e., replicas) and performance overhead.

In the Exponential and large n setting (n = (d+2)f+1), Figure 1b shows PBA outperforms
all other n = 4 protocols. In the small n setting, PBA demonstrates superior accuracy to
all baselines – even in the PBA-unknown case, where the prior distribution is estimated
as Gaussian. This accuracy advantage likely stems from PBA’s quorum selection strategy
and agreement inference method. In contrast, the benefit other protocols received from
additional samples in the Gaussian case, a symmetric distribution, are tempered in the
exponential case, an asymmetric distribution. The gap in accuracy suggests the averaging
effect occurring in other protocols generalizes poorly to other distributions, whereas PBA’s
more statistically-informed approach adapts more easily.

Runtime performance. Figure 2 presents runtime benchmarks for f = 1 and f = 2 on
a node hosted on a single Raspberry Pi Zero 2W. These results are based on repeated
simulations of the PBA, BVC, and BI protocols operating on sets of n d-dimensional vectors.
where n = (d + 2)f + 1, and PBA quorum sizes set to s = n − f . PBA is faster than BVC for
f = 1, d > 5 (with similar performance at lower d), and more than 4× faster at f = 1, d = 18.
In all f = 2, d = 4 scenarios, PBA significantly outperforms BVC (124×). While BI also
exhibits scalable runtime in high-dimensional settings, each replica must produce outputs
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with a known error range that contains the true value, and that must also intersect the
ranges of all other nonfaulty nodes. If these invariants are violated by any nonfaulty replica,
the system may not withstand Byzantine attack. Even without an attack, the protocol could
fail to terminate.

Our empirical results against BVC reinforces that PBA offers a compelling trade-off: it
maintains competitive accuracy while substantially reducing computational cost. Beyond per-
formance, PBA also provides robust fault tolerance and accurate agreement with significantly
fewer replica outputs. Notably, PBA’s minimum required number of replicas and quorum
size are independent of d; in contrast to BVC, whose replica requirements scale significantly
with d. Under-provisioned PBA systems instead have more uncertainty, but the amount
is characterized by region guarantees. This scalable perfomance and graceful, principled
degradation indicate promise for both large-scale and resource-constrained sensor-based
control systems and datastream processing applications.
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