
Brief Announcement: Congested Clique Counting
for Local Gibbs Distributions
Joshua Z. Sobel #

Department of Computer Science, University of Iowa, Iowa City, IA, USA

Abstract
There are well established reductions between combinatorial sampling and counting problems (Jerrum,
Valiant, Vazirani TCS 1986). Building off of a very recent parallel algorithm utilizing this connection
(Liu, Yin, Zhang arxiv 2024), we demonstrate the first approximate counting algorithm in the
CongestedClique for a wide range of problems. Most interestingly, we present an algorithm for
approximating the number of q-colorings of a graph within ϵ-multiplicative error, when q > α∆ for
any constant α > 2, in Õ

(
n1/3

ϵ2

)
rounds. More generally, we achieve a runtime of Õ

(
n1/3

ϵ2

)
rounds for

approximating the partition function of Gibbs distributions defined over graphs when simple locality
and fast mixing conditions hold. Gibbs distributions are widely used in fields such as machine
learning and statistical physics. We obtain our result by providing an algorithm to draw n random
samples from a distributed Markov chain in parallel, using similar ideas to triangle counting (Dolev,
Lenzen, Peled DISC 2012) and semiring matrix multiplication (Censor-Hillel, Kaski, Korhonen,
Lenzen, Paz, Suomela PODC 2015). Aside from counting problems, this result may be interesting
for other applications requiring a large number of samples.
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1 Introduction

In a pioneering work, Valiant proposed the computational complexity class #P [12]. Problems
in #P are the counting variants of decision problems in NP; for example, counting the number
of proper vertex colorings of a graph using at most q colors (q-colorings). Unfortunately,
Valiant established that even when a decision problem is in P , such as determining whether a
bipartite graph has a perfect matching, the corresponding counting problem can be NP-hard.
Thus for most counting problems, we need to settle for ϵ multiplicative approximation
rather than exact counting. The goal is to estimate a true count X by X̂, such that
(1− ϵ)X ≤ X̂ ≤ (1 + ϵ)X with probability at least 3

4 . By the standard median trick, 3/4 can
be boosted to any constant less than one.

The typical method for approximate counting involves drawing random samples that are
solutions to the corresponding search problem. In other words, we can count the number of
colorings of a graph by sampling random colorings. This approach dates back to Jerrum,
Valiant, and Vazirani. The initial reduction from counting to sampling [8] requires drawing
a very large number of samples; this has been improved over several subsequent works
[7, 1, 13, 10]. In particular, when considering Gibbs distributions defined over graphs with n

© Joshua Z. Sobel;
licensed under Creative Commons License CC-BY 4.0

39th International Symposium on Distributed Computing (DISC 2025).
Editor: Dariusz R. Kowalski; Article No. 65; pp. 65:1–65:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:joshua-sobel@uiowa.edu
https://orcid.org/0009-0004-7482-0754
https://doi.org/10.4230/LIPIcs.DISC.2025.65
https://arxiv.org/abs/2508.13083
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de


65:2 Brief Announcement: Congested Clique Counting for Local Gibbs Distributions

vertices and meeting mild conditions, Štefankovič, Vempala, and Vigoda [13] showed that
counting can be accomplished by taking Õ

(
n
ϵ2

)
samples. Gibbs distributions originated in

physics, and generalize many problems such as the uniform distribution of q-colorings.
Unfortunately, the algorithm from [13] cannot be fully parallelized, as samples drawn

later depend on samples drawn earlier. Very recently, Liu, Yin, and Zhang [10] also showed
that for many Gibbs distributions defined over graphs counting can be done using Õ

(
n
ϵ2

)
total samples, but in their approach every sample can be taken in parallel. This implies
that counting in the CongestedClique reduces to quickly drawing Õ

(
n
ϵ2

)
samples. From

existing work, [5, 6, 4], we know that for many Gibbs distributions drawing a single sample
within total variation distance error of δ can be done in O(log n

δ ) CongestedClique rounds,
using the distributed Metropolis-Hastings Markov chain. For Gibbs distributions that we
call local, we identify a novel structural similarity between simulating one transition of n

instances of the Markov chain and semiring matrix multiplication. In particular, utilizing
the approach of Dolev, Lenzen, and Peled [3] for triangle counting and Censor-Hillel, Kaski,
Korhonen, Lenzen, Paz, and Suomela [2] for semiring matrix multiplication, we can simulate
one transition of n instances of the Markov chain in O(n1/3) rounds and thus often obtain
an approximate count in Õ

(
n1/3

ϵ2

)
CongestedClique rounds. The full version of our paper

contains all of our results and proofs.

1.1 Main Results
Our central contribution is an algorithm to draw many samples at once from the distributed
Metropolis-Hastings Markov chain. Beyond counting, this result may be useful in other
algorithms where several samples are needed.

▶ Theorem 1. One transition can be simulated for n instances of the distributed Metropolis-
Hastings chain in O(n1/3) rounds.

As a corollary to the previous theorem and the results of [10], under mild locality and
mixing conditions which we will describe later, there is an Õ

(
n1/3

ϵ2

)
round counting algorithm.

As the most interesting example, we obtain a fast algorithm for approximating the number
of q-colorings of an input graph with degree ∆. In addition, our full paper demonstrates a
much faster algorithm for the hardcore model with low fugacity.

▶ Corollary 2. There is an algorithm for approximating the number of q-colorings of a graph
in Õ( n1/3

ϵ2 ) rounds, when q > α∆, for α > 2, within multiplicative error ϵ, with probability at
least 3

4 .

We also give a conditional lower bound for approximating a partition function, Theorem 10.
Even under our locality and mixing assumptions, counting when ϵ ≤ 1

32n2 is as hard as
triange detection.

2 Technical Preliminaries

2.1 Gibbs Distributions on Graphical Models
Consider a traditional graph labeling problem, where each vertex receives a label from some
underlying alphabet A. We focus on randomly sampling from a subset, S, of such labelings,
given a distribution. In particular, we want to sample from a Gibbs distribution. Borrowing
terminology from physics, we have the Hamiltonian, a function H : S → {0, 1, ..., h}, for
some integer h ≥ 0.
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▶ Definition 3 (Gibbs Distribution). The Gibbs distribution at inverse temperature β ≥ 0
assigns a labeling, σ ∈ S, a probability proportional to exp(−βH(σ)).

In the trivial case, if we choose H = 0, we get a uniform distribution over S.

▶ Definition 4 (Partition Function). The normalizing constant of the distribution, Z(β) =∑
σ∈S exp(−βH(σ)), is referred to as the partition function.

We will make the assumption that |A| and h are bounded by a polynomial in n. This is
not a significant restriction and is necessary both algorithmically and to ensure messages are
of size O(log n).

For this paper we will focus heavily on the well studied Potts model.

▶ Definition 5. The Potts model is a Gibbs distribution where A = [q], is a set of colors.
S is [q]V . The Hamiltonian, H, assigns to each, possibly improper, coloring the number of
monochromatic edges (edges where both vertices have the same color).

Note that when β =∞, the Potts model simply becomes the uniform distribution over
proper colorings.1 Furthermore, Z(∞) counts the number of proper colorings. On the other
hand, when β = 0, the model is uniform over all proper and improper colorings. Then
Z(0) = qn. More precisely, when β > 0, this model is called the antiferromagnetic Potts
model, since neighboring vertices favor not having the same color.

2.2 Counting From Sampling
We would now like to estimate Z(β), for a given choice of β. We call this the generalized
counting problem, as Z gives the weighted count over all labelings. As discussed in the
introduction, it is often sufficient to take Õ( n

ϵ2 ) samples. More precisely, the result from Liu,
Yin, and Zhang [10] is summarized by the next theorem.

▶ Theorem 6. For a Gibbs distribution and inverse temperatures 0 ≤ β1 < β2, Z(β2)
Z(β1) can be

computed with a multiplicative error of ϵ with probability at least 3
4 given the Hamiltonian

of Õ( n
ϵ2 ) samples taken from the Gibbs distribution for inverse temperatures ranging from

[β1, β2]. Furthermore, the temperature each sample is taken at can be precomputed and only
depends on n, h, and |A|.

The theorem implies that we can approximate Z(β), as long as Z(β′) is known in advance
for some β′ ≥ 0 and that we can draw Õ( n

ϵ2 ) samples for inverse temperatures in the range
[min(β, β′), max(β, β′)].

2.3 Pairwise Markov Random Fields
The traditional way to sample from a Gibbs distribution is using a rapidly mixing Markov
chain. We begin from an arbitrary state (a graph labeling) and simulate transitions until the
chain is mixed, meaning that the current state is roughly drawn from the desired distribution.
Here we will focus on sampling from the probability space defined by a pairwise Markov
random field. A pairwise Markov random field on a graph consists of vertex constraints and
edge constraints.

1 We treat the infinite case in the sense of the limit as β → ∞.

DISC 2025
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For each vertex v, we have a constraint bv : A → R≥0. For each edge e = (u, v) we also
have a constraint Ae : A×A → R≥0. Here the edges are undirected, but the function Ae

is not necessarily symmetric. The probability of graph vertex labeling l is defined to be
proportional to∏

v

bv(l(v)) ·
∏

e=(u,v)

Ae(l(u), l(v))

▶ Definition 7 (Local Gibbs Distribution). We call a Gibbs distribution local if
1. The distribution can be represented as a pairwise Markov random field.
2. The Hamiltonian H can be represented as a sum over sub-functions defined on each

edge and vertex. H(σ) =
∑

v Hv(σ) +
∑

e=(u,v) He(u, v). Furthermore, each of these
subfunctions also has a codomain of [h].

3. An element σ ∈ S can be constructed in the CongestedClique in O(log n) rounds.

The third condition is needed to initialize the Markov chain.

▶ Example 8 (Potts Model). We can see that the Potts model is a local Gibbs distribution.
For convenience we make the change of variable, β = − ln λ. We choose bv(x) = 1 and

Ae(x, y) =
{

λ, if x = y

1, else

2.4 Distributed Sampling

Feng, Sun, and Yin [5] found a preliminary distributed Markov chain to sample from pairwise
Markov random fields. In the case of q-colorings, this was improved simultaneously by Fischer
and Ghaffari [6] and Feng, Hayes, and Yin [4]. The improved chain can be generalized beyond
colorings, see [11] by Pemmaraju and Sobel for the chain explicitly given in full generality.
One transition of the chain, for some yet to be determined probability p, is defined in the
following pseudocode. Every vertex v has its current label Xv. For ease of notation, in the
edge acceptance step, any fraction that is not well defined (because certain vertices may not
be active) equals 1. Note that on some pairwise Markov random fields this chain may have a
very large mixing time, ≫ log n and possibly infinite.

Algorithm 1 Distributed Metropolis-Hastings.

for each vertex v do
v becomes active with probability p

if v is active then
v samples a proposed label, σv, from a distribution proportional to bv(σ)

end if
end for
for each edge e = (u, v) do

edge e is accepted with probability Ae(Xu,σv)
max Ae

· Ae(σu,Xv)
max Ae

· Ae(σu,σv)
max Ae

end for
for each active vertex v do

Xv ← σv, if every edge incident to v is accepted
end for
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3 Our Results

3.1 Fast Mixing for the Potts Model

For the Potts model, the distributed Metropolis-Hastings Markov chain has a mixing time of
O(log n

δ ). As the proof technique is standard, we defer the proof to the appendix of the full
version of our paper.

3.2 Fast Simulation of Distributed Metropolis-Hastings

We would now like to estimate the partition function of a local Gibbs distribution. As
described earlier, we need to know the Hamiltonian of k = Õ( n

ϵ2 ) samples from the Gibbs
distribution. This can be found by running k instances of the distributed Metropolis-Hastings
Markov chain. We can simulate one transition of n instances of the chain in parallel.

▶ Theorem 1. One transition can be simulated for n instances of the distributed Metropolis-
Hastings chain in O(n1/3) rounds.

3.2.1 Algorithm

Initialization

Each chain starts at an initial labeling. At time step t, each vertex will hold Xv,i,t, the label
of vertex v in chain i. It will also sample its new proposed label, σv,i,t. In the case the vertex
is inactive in a chain, σv,i,t = ⊔.

To decide if Xv,i,t+1 ← σv,i,t, assuming σv,i,t ̸= ⊔, v needs to know if any of its incident
edges are rejected in chain i. We will use the technique from Dolev, Lenzen, and Peled [3]
for triangle counting and also used by Censor-Hillel, Kaski, Korhonen, Lenzen, Paz, Suomela
[2] for matrix multiplication over semirings.

For convenience, we will use 0 based indexing. Let A be the adjacency matrix of the
graph. Consider an n × n × n cube, Q, where Qv,w,i is true iff Av,w = 1 and {v, w} is
not accepted in chain i. Furthermore, think of Q evenly divided into n, n2/3 × n2/3 × n2/3

subcubes. Let subcube Q[x, y, z] refer to the subcube over the indices [xn2/3, (x + 1)n2/3)×
[yn2/3, (y + 1)n2/3)× [zn2/3, (z + 1)n2/3). We will use a similar notation for matrices, A[x, y]
refers to the submatrix over the indices [xn2/3, (x + 1)n2/3)× [yn2/3, (y + 1)n2/3).

Computing Q

Each subcube is arbitrarily assigned to a machine that will be responsible for generating the
entries of the subcube. Because edges are non-directional, we assign the subcubes Q[x, y, z]
and Q[y, x, z] to the same machine. Each machine is assigned at most two subcubes.

Consider the machine M holding the subcubes Q[x, y, z] and Q[y, x, z]. To fill in the
subcubes, M needs to hold A[x, y], σ[x, z], σ[y, z], X[x, z], and X[y, z]. Altogether, M needs
to receive Θ(n4/3) words. For every machine to do this step in parallel, each machine needs
to send and receive Θ(n4/3) words. This communication is done in Θ(n1/3) rounds, using
Lenzen’s result [9]. M then uses the information it received in addition to its randomness to
fill in the (possibly two) subcube(s) it is responsible for. More precisely, M runs the edge
acceptance step of the Markov chain for the edge-chain pairs it is responsible for and fills in
the subcube(s).

DISC 2025
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Updating Labels

M will compress each subcube it holds into a submatrix by applying union along the y-
axis. In particular, the subcube Q[x, y, z] is flattened into the submatrix Ry[x, z], where
Ry[x, z]i,k = true if there exists j such that Q[x, y, z]i,j,k = true.

Finally, vertex u accepts its proposal in chain i if ∨yRy
u,i = false, as this indicates that

no incident edge to u was rejected. To compute this for every chain, u receives Ry
u,i for all y

and i. Doing this simultaneously for all vertices, requires each machine to send and receive
O(n4/3) words of information. This takes a final O(n1/3) rounds.

▶ Corollary 9. With success probability at least 3
4 , we can approximate the partition function,

Z(β), of a local Gibbs distribution with multiplicative error ϵ in Õ( n1/3

ϵ2 ) rounds, when Z(β′)
is known for some β′ and the associated distributed Metropolis-Hastings chain has an O(log n)
mixing time for inverse temperatures in the interval [min(β, β′), max(β, β′)].

Proof. Theorem 6 and Theorem 1 almost immediately give us the result. We draw Õ( n
ϵ2 )

samples from the Gibbs distribution by simulating O(log n) transitions of the Markov chain.
There is one slight problem, the samples are held in a distributed fashion and we need the
Hamiltonian of each sample held centrally at some machine. We use a very similar strategy
as before, with a slight change described in our full paper. ◀

▶ Corollary 2. There is an algorithm for approximating the number of q-colorings of a graph
in Õ( n1/3

ϵ2 ) rounds, when q > α∆, for α > 2, within multiplicative error ϵ, with probability at
least 3

4 .

3.3 Lower Bound
We can show that even in the case where the distributed Metropolis-Hastings chain has
mixing time O(log n

δ ), we still have conditional hardness results.
Consider the following Gibbs distribution. A = V ∪ [3n]. S are the labelings such that

every vertex’s label is either in [3n] or is a neighboring vertex. We let the Hamiltonian count
the number of edges {u, v} such that the labels of u and v are the same vertex. It is not hard
to show that this is a local Gibbs distribution and that the mixing time of the distributed
Metropolis-Hastings chain is O(log n

δ ) for β ≥ 0.
As always, when β = 0, all labelings in S are equally likely. Z(0) =

∏
v 3n + deg(v). On

the other hand, when β =∞, we remove labelings where two neighboring vertices are labeled
the same mutually neighboring vertex. This can only happen if there is a triangle in the
graph. Thus, Z(0) > Z(∞) if and only if there is a triangle in the graph. In fact, if the graph
has at least one triangle, a, b, c, then 1− Z(∞)

Z(0) ≥
1

16n2 , since that is a lower bound on the
probability that vertices a and b both choose c in a uniform random labeling. Rearranging,
Z(∞) ≤ Z(0)(1− 1

16n2 ) ≤ Z(0)(1− 1
32n2 )2.

Note that we can easily compute Z(0) exactly. We can choose ϵ = 1
32n2 and take

an approximate count of Z(∞), Z̄. Suppose the graph doesn’t have a triangle. Then,
Z(∞) = Z(0). Thus, Z̄ ≥ (1 − 1

32n2 )Z(0). Otherwise, the graph has a triangle. Then,
Z̄ ≤ (1 + 1

32n2 )Z(∞) ≤ (1− 1
32n2 )2(1 + 1

32n2 )Z(0) < (1− 1
32n2 )Z(0). Thus, we can use Z̄ to

determine if the graph has a triangle.

▶ Theorem 10. Approximating the partition function of a local Gibbs distribution when
ϵ ≤ 1

32n2 with success probability p is as hard as triangle detection with success probability p.
This is true even when samples can be taken for all β ≥ 0 in Õ(1) rounds.

Note that the best known algorithm for triangle detection takes O(n0.157) rounds [2, 14].
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