On the Shape Containment Problem Within the
Amoebot Model with Reconfigurable Circuits

Matthias Artmann &

Paderborn University, Germany

Andreas Padalkin &

Paderborn University, Germany
Christian Scheideler =

Paderborn University, Germany

—— Abstract

In programmable matter, we consider a large number of tiny, primitive computational entities called

particles that run distributed algorithms to control global properties of the particle structure. Shape
formation problems, where the particles have to reorganize themselves into a desired shape using
basic movement abilities, are particularly interesting. In the related shape containment problem, the
particles are given the description of a shape S and have to find maximally scaled representations of
S within the initial configuration, without movements. For example, if S is a triangle, they have
to identify the largest subsets of particles that already form a triangle. While the shape formation
problem is being studied extensively, no attention has been given to the shape containment problem,
which may have additional uses besides shape formation, such as detecting structural flaws.

In this paper, we consider the shape containment problem within the geometric amoebot model
for programmable matter, using its reconfigurable circuit extension to enable the instantaneous
transmission of primitive signals on connected subsets of particles. We first prove a lower runtime
bound of © (y/n) synchronous rounds for the general problem, where n is the number of particles.
Then, we present simple and efficient primitives for identifying subsets that form the desired shape.
Using these primitives, we construct a large class of shapes which we call snowflakes. This class
contains, among others, all shapes composed of parallelograms and hexagons, and the class of star
convex shapes. Let k be the maximum scale of the considered shape in a given amoebot structure.
If the shape is star convex, we solve it within O (log? k) rounds. If it is a snowflake but not star
convex, we solve it within O (y/nlogn) rounds.

2012 ACM Subject Classification Theory of computation — Distributed computing models; Theory
of computation — Self-organization; Theory of computation — Computational geometry

Keywords and phrases Programmable matter, amoebot model, reconfigurable circuits, shape con-
tainment

Digital Object Identifier 10.4230/LIPIcs.DISC.2025.7
Related Version Full Version: https://arxiv.org/abs/2501.16892 [4]

Funding This work was supported by the DFG Project SCHE 1592/10-1.

Acknowledgements We thank Daniel Warner for his guidance and helpful discussions.

1 Introduction

Programmable matter envisions a material that can change its physical properties in a
programmable fashion [25] and react to external stimuli. It is typically viewed as a system of
many identical micro-scale computational entities called particles. Potential application areas
include minimally invasive surgery, maintenance, exploration, and manufacturing. While
significant progress is being made in the field of micro-scale robotics [5,26], the fundamental
capabilities and limitations of such systems are studied in theory using various models [24].
? Matthias Artmann., Andreas Pada.lkin, and Christian Scheideler;
37 icensed under Creative Commons License CC-BY 4.0

39th International Symposium on Distributed Computing (DISC 2025).
Editor: Dariusz R. Kowalski; Article No.7; pp. 7:1-7:22

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:matthias.artmann@uni-paderborn.de
https://orcid.org/0009-0006-4530-2303
mailto:andreas.padalkin@upb.de
https://orcid.org/0000-0002-4601-9597
mailto:scheideler@upb.de
https://orcid.org/0000-0002-5278-528X
https://doi.org/10.4230/LIPIcs.DISC.2025.7
https://arxiv.org/abs/2501.16892
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

7:2

On the Shape Containment Problem Within the Amoebot Model

In the amoebot model of programmable matter, the particles are called amoebots and
are placed on the nodes of a graph. We assume that the occupied nodes form a connected
subgraph. Since information can only travel through the edges of the graph, there is a natural
lower bound of Q (D) for many problems, where D is the diameter of this subgraph.

Motivated by this, we consider the reconfigurable circuit extension of the model, which
allows better results with reasonable modifications. In this extension, the amoebots can
construct simple communication networks called circuits on connected subgraphs of the
structure and broadcast primitive signals on these circuits instantaneously. This allows
polylogarithmic solutions to many problems, e.g., leader election, consensus, shape recognition,
and shortest path forest construction [12,20, 21].

The shape formation problem, where the amoebot structure has to reconfigure itself into
a given shape, is a standard problem of particular interest [24]. In this paper, we study the
related shape containment problem: Given a shape S, the amoebots must find the maximum
scale at which S can be placed within their structure and identify all valid placements at
this scale. This can be useful for shape formation by self-disassembly, i.e., disconnecting all
amoebots that are not part of a selected placement of the shape from the structure [13,14].
The problem can also be interpreted as a discrete variant of the polygon containment problem
in classical computational geometry, which has been studied extensively [6,23]. To our
knowledge, there are no distributed solutions that apply to the amoebot model.

1.1 Geometric Amoebot Model

We use the geometric amoebot model for programmable matter, as proposed in [9]. Using the
terminology from the recent canonical model description [8], we assume common direction
and chirality, constant-size memory, and a fully synchronous scheduler, making it strongly
fair. We describe the model in sufficient detail here and refer to [8,9] for more information.

The geometric amoebot model places n particles called amoebots on the infinite regular
triangular grid graph Ga = (Va, Ea) (see Fig. 1a). This is the typical graph used in the
amoebot literature [9,12,19-21]. Each amoebot occupies one node, and each node is occupied
by at most one amoebot. We identify each amoebot with the grid node it occupies to simplify
the notation. Thereby, we define the amoebot structure A C Va as the set of occupied nodes.
We assume that A is finite and its induced subgraph of G is connected.

Each amoebot has a local compass identifying one of its incident grid edges as the East
direction, and a chirality defining its local sense of clockwise rotation. We assume that
all amoebots share both. This is not a restrictive assumption because a common compass
and chirality can be established efficiently using circuits [12]. The amoebots are controlled
in a distributed fashion by identical and anonymous finite state machines. In particular,
the amount of memory per amoebot is constant, i.e., fixed by the algorithm /state machine
running on each amoebot and independent of the number of amoebots in the structure.
This means that, for example, unique identifiers for all amoebots cannot be stored. A
computation proceeds in fully synchronous rounds. In each round, all amoebots act and
change their states simultaneously based on their current state and their received signals
(see Section 1.2). We measure the time complexity of an algorithm by the number of rounds
it requires until all amoebots reach a terminal state. Although the model allows amoebots
to perform movements, we only consider static amoebot structures in this paper.

M. Artmann, A. Padalkin, and C. Scheideler

® NW' NE
® & & 0O
® &6 6 0 O 7 y W E
e & O ® O ®

EEEEREEREEK) S\ /5
“ (0)0) UEX

(a) Amoebot structure. (b) Grid axes and cardinal directions.

N T

(c) Amoebot structure with one global circuit. (d) Amoebot structure with six circuits.

Figure 1 (a) shows an amoebot structure in the triangular grid. Amoebots are represented by
black hexagons and neighboring amoebots are connected by thick edges. (b) shows the axes and
cardinal directions in the triangular grid and the unit vector in the East direction. (c, d) illustrate
the reconfigurable circuit extension for ¢4 = 2. Amoebots are drawn as hexagons, pins are black
circles on their borders, and partition sets are drawn as black circles inside the hexagons. The
partition sets are connected to the pins they contain. Partition sets in the same circuit have lines of
the same color.

1.2 Reconfigurable Circuit Extension

The reconfigurable circuit extension [12] places ¢y external links on every edge connecting
two adjacent amoebots u,v € A. The endpoints of an external link are called pins. For each
link, one pin is owned by u and one is owned by v. The constant ¢4 is an algorithm design
parameter and is the same for all amoebots. In this paper, we use ¢y = 2, which is the least
number of pins required by the PASC algorithm [12], a central primitive for our results.

Let P(u) be the set of pins owned by amoebot u € A. Each amoebot u computes a
partitioning of P(u) into a set Q(u) of non-empty, pairwise disjoint subsets @ C P(u) such
that Ugegu) @ = P(u). The subsets Q € Q(u) are called partition sets and Q(u) is called
the pin configuration of u. The amoebot’s algorithm defines how the pin configuration is
computed in every round. Let Q := |J,. 4 Q(u) be the set of all partition sets in the amoebot
structure. Two partition sets @ € Q(u) and Q' € Q(v) of neighboring amoebots u and v
are connected if there is an external link with one pin in @ and one pin in Q’. Let Eg
be the set of these connections. We call each connected component C' of the undirected
graph Gg := (9, Eg) a circuit (see Figs. 1c, d). An amoebot u is part of a circuit C if C
contains at least one partition set of u. Note that multiple partition sets of an amoebot u
may be contained in the same circuit without u being aware of this due to its lack of global
information.

During its activation, each amoebot can establish an arbitrary new pin configuration and
send primitive signals called beeps on any selection of its partition sets. A beep is broadcast
to the circuit containing the partition set it was sent on. All partition sets in that circuit

7:3

DISC 2025

7:4

On the Shape Containment Problem Within the Amoebot Model

\VAVARWAVANRY

S SZZSF) S5 Sy =253 S5 =353

Figure 2 Examples of shapes and shape transformations. Each shape is identified by the grid
nodes, edges, and faces it contains. The origin of each shape is highlighted in white (we translate
some shapes for better visibility). S1 and Ss are equivalent, and each contains one face and one
hole. The shapes S3, Si1 and S5 illustrate the scaling operation.

receive the beep at the beginning of the next round. An amoebot can tell which of its
partition sets have received a beep, but it has no information on the identity, location, or
number of beeping amoebots. We model all communication between amoebots with circuits.

1.3 Problem Statement and Our Contribution

Consider the embedding of Ga into R? such that the grid’s faces form unit triangles and one
grid node is placed at the plane’s origin (0,0) € R? (see Fig. 1b). We obtain three coordinate
axes, X,Y, Z, and six cardinal directions D = {E,NE,NW, W,SW,SE}. Let uy denote the
unit vector in direction d € D.

A shape S C R? is a finite union of nodes, edges, and faces of the embedded grid graph
(see Fig. 2, c.f. [10,12]). Edges contain their endpoints and faces contain their enclosing edges.
A shape must be connected, but it may contain holes, i.e., R? \ S might not be connected.
This shape definition matches the one used in [10] for shape formation and extends the
definition used in [12] for shape recognition.

We define translation, rotation, and scaling operations on a shape S as follows. For t € R2,
we denote S translated by ¢ by S+t := {p+t|p € S}. This is a valid shape if and only
if ¢ is the position of a grid node, i.e., a linear combination of unit vectors in the cardinal
directions with integer coefficients. We can therefore write ¢ € Va, identifying the position
with the unique grid node occupying it. For r € Z, let S denote S after counter-clockwise
rotations by 60° around the origin of R2. Note that r € {0,...,5} is sufficient to represent
all distinct rotations of a shape in the grid. Let k£ € R be a scale factor, then we define
k-S:={k-p|pe€ S} to be the shape S scaled by k. We only consider positive integer scale
factors to ensure that the resulting set is a valid shape. If S is minimal, i.e., there is no
scale factor 0 < k¥’ < 1 such that &’ - S is a valid shape, then the integer scale factors cover
all possible scales of S that produce valid shapes (see Lemma 1 in [10]). Two shapes are
equivalent if one can be obtained from the other by a rigid motion, i.e., a composition of a
translation and a rotation.

Let V(S) C Va denote the set of grid nodes contained in S. For convenience, we assume
(0,0) € V(S) for any given shape S and call this node the origin of S. This property is
invariant under rotation and scaling as defined above. A walid placement of a shape S in an
amoebot structure A is an amoebot p € A with V(S + p) C A (identifying p with the grid
node it occupies). Let V(S, A) C A denote the set of all valid placements of S in A. The
mazximum scale of S in A is the largest scale k € Ny such that there is a valid placement of
k-S) in A for some r € Z:

kmax (S, A) := sup {k € Ny ’ dreZ:V (k~S(T),A) #+ @}

kmax is well-defined because 0 - .S is at most a single node for every shape S, which fits into

M. Artmann, A. Padalkin, and C. Scheideler

P3 kmax =3
S
m—.) i)))

q

Figure 3 Valid placements of a shape S in the amoebot structure A from Fig. la. p; and ps are
valid placements of S and S, respectively. g is not a valid placement of S® because one node of
V(8® + ¢) is not contained in A. ps is the only valid placement of 3 - S and there are no valid
placements for any scale k > 3, so we have kmax (S, A) = 3. A shape containment algorithm allows
p3 to determine ps € V(kmax S<5), A) and rules out all other amoebots and rotations.

any non-empty amoebot structure A. We obtain kmax(S, A) = oo if and only if S does not

contain any edges. If S and A are clear from the context, we will write kmax = kmax (S, 4).

See Fig. 3 for illustration.

We define the shape containment problem as follows: Let S be a shape (containing the
origin). An algorithm solves the shape containment problem instance (S, A) for an amoebot
structure A if it terminates eventually and at the end,

1. all amoebots know whether kpax € {0,000} (meaning that all or none of the amoebots are
valid placements), and
2. if kmax € N, then for every r € {0,...,5}, each amoebot knows whether it is contained in

V(kmax - ST, A).

The algorithm solves the shape containment problem for S if it solves the shape containment
instances (5, A) for all finite connected amoebot structures A. Note that the shape S is fixed

for an algorithm, i.e., it is encoded in the state machine in some way, and its size is constant.

The algorithm may use an equivalent shape S’ instead of S itself.

There are two key challenges in solving the shape containment problem. First, the
amoebots have to find the maximum scale kp.x. We approach this problem by testing
individual scale factors for valid placements until k.. is fixed. We call this part of an
algorithm the scale factor search. Second, for a given scale k and a rotation r, the valid
placements of k - S(") have to be identified. This means that every amoebot p € A must
collect information on all amoebots in V (k- S 4 p). p then has to mark itself as a valid
placement if and only if all of these amoebots exist. In some cases, we initially view all
amoebots as placement candidates and then eliminate candidates that can be ruled out
as valid placements. We call this part the wvalid placement search procedure. Since the
information about missing amoebots naturally comes from the boundaries of the structure,
the main difficulty here is distributing this information efficiently to all affected amoebots
and not ruling out any valid placements.

In this paper, we present sublinear time solutions for the shape containment problem using
circuits. As a motivation, we first prove a lower bound for the general case that holds even if

the maximum scale is known, by creating a communication bottleneck for an example shape.

Next, we present scale factor search approaches using distributed memory, applying a binary
search where it is possible. We then introduce simple and efficient primitives for placement
search algorithms based on combining and transforming valid placements of lines, thereby

7:5

DISC 2025

7:6

On the Shape Containment Problem Within the Amoebot Model

constructing increasingly complex shapes. Using earlier results for reconfigurable circuits,
these primitives run in at most logarithmic time. By combining our primitives, we obtain the
class of snowflake shapes, which contains a variety of complex and practically relevant shapes.
For example, it contains all convex shapes, all shapes that are composed of parallelograms
of the same orientation, all shapes composed of hexagons, and combinations (e.g., unions)
of these and other shapes. The definition of this class allows more types of shapes to be
combined and integrated when a valid placement search procedure is given for them. Our
shape containment solution for snowflakes takes a sublinear number of rounds. Further,
we show that for the set of star convexr shapes, which is contained in the snowflake class,
a binary search for the scale factor even leads to a polylogarithmic solution. Surprisingly,
the binary search approach is only directly applicable to star convex shapes. We only give
high-level explanations of our primitives and defer the technical details and proofs to the full
version of the paper [4]. Selected proofs can also be found in the appendix.

1.4 Related Work

The authors of [12] demonstrated the potential of their reconfigurable circuit extension with
algorithms solving the leader election, compass alignment, and chirality agreement problems
within O (logn) rounds, w.h.p.! They also presented efficient solutions for some exact shape
recognition problems: Given common chirality, an amoebot structure can determine whether
it matches a scaled version of a given shape composed of edge-connected faces in O (1) rounds.
Without common chirality, convex shapes can be detected in O (1) rounds and parallelograms
with linear or polynomial side ratios can be detected in © (logn) rounds, w.h.p.

The PASC algorithm was introduced in [12] and refined in [21], and it allows amoebots
to compute distances along chains. It has become a central primitive in the reconfigurable
circuit extension, as it was used to construct spanning trees, detect symmetry, and identify
centers and axes of symmetry in polylogarithmic time, w.h.p. [21]. The authors in [20] used
it to solve the single- and multi-source shortest path problems, requiring O (log ¢) rounds for
a single source and ¢ destinations and O (lognlog2 k) rounds for k sources and any number
of destinations. The PASC algorithm also plays a crucial role in this paper (see Sec. 2.2.2).

The authors in [11] studied the capabilities of a generalized circuit communication model
that directly extends the reconfigurable circuit model to general graphs. They provided
polylogarithmic time algorithms for various common graph construction (minimum spanning
tree, spanner) and verification problems (minimum spanning tree, cut, Hamiltonian cycle
etc.). Additionally, they presented a generic framework for translating a type of lower bound
proof from the widely used CONGEST model into the circuit model, demonstrating that
some problems are hard in both models, while others can be solved much faster with circuits.
For example, checking whether a graph contains a 5-cycle takes 2 (n/logn) rounds in general
graphs, even with circuits, while the verification of a connected spanning subgraph can be
done with circuits in O (logn) rounds w.h.p., which is below the lower bound shown in [22].

In the context of computational geometry, the basic polygon containment problem was
studied in [6], focusing on the case where only translation and rotation are allowed. The
problem of finding the largest copy of a convex polygon inside some other polygon was
discussed in [23] and [1], for example. An example for the problem of placing multiple
polygons inside another without any polygons intersecting each other is given by [17]. More

L An event holds with high probability (w.h.p.) if it holds with probability at least 1 — n~%, where the
constant & can be made arbitrarily large.

M. Artmann, A. Padalkin, and C. Scheideler

recently, the authors in [16] showed lower bounds for several polygon placement cases under
the kSUM conjecture. For example, assuming the 5SUM conjecture, there is no O ((p+¢)>~¢)-
time algorithm for any € > 0 that finds a largest copy of a simple polygon P with p vertices
that fits into a simple polygon @ with ¢ vertices under translation and rotation. Perhaps
more closely related to our setting (albeit centralized) is an algorithm that solves the problem
of finding the largest area parallelogram inside of an object in the triangular grid, where the
object is a set of edge-connected faces [2].

2 Preliminaries

This section introduces elementary algorithms for the circuit extension from previous work.

2.1 Coordination and Synchronization

As mentioned before, we assume that all amoebots share a common compass direction
and chirality. This is a reasonable assumption because the authors of [12] have presented
randomized algorithms establishing both in O (logn) rounds, w.h.p.

We often want to synchronize amoebots, for example, when different parts of the structure
run independent instances of an algorithm simultaneously. For this, we can use a global
circuit: Each amoebot connects all of its pins into a single partition set. The resulting
circuit spans the whole structure and allows the amoebots which are not yet finished with
their procedure to inform all other amoebots by sending a beep. When no beep is sent, all
amoebots know that all instances of the procedure are finished. Due to the fully synchronous
scheduler, we can establish the global circuit periodically at predetermined intervals.

2.2 Chains and Chain Primitives

A chain of amoebots with length m — 1 is a sequence of m amoebots C = (pg, ..., Pm-1)
where all subsequent pairs p;, p;+1, 0 < ¢ < m — 1, are neighbors, each amoebot except pg
knows its predecessor, and each amoebot except p,,_1 knows its successor. In this paper, we
only consider simple chains without multiple occurrences of the same amoebot. By letting
each amoebot decide whether it connects a pin toward its predecessor with a pin toward its
successor, we can easily establish circuits along such chains.

2.2.1 Binary Operations

The constant memory limitation of amoebots makes it difficult to deal with non-constant
data, particularly numbers that can increase with n. However, we can use amoebot chains
to implement a distributed memory by letting each amoebot on the chain store one bit
of a binary number, as demonstrated in [7,21]. Using circuits, we can implement efficient
comparisons and arithmetic operations between two operands stored on the same chain.

» Lemma 1. Let C = (po,...,pm—1) be an amoebot chain such that each amoebot p; stores
m—1) m—1)

two bits a; and b; of the integers a and b, where a = > ;2" and b= > b;2". Within O (1)
i=0 i=0

rounds, the amoebots on C' can compare a to b and compute the first m bits ofa+b,a—0>
(ifa>b), 2-a, and |a/2] and store them on the chain. Within O (m) rounds, the amoebots
on C' can compute the first m bits of a-b, |a/b|, and a mod b and store them on the chain.

Lemma 1 is a minor improvement over the algorithms presented in [21]. Additionally,
individual amoebots can execute simple binary operations online on streams of bits:

17

DISC 2025

7:8

On the Shape Containment Problem Within the Amoebot Model

» Lemma 2. Let p be an amoebot that receives two numbers a,b as bit streams, i.e., it
recetves the bits a; and b; in the i-th iteration of some procedure, fori=0,...,m. Then, p
can compute bit ¢; of c=a+b orc=a—"0b (if a > b) in the i-th iteration and determine the
comparison result between a and b by iteration m, with only constant overhead per iteration.

2.2.2 The PASC Algorithm

A particularly useful algorithm in the reconfigurable circuit extension is the Primary-And-
Secondary-Circuit (PASC) algorithm, first introduced in [12]. We omit the details of the
algorithm and only outline its relevant properties. Please refer to [21] for details.

» Lemma 3 ([12,21]). Let C = (po,...,Pm—1) be a chain of m amoebots. The PASC
algorithm, executed on C with start point pg, performs [logm] iterations within O (logm)
rounds. In iteration j = 0,...,[logm] — 1, each amoebot p; computes the j-th bit of its
distance i to the start of the chain, i.e., p; computes i as a bit stream.

The PASC algorithm is especially useful with binary counters. It allows us to compute
the length of a chain, which is received by the last amoebot in the chain and can be stored
in binary on the chain itself (letting the last amoebot send the received bits as beeps on a
circuit spanning the chain). Furthermore, given some binary counter storing a distance ¢ and
some amoebot chain C = (pg,...,pm—1), each amoebot p; can compare i to ¢ by receiving
the bits of £ on a global circuit in sync with the iterations of the PASC algorithm on C.

» Lemma 4. Let C = (po,...,Ppm—1) be a chain in an amoebot structure A and let a
value ¢ € Ny be stored in some binary counter of A. Within O (logmin{¢,m}) rounds,
every amoebot p; can compare i to £. The procedure can run simultaneously on any set of
edge-disjoint chains with length < m — 1.

3 A Lower Bound for Finding Valid Placements

We first show a lower bound that demonstrates a central difficulty arising in the shape
containment problem. For a simple example shape Sq (see Fig. 4), we show that even if the
maximum scale is known, identifying all valid placements of Sq can require Q (y/n) rounds
due to communication bottlenecks.

» Theorem 5. There exists a shape Sq such that for any choice of origin and every amoebot
algorithm A that terminates after o (\/n) rounds, there exists an amoebot structure A for
which the algorithm does not compute V(kmax(Sq, A) - Sq, A), even if kmax is known.

The proof idea is as follows (see Appendix A for details): Consider an amoebot structure
A consisting of two parts, X and Y, which are only connected by a single edge. In one
round, one of at most 2°¢ different signals can be sent via the c4 external links on that
edge. Suppose that for k = kpax(Sq, 4), all valid placements of k - Sq lie in X, and each
placement’s required node set reaches into Y. By adding and removing amoebots from Y, we
can control which amoebots in X are valid placements. The idea for our lower bound proof
is to construct 2* distinct patterns of valid placements by only altering Y. To identify the
valid placements correctly, the amoebots in X must distinguish between all of these patterns
using information that must cross the edge between X and Y. Since cy is a constant, this
takes Q (k) rounds. We show such a construction for any k > 2, with n = O (k?), and for
any choice of origin in Sq. In the remainder of this paper, we explore for which shapes
these arbitrary patterns of valid placements do not occur, and present efficient procedures
exploiting this property.

M. Artmann, A. Padalkin, and C. Scheideler

S50

Short arm

Figure 4 An example shape for which the valid placement search is bounded below by € (yv/n).

This lower bound holds for the problem of finding valid placements. Since every algorithm
solving the shape containment problem must compute all valid placements for the maximum
scale, the bound also holds for the general shape containment problem. Further, note that
the lower bound of Q (D) in the amoebot model without circuits, where D = Q (y/n) is the
diameter of A, is caused by the distance information can travel per time step. In contrast, this
lower bound is caused by the limited bandwidth of the circuits in some amoebot structures.

4 Scale Factor Search

As outlined before, our shape containment algorithms consist of two search procedures. The
first is a scale factor search that determines which scales have to be checked to find the
maximum scale. The second procedure is a wvalid placement search that identifies all valid
placements of k- S(") for all » € {0,...,5}, given the scale k in a binary counter.

Consider some shape S and an amoebot structure A with a binary counter storing an
upper bound K > kpax(S, A). The simple linear search procedure runs valid placement
checks for the scales K, K —1,...,1 and accepts when the first valid placement is found. If
no placement is found in any iteration, we have kpax = 0.

» Lemma 6. Let S be a shape and A an amoebot structure with a binary counter storing
an upper bound K > knax(S,A). Given a valid placement search procedure for S, the
amoebots compute kmax(S, A) in at most K iterations, running the placement search for
scales K, K — 1,. .., knax and with constant overhead per iteration.

When using the linear search method, finding a small upper bound K is essential for
reducing the runtime. One way of obtaining K for S is to use a simpler shape S’ with S’ C S
for which kp.x can be computed efficiently. Since every valid placement of S is also a valid
placement of S, we have kpax(S, A) < kmax(S’, A) =: K. Moving on, some shapes permit a
faster search method based on an inclusion relation between different scales.

» Definition 7. We call a shape S self-contained if for all scales k < k', there exist a
translation t € R? and a rotation r € {0,...,5} such that k- S™) +t C k' - S.

For self-contained shapes, finding no valid placements at scale k£ immediately implies
kmax (S, A) < k, which allows us to apply a binary search: Starting with scale k = 1,
we double the scale factor until no valid placements are found at some scale K = 27, which
we then use as the upper bound for a binary search between 1 and K.

» Lemma 8. Let S be a self-contained shape and let A be an amoebot structure with a binary
counter large enough to store kmax = kmax (S, 4). Given a valid placement search procedure
for S, the amoebots can compute kmax within O (10g kmax) iterations such that each iteration
runs the valid placement search once for some scale k < 2 - kyax and has constant overhead.

7:9

DISC 2025

7:10

On the Shape Containment Problem Within the Amoebot Model

5 Efficient Placement Search Procedures

In this section, we introduce placement search procedures allowing amoebots to identify valid
placements of shapes when their scale is given in a binary counter. To cover all rotations,
we simply repeat the placement search six times with rotated directions. We only provide
high-level descriptions of the algorithms. Please refer to the full paper [4] for details. Our
procedures heavily rely on combining the PASC algorithm with binary operations on bit
streams (see Lemma 4). A simple and natural way to establish the required chains is using
segments:

» Definition 9. Let W € {X,Y, Z} be a grid axis. A (W)-segment is a connected set of
grid nodes on a line parallel to W. Let C' C Va, then a maximal W-segment of C is a finite
W -segment M C C that cannot be extended with nodes from C on either end. The length of
a finite segment M is | M| — 1.

For example, chains on maximal segments of the amoebot structure A can be constructed
easily once a direction has been agreed upon: All amoebots on a segment identify their chain
predecessor and successor by checking the existence of neighbors on the direction’s axis. The
start and end points of the segment are the unique amoebots lacking a neighbor in one or
both directions. Using chains on segments, we can find valid placements of line shapes.

» Definition 10. A line shape L(d,¢) is a shape consisting of { € Ny consecutive edges
extending in direction d from the origin. For £ =0, the shape only contains the origin point.

Lines are the fundamental primitive shapes we will use to construct much more complex
shapes. Our placement search procedure for lines runs the PASC algorithm to compute
indices along maximal amoebot segments and compares them to the given line length ¢, which
is transmitted on a global circuit. Exactly the amoebots whose chain index, i.e., distance to
the end of the segment, is at least £ are valid placements of the line. If the line shape L has
length ¢ and the current scale is k, we compute ¢/ = k - £ in the counter storing k and run
the procedure for length ¢'. Note that for line shapes, the boundary amoebots holding the
information which placements are invalid lie on the same segment as the affected placement
candidates, enabling this simple solution.

» Lemma 11. Let L = L(d,¢) be a line shape and let A be an amoebot structure that stores £
in some binary counter and where all amoebots agree on d. Within O (log min{¢,n}) rounds,
the amoebots can compute V(L, A).

Recall that for any two shapes S, 5" with S C 57, kmax(S, A) is an upper bound for kpax(S’, A).
Thus, the maximum scale of an edge L(d,1) is a natural upper bound on the maximum
scale of any non-trivial shape. In particular, any longest segment in the amoebot structure
provides sufficient memory to store the scale values that must be considered. To use this
fact, we establish binary counters on all amoebot segments (on all axes) and use them
simultaneously, deactivating counters if they run out of memory.

We now discuss efficient operations on valid placements that allow us to determine the
valid placements of a transformed shape. The first, simple operation is the union of shapes.
Given the valid placements C; = V(S1, A) and Cy = V(Ss, A) of two shapes S; and Sz, the
amoebots in A can find the valid placements of S’ = S; U Sy in a single round: Due to the
relation V(S’, A) = Cy N Cy, each amoebot only has to check whether it is a valid placement
of both shapes. Observe that S’ is always connected because we assume that S; and Sy
contain the origin, and the location of the origin in S; and Sy directly affects the shape S’.

M. Artmann, A. Padalkin, and C. Scheideler

5.1 The Minkowski Sum Primitive

Next, we consider the Minkowski sum of a shape with a line.

» Definition 12. Let S, 52 be two shapes, then their Minkowski sum s defined as
S1® S :={p1 +p2|p1 € 51,p2 € S2}.

The resulting subset of R? is a valid shape, and if both shapes contain the origin, then their
sum also contains the origin. Observe that for any shape S and any line L(d, £), we have

4
V(SoL(d,0) = JV(S+i-ua),
=0

ie., V(S@L(d,?)) consists of £+ 1 consecutive copies of V' (S). This means that an amoebot
p is a valid placement of S” = S @ L(d, ¢) if and only if it is a valid placement of the line
L =1L(d,?) and for every amoebot ¢ € V(L + p), ¢ is a valid placement of S. Suppose the
amoebots already know the set C' of valid placements of S and store ¢ in a binary counter.
Then, they can find the valid placements of S & L by running the placement search for L
within C, treating the amoebots in A\ C' as if they did not exist, except for synchronization.

» Lemma 13. Let S be an arbitrary shape, L = L(d,?) a line, and A an amoebot structure
storing ¢ and a scale k in some binary counter. Given d and the set C = V(k- S, A), the
amoebots can compute V(k - (S @ L), A) within O (logmin{k - £,n}) rounds.

Observe that this already yields efficient valid placement search procedures for shapes
like parallelograms L(dy, ¢1) ® L(da, ¢2) and unions thereof.

5.2 The Translation Primitive

Consider some shape S, its valid placements C = V(S, A), a direction d € D, and a distance
¢ € N such that £-ug € S. Now, let S" = S —£-ugy, then S’ only differs from S in the location
of its origin, and the valid placements of S’ are just translated versions of the placements
of S, ie, V(S A) = C+ ¢ -uy. Given the valid placements of S, we can compute the
placements of S’ with a procedure that translates the placement information from C. Our
translation primitive can do this efficiently for shapes with the following property:

» Definition 14. Let S be a shape and W € {X,Y, Z} a grid axis. The minimal axis width
of S on W (or W-width) is the infimum of the length of any mazimal line segment in S that
is parallel to W. We call S (W-)wide or wide on W if its W-width is at least 1.

For example, the minimal axis width of a triangular face is 0 for all axes due to its corners,
and the W-width of L(d, ¢) is £ when d is parallel to W and 0 otherwise. Further, observe
that for any shape S, direction d on axis W, and ¢ € N, the W-width of S @ L(d,¥) is at
least /.

Now, consider a W-wide shape S and let C' = V(k - S, A) for some scale k € N. Note that
k- S has a W-width of at least k. Let ¢ € A\ C be an invalid placement of k- .S, then ¢ must
be part of a W-segment of A\ C that has length at least k or is bounded by unoccupied
nodes on at least one side. This is because any unoccupied node x € Va \ A that makes ¢
invalid lies in V(k - S + ¢). Since V(k - S) consists of W-segments of length at least k, x
causes a similar segment which contains ¢ to be invalid, as any placement in this segment is
also invalidated by z.

7:11

DISC 2025

7:12

On the Shape Containment Problem Within the Amoebot Model

For translating the valid placements C of k- S by k steps in a direction d parallel to W,
suppose that L(d, 1) C S (otherwise, we add this edge as part of the shape transformation).
Then, we can reduce the problem to translating a single segment of length at least k. For
this, we run a procedure in every maximal W-segment M of A simultaneously. Suppose we
want to translate some segment Cjp; in M. It suffices to translate the start p; and endpoint
pa of Cyy, identifying pj = p1 + k - ug and py = pa + k - ug. To identify p}, the amoebots
in M run the PASC algorithm with p; as the start point while transmitting k& on a global
circuit. Each amoebot compares its distance to p; to k, and the amoebot with distance equal
to k becomes p;. Afterward, the amoebots in M establish a chain circuit between p} and p},
and send a beep that is received by all amoebots on the translated segment. Due to the size
of the considered segments C};, this procedure can run for almost all segments within M
simultaneously without interference. The translation primitive moves the origin of a W-wide
shape on the axis W and adds the line connecting the old and new origin locations.

» Lemma 15. Let S be a W-wide shape and A an amoebot structure that stores a scale k
in a binary counter and knows V(k - S, A). Given a direction d on azis W and { € N, the
amoebots can compute V(k - ((S + - uq) UL(d, 0)), A) within O (£ -logmin{k - £,n}) rounds.

5.3 The Triangle Primitive

Finally, we show how to find the valid placements of triangles using the above primitives.
Line shapes are scaled edges and triangles are scaled faces.

» Definition 16. Let T(d, 1) be the shape consisting of the single triangular face spanned by the
edges L(d, 1) and L(d',1) = L(d,1)V). We define general triangle shapes as T(d, ¢) := ¢-T(d, 1)
for £ € Nxq and call £ the side length or size of T(d,?).

To construct the valid placements of T' = T(d, ¢), we cover V(T') with the union of three
parallelograms. The side lengths of the parallelograms are ¢/ = [¢/2] and ¢ = [£/2] +
(¢ mod 2). Two parallelograms are translated to reach the corners of the triangle. The
algorithm can be summarized as follows: The amoebots first compute £/ and ¢ on the binary
counter storing £. Then, they run the line primitive to compute the valid placements of three
lines of length ¢ or ¢”. Next, they apply the Minkowski sum primitive to the three sets
of line placements, resulting in the valid placements of three parallelograms. To translate
two of the parallelograms, they run the translation primitive, which is applicable since
the parallelograms have a width of at least ¢/ on the translation axis (for a translation by
¢ = ¢ + 1, the valid placements can be moved by one more step in a single round using only
local communication). Finally, they intersect the valid placements of all three parallelograms
(union operation) to obtain the valid placements of the triangle.

» Lemma 17. Let T = T(d,?) be a triangle shape and let A be an amoebot structure that
stores € in some binary counter. The amoebots can compute V(T, A) within O (log min{¢, n})
rounds.

6 Shape Classification

We now generalize the idea of the triangle primitive to define the class of snowflake shapes,
whose valid placements can be found efficiently using our primitives. Then, we discuss
interesting subsets of these shapes and combine our valid placement search procedures with
suitable scale factor search approaches to solve the shape containment problem.

M. Artmann, A. Padalkin, and C. Scheideler

6.1 Snowflake Shapes

Combining the primitives discussed in the previous section, we obtain the following class of
shapes. Our definition identifies shapes with trees such that every node in the tree represents
a shape and every edge represents a composition or transformation of shapes.

» Definition 18. A snowflake tree is a finite, non-empty tree T = (Vip, E1) with three node
labeling functions T : Vp — {L, T,U,®,+}, d: Vi — D and { : Vi — Ny that satisfies the
following constraints. Every node v € Vi represents a shape S, such that:
If T(v) =L, then v is a leaf node and S, = L(d(v),£¢(v)) (line node).
If 7(v) =T, then v is a leaf node and S, = T(d(v),£(v)), where £(v) > 0 (triangle node).
If 7(v) = U, then S, = U}~ Su;, where uy,... ,uy are the children of v and m > 2
(union node).
If r(v) = @, then S, = S, ® L(d(v), £(v)), where u is the unique child of v and £(v) > 0
(sum node).
If T(v) = +, then S, = (Su +£(v) - wa)) UL(d(v), £(v)), where u is the unique child of v,
Sy has a minimal azis width > 0 on the azis of d(v), and £(v) > 0 (translation node).
Let r € Vp be the root of T, then we say that S, is the snowflake shape represented by T'.

Note that this definition constrains the location of a snowflake’s origin. Because algorithms
for the shape containment problem can place the origin of a shape freely, we may include
equivalent shapes in the class of snowflakes. Our algorithms always place the origin by the
definition. Fig. 5 shows examples for snowflakes and non-snowflake shapes.

To compute the valid placements of a snowflake, we apply the primitives from Section 5
following a topological ordering of the shape’s tree representation. This way, the amoebots
first compute valid placements of primitive shapes (lines and triangles), and then they apply
the union, Minkowski sum, and translation operations successively until they arrive at the
valid placements of the shape represented by the root node. This sequence of operations is
encoded in the state machine of each amoebot; we say that the amoebots “have access” to
the shape and its tree representation.

Consider a snowflake S represented by a tree T' = (Vp, Er) with labelings 7(-), d(-) and
£(+). We assume that each amoebot has access to a representation of T' and a topological
ordering of T from the leaves to the root. The amoebots compute V(k - S, A) as follows:

1. For every leaf v € V, perform the placement search for the scaled primitive L(d(v), k-£(v))

or T(d(v), k-£(v)) represented by v. Let C(v) C A be the resulting set of valid placements.

2. Process each non-leaf node v € Vr in the topological ordering as follows:
a. If 7(v) = U, then set C(v) =%, C(u;), where the u; are the child nodes of v.
b. If 7(v) = @, let u be the unique child of v. Run the procedure from Section 5.1 to
compute C(v) from C(u).
c. If 7(v) = +, let u be the unique child of v. Run the procedure from Section 5.2 to
compute C(v) from C(u).
3. Let r € V be the root of T. Terminate with success (kmax € N) and report the valid

placements as V(k- S, A) = C(r) if C(r) # 0, otherwise terminate with failure (kmax = 0).

» Lemma 19. Let A be an amoebot structure storing a scale k in some binary counter and
let S be a snowflake. Given an encoding of the tree T of S with a topological ordering, the
amoebots can compute V(k - ST A) for r € {0,...,5} within O (logmin{k,n}) rounds.

7:13

DISC 2025

7:14

On the Shape Containment Problem Within the Amoebot Model

Star convex shapes Snowflakes and equlvalents Other shapes

-

=
N
<l
~N
<l
~N
<l
~N
<l

I\
7
I\
7
I\
Ve
I\
7
N

VAVA VAVAV

/.
\

SRy

e

¥ @g@

Figure 5 Examples of snowflakes, star convex shapes, and non-snowflake shapes. Green nodes

-

indicate star convex shape centers, encircled blue nodes are possible snowflake origins, and origins
used for operations have a white center. All center nodes are also snowflake origins. Shape (a) is
convex and shape (b) demonstrates that not all snowflake origins must be center nodes. Shape (c)
is the union of three lines, (d) is the Minkowski sum of (c) and L(E, 1), shape (e) is the union of
L(E,2) and (d) + 2 - ug, and shape (f) is the union of six rotated variants of shape (e). (g) is the
example shape Sq for the lower bound from Section 3.

The class of snowflake shapes is the result of our primitive operations and is therefore
somewhat artificial. However, it contains a large variety of shapes, and its modular definition
provides a framework for constructing efficient valid placement search algorithms for more
shapes. For example, any shape that is composed of parallelograms with the same orientation
is a snowflake, even if the parallelograms are only connected at the corners. This is because
a parallelogram L(dy, ¢1) @ L(ds, £2) is both Wi-wide and Wa-wide, where W; is the axis
of d;. Therefore, the translation primitive can be used to move the shape’s origin to any
position in the parallelogram, after which the union primitive allows the addition of another
parallelogram at this position. Since this maintains the width properties, it can be repeated
until all parallelograms have been added to the shape. A similar method is possible for
shapes composed of hexagons because hexagons are even wide on all three axes. Constructing
shapes out of building blocks like parallelograms is a popular approach for shape formation
in grid-based modular robot systems [3,19]. Shapes in square grid models can be represented
by parallelograms in the triangular grid. Furthermore, any valid placement search algorithm
for non-snowflake shapes can be integrated into this framework as a primitive to expand the
set of shapes.

6.2 Star Convex Shapes

To combine our valid placement search procedure with a scale factor search, we would like to
know for which shapes the binary search approach is applicable. Recall from Section 4 that
at least self-contained shapes permit a binary search. In this section, we characterize this
class of shapes exactly as the star convex shapes.

» Definition 20. A shape S is star convex if it is hole-free and contains a center node c
such that for every v € V(S), all shortest paths from ¢ to v in Ga are contained in S.

For example, all convex shapes are star convex since all their nodes are centers. It is easy
to see that star convex shapes are self-contained: When placing the origin of S on a center
node, no translation is necessary and k-S C k' - S holds for all k, k' € N,k < k’. We can

M. Artmann, A. Padalkin, and C. Scheideler

even show that only star convex shapes are self-contained. As the authors of [15] point out
in their extensive survey on starshaped sets (see p. 1007), the results in [18] show that these
two properties are equivalent in much more general settings when rotations are omitted.

» Theorem 21. A shape is self-contained if and only if it is star convex.

The main proof and supporting lemmas can be found in Appendix B. In our context,
this equivalence implies that the efficient binary search can only be applied directly to star
convex shapes. For any non-star convex shape S, there exist an amoebot structure A and
scale factors k, k', k < k', such that V(k - S, A) = @ for all » but V(&' - S, A) # 0 for
some 7; consider, e.g., A =V (k' - S) for sufficiently large k and k’. The proof of Theorem 21
shows that this always holds for infinitely many scales k, k.

6.3 Shape Containment Solutions

Finally, we obtain algorithms solving the shape containment problem by combining valid
placement search procedures with suitable scale factor search methods. First, we observe
that star convex shapes are snowflakes:

» Lemma 22. Fvery star convex shape S is equivalent to a snowflake. If its origin is a
center node, S itself is a snowflake.

This implies that we can solve the shape containment problem for a star convex shape S
in just O (log? kmax (S, A)) rounds by using a binary search. For a snowflake S that is not
star convex, we apply the linear search approach, which runs O (K) valid placement searches
when given some upper bound K > kpax(S, A). To obtain this upper bound, we use the
observation that a snowflake without faces will always be a union of line shapes meeting at
the origin, and therefore star convex. Thus, a non-star convex snowflake must contain at
least one face, so K = kpax(T(d, 1), A) is a suitable upper bound (for any d € D). Since
T(d, 1) is star convex, K can be computed in O (log? K) rounds. And since a triangle fills an
area, we have |V (k-T(d,1))| = © (k?), so we have an upper bound of K = O (y/n). Together,
we obtain the following theorem (see Appendix C for the proof):

» Theorem 23. Let A be an amoebot structure and S a snowflake shape. Given a tree
representation of S, the amoebots can compute k = kmax(S, A) in a binary counter and
determine V(k - S| A) for all v € {0,...,5} within O (log® k) rounds if S is star convex
and O (K log K') rounds otherwise, where k < K = kyax(T(E, 1), A) = O (v/n).

7 Conclusion and Future Work

In this paper, we introduced the shape containment problem for the amoebot model of
programmable matter and presented sublinear solutions using reconfigurable circuits. We
showed that for some shapes, there is a lower bound of (y/n) rounds due to the arbitrary
distribution of valid and invalid placements, even if the maximum scale is known. Using
efficient methods of transferring information using circuits, we constructed the class of

snowflake shapes that can be solved in sublinear time and contains a large variety of shapes.

For the subset of shapes that are star conver, we showed how to solve the problem in
polylogarithmic time and proved that binary search is not generally applicable to other
shapes.

7:15

DISC 2025

7:16

On the Shape Containment Problem Within the Amoebot Model

It is unclear how non-snowflake shapes can be characterized and what exactly distinguishes
shapes that are affected by the lower bound from shapes with more efficient solutions, such
as star convex shapes. It would be interesting to explore whether the lower bound can be
improved when including the scale factor search. Naturally, efficient solutions for arbitrary
shapes or other shape classes are of interest as well.

The related problems of finding the smallest scale at which a given shape contains the
amoebot structure, as well as finding scales and placements with maximal overlap and
minimal difference, could also be investigated to support shape formation algorithms. To
expand the set of possible applications further, one could examine other, non-uniform scaling
behaviors, perhaps allowing the shapes to maintain fine details at larger scales, similar to
fractal shapes.

—— References

1 Pankaj K. Agarwal, Nina Amenta, and Micha Sharir. Largest Placement of One Convex
Polygon Inside Another. Discrete €& Computational Geometry, 19(1):95-104, 1998. doi:
10.1007/PL00009337.

2 Md Abdul Aziz Al Aman, Raina Paul, Apurba Sarkar, and Arindam Biswas. Largest
Area Parallelogram Inside a Digital Object in a Triangular Grid. In Reneta P. Barneva,
Valentin E. Brimkov, and Giorgio Nordo, editors, Combinatorial Image Analysis - 21st
International Workshop (IWCIA), volume 13348 of LNCS, pages 122-135, Cham, 2022.
Springer. doi:10.1007/978-3-031-23612-9_8.

3 Greg Aloupis, Sébastien Collette, Erik D. Demaine, Stefan Langerman, Vera Sacristdn, and
Stefanie Wuhrer. Reconfiguration of Cube-Style Modular Robots Using O(log n) Parallel
Moves. In Seok-Hee Hong, Hiroshi Nagamochi, and Takuro Fukunaga, editors, Algorithms
and Computation, volume 5369 of Lecture Notes in Computer Science, pages 342-353, Berlin,
Heidelberg, 2008. Springer. doi:10.1007/978-3-540-92182-0_32.

4 Matthias Artmann, Andreas Padalkin, and Christian Scheideler. On the shape containment
problem within the amoebot model with reconfigurable circuits, 2025. doi:10.48550/arXiv.
2501.16892.

5 Ahmed Amine Chafik, Jaafar Gaber, Souad Tayane, Mohamed Ennaji, Julien Bourgeois,
and Tarek El Ghazawi. From Conventional to Programmable Matter Systems: A Review
of Design, Materials, and Technologies. ACM Comput. Surv., 56(8):210:1-210:26, 2024.
doi:10.1145/3653671.

6 Bernard Chazelle. The Polygon Containment Problem. Advances in Computing Research,
1(1):1-33, 1983.

7 Joshua J. Daymude, Robert Gmyr, Kristian Hinnenthal, Irina Kostitsyna, Christian Scheideler,
and Andréa W. Richa. Convex Hull Formation for Programmable Matter. In Nandini
Mukherjee and Sriram V. Pemmaraju, editors, 21st International Conference on Distributed
Computing and Networking, ICDCN ’20, pages 1-10, New York, NY, USA, 2020. ACM.
doi:10.1145/3369740.3372916.

8 Joshua J. Daymude, Andréa W. Richa, and Christian Scheideler. The canonical amoebot
model: Algorithms and concurrency control. Distributed Computing, 36(2):159-192, 2023.
do0i:10.1007/s00446-023-00443-3.

9 Zahra Derakhshandeh, Shlomi Dolev, Robert Gmyr, Andréa W. Richa, Christian Scheideler,
and Thim Strothmann. Brief Announcement: Amoebot - A New Model for Programmable
Matter. In Proceedings of the 26th ACM Symposium on Parallelism in Algorithms and
Architectures, pages 220222, Prague, Czech Republic, 2014. ACM. doi:10.1145/2612669.
2612712.

10 Giuseppe A. Di Luna, Paola Flocchini, Nicola Santoro, Giovanni Viglietta, and Yukiko
Yamauchi. Shape formation by programmable particles. Distributed Computing, 33(1):69-101,
2020. doi:10.1007/s00446-019-00350-6.

https://doi.org/10.1007/PL00009337
https://doi.org/10.1007/PL00009337
https://doi.org/10.1007/978-3-031-23612-9_8
https://doi.org/10.1007/978-3-540-92182-0_32
https://doi.org/10.48550/arXiv.2501.16892
https://doi.org/10.48550/arXiv.2501.16892
https://doi.org/10.1145/3653671
https://doi.org/10.1145/3369740.3372916
https://doi.org/10.1007/s00446-023-00443-3
https://doi.org/10.1145/2612669.2612712
https://doi.org/10.1145/2612669.2612712
https://doi.org/10.1007/s00446-019-00350-6

M

11

12

13

14

15

16

17

18

19

20

21

22

23

. Artmann, A. Padalkin, and C. Scheideler

Yuval Emek, Yuval Gil, and Noga Harlev. On the Power of Graphical Reconfigurable
Circuits. In Dan Alistarh, editor, 38th International Symposium on Distributed Computing
(DISC 2024), volume 319 of Leibniz International Proceedings in Informatics (LIPIcs), pages
22:1-22:16, Dagstuhl, Germany, 2024. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik.
d0i:10.4230/LIPIcs.DISC.2024.22.

Michael Feldmann, Andreas Padalkin, Christian Scheideler, and Shlomi Dolev. Coordinating
Amoebots via Reconfigurable Circuits. Journal of Computational Biology, 29(4):317-343, 2022.
d0i:10.1089/cmb.2021.0363.

Melvin Gauci, Radhika Nagpal, and Michael Rubenstein. Programmable Self-disassembly for
Shape Formation in Large-Scale Robot Collectives. In Roderich Grof}, Andreas Kolling, Spring
Berman, Emilio Frazzoli, Alcherio Martinoli, Fumitoshi Matsuno, and Melvin Gauci, editors,
Distributed Autonomous Robotic Systems: The 13th International Symposium, volume 6 of
Springer Proceedings in Advanced Robotics, pages 573-586, Cham, 2018. Springer. doi:
10.1007/978-3-319-73008-0_40.

Kyle W. Gilpin. Shape Formation by Self-Disassembly in Programmable Matter Systems.
Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2012.

G. Hansen, I. Herburt, H. Martini, and M. Moszyniska. Starshaped sets. Aequationes
mathematicae, 94(6):1001-1092, 2020. doi:10.1007/s00010-020-00720-7.

Marvin Kiinnemann and André Nusser. Polygon Placement Revisited: (Degree of Freedom +
1)-SUM Hardness and an Improvement via Offline Dynamic Rectangle Union. In Joseph (Seffi)
Naor and Niv Buchbinder, editors, Proceedings of the 2022 Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), Proceedings, pages 3181-3201, Alexandria, VA, USA, 2022.
STAM. d0i:10.1137/1.9781611977073.124.

Thiago de Castro Martins and Marcos de Sales Guerra Tsuzuki. Simulated annealing applied
to the irregular rotational placement of shapes over containers with fixed dimensions. Fxpert
Systems with Applications, 37(3):1955-1972, 2010. doi:10.1016/j.eswa.2009.06.081.

P. McMullen. Sets homothetic to intersections of their translates. Mathematika, 25(2):264-269,
1978. d0i:10.1112/50025579300009505.

Andreas Padalkin, Manish Kumar, and Christian Scheideler. Reconfiguration and Locomotion
with Joint Movements in the Amoebot Model. In Arnaud Casteigts and Fabian Kuhn, editors,
3rd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 202/), volume
292 of Leibniz International Proceedings in Informatics (LIPIcs), pages 18:1-18:20, Dagstuhl,
Germany, 2024. Schloss Dagstuhl — Leibniz-Zentrum fir Informatik. doi:10.4230/LIPIcs.
SAND.2024.18.

Andreas Padalkin and Christian Scheideler. Polylogarithmic Time Algorithms for Shortest
Path Forests in Programmable Matter. In Ran Gelles, Dennis Olivetti, and Petr Kuznetsov,
editors, 48rd ACM Symposium on Principles of Distributed Computing, PODC ’24, pages
65-75, New York, NY, USA, 2024. ACM. doi:10.1145/3662158.3662776.

Andreas Padalkin, Christian Scheideler, and Daniel Warner. The Structural Power of Re-
configurable Circuits in the Amoebot Model. In Thomas E. Ouldridge and Shelley F. J.
Wickham, editors, 28th International Conference on DNA Computing and Molecular Program-
ming (DNA 28), volume 238 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 8:1-8:22, Dagstuhl, Germany, 2022. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik.
do0i:10.4230/LIPIcs.DNA.28.8.

Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal
Pandurangan, David Peleg, and Roger Wattenhofer. Distributed Verification and Hardness
of Distributed Approximation. SIAM Journal on Computing, 41(5):1235-1265, 2012. doi:
10.1137/11085178X.

Micha Sharir and Sivan Toledo. Extremal polygon containment problems. Computational
Geometry, 4(2):99-118, 1994. doi:10.1016/0925-7721(94)90011-6.

7:17

DISC 2025

https://doi.org/10.4230/LIPIcs.DISC.2024.22
https://doi.org/10.1089/cmb.2021.0363
https://doi.org/10.1007/978-3-319-73008-0_40
https://doi.org/10.1007/978-3-319-73008-0_40
https://doi.org/10.1007/s00010-020-00720-7
https://doi.org/10.1137/1.9781611977073.124
https://doi.org/10.1016/j.eswa.2009.06.081
https://doi.org/10.1112/S0025579300009505
https://doi.org/10.4230/LIPIcs.SAND.2024.18
https://doi.org/10.4230/LIPIcs.SAND.2024.18
https://doi.org/10.1145/3662158.3662776
https://doi.org/10.4230/LIPIcs.DNA.28.8
https://doi.org/10.1137/11085178X
https://doi.org/10.1137/11085178X
https://doi.org/10.1016/0925-7721(94)90011-6

7:18

On the Shape Containment Problem Within the Amoebot Model

2k

k=6 ne

First block

q4
qs

Second block / ~

qo0

k—1

Figure 6 Overview of the amoebot system construction for scale k = 6. The first block is shaded
blue and the second block is shaded green. The nodes ¢; that are not contained in the structure are
colored orange. Amoebot p4 is a valid placement of k - .S because g4 is part of the structure.

24 Pierre Thalamy, Benoit Piranda, and Julien Bourgeois. A survey of autonomous self-
reconfiguration methods for robot-based programmable matter. Robotics and Autonomous
Systems, 120:103242, 2019. doi:10.1016/j.robot.2019.07.012.

25 Tommaso Toffoli and Norman Margolus. Programmable Matter: Concepts and Real-
ization. International Journal of High Speed Computing, 05(02):155-170, 1993. doi:
10.1142/50129053393000086.

26 Lidong Yang, Jiangfan Yu, Shihao Yang, Ben Wang, Bradley J. Nelson, and Li Zhang. A
Survey on Swarm Microrobotics. IEEE Transactions on Robotics, 38(3):1531-1551, 2022.
doi:10.1109/TR0.2021.3111788.

A A Lower Bound for Finding Valid Placements

» Theorem 5. There exists a shape Sq such that for any choice of origin and every amoebot
algorithm A that terminates after o (\/n) rounds, there exists an amoebot structure A for
which the algorithm does not compute V(kmax(Sa, A) - Sa, A), even if kmax is known.

Proof. We use the shape Sq with a long arm and a short arm connected by a diagonal edge,
as depicted in Fig. 4. Let A be an amoebot algorithm that terminates in o (y/n) rounds. For
every k € N, we will construct a set Ay of amoebot structures such that kyax(Sa, A) =k
for all A € Ay and only one rotation matches at this scale. Let k € N be arbitrary, then we
construct Ay, as follows (see Fig. 6 for reference):

First, we place a parallelogram of width 2k and height & — 1 with its lower left corner at
the origin and call this the first block. The first block contains (2k + 1)k = 2k% + k amoebots
and is shared by all A € A. Let pg, ..., pr_1 be the nodes occupied by the left side of the
parallelogram, ordered from bottom to top. Next, we place a second parallelogram with
width and height k£ — 1 such that its right side extends the first block’s left side below the
origin. This second block contains k? amoebots and is also the same for all structures. It is
only connected to the first block by a single edge, e. Let qq,...,qx—1 be the nodes one step
to the left of the second block, again ordered from bottom to top.

https://doi.org/10.1016/j.robot.2019.07.012
https://doi.org/10.1142/S0129053393000086
https://doi.org/10.1142/S0129053393000086
https://doi.org/10.1109/TRO.2021.3111788

M. Artmann, A. Padalkin, and C. Scheideler

We define A as the set of amoebot structures that consist of these two blocks and m
additional amoebots on the positions qq,...,qx_1, where 1 < m < k. Thus, A, contains
2k — 1 distinct structures. Now, consider placements of So with maximum scale in any
structure A € Ay. For m = k, there are exactly k valid placements at scale k, represented by
the amoebots po, ..., pr—1. The longest continuous lines of amoebots in A have length 2k
and form the first block. In every valid placement, the longer arm of k - Sq must occupy one
of these lines, so no larger scales or other rotations are possible. If ¢; is not occupied for some
0 <i <k —1, then p; is not a valid placement because the end of the shorter arm of &k - Sq
would be placed on ¢;. At least one ¢; is always occupied, so the maximum scale of Sq is k
for every A € Aj. Observe that every structure A € A has a unique configuration of valid
placements of k- Sq: p € V(k-Sq, A) if and only if p = p; and ¢; € A for some 0 < i < k — 1.

Next, consider the size of the structures in Ay. The maximum number of amoebots is
2k + k + k% + k = 3k? + 2k, obtained for m = k. This means we have n < 3k? + 2k < 4k?
for large enough k, i.e., k > \/n/2 for all k > 2 and all A € A;.

Let A € Ay be arbitrary and consider the final states of pg,...,pr_1 after A has been
executed on A. Each amoebot must be categorized as either a valid or an invalid placement
of k- Sqn. We can assume that this categorization is independent of any randomized decisions
because otherwise, there would be a non-zero probability of false categorizations. Thus, the
final state depends only on the structure A itself. Recall that structures in Ay only differ in
the positions qo, . .., qr—1 and every path between ¢; (or an occupied neighbor) and p; must
traverse the single edge e connecting the two blocks. We can assume that all communication
happens via circuits (see Sec. 1.2). Since the first block is the same in all structures, the
final states of pg,...,prx—1 only depend on the sequence of signals sent from the second
block to the first block through e. To compute the correct set of valid placements, each
amoebot structure in Ay therefore has to produce a unique sequence of signals: If for any two
configurations, the same sequence of signals is sent through e, the final states of pg, ..., pr—1
will be identical, so at least one will be categorized incorrectly.

Let c4 be the number of pins used by .A. Then, the number of different signals that can
be sent via one edge in one round is 2°¢ = O (1), and the number of signal sequences that
can be sent in 7 rounds is 27%. Therefore, to produce at least 2* — 1 different sequences of
signals, we require r = Q (k/cy) = Q (y/n) rounds. By the assumption that A terminates
after o (y/n) rounds, A will produce at least one false result for sufficiently large k.

It remains to be shown that the same arguments hold for all equivalent versions of Sq
that contain the origin. If the origin is placed on another node of the longer arm, the valid
placement candidates pg,...,pr_1 are shifted to the right by k or 2k steps, respectively;
everything else remains the same. If the origin is placed on the shorter arm of the shape,
we switch the roles of the first and the second block. We place amoebots on all positions
qo, - - -, qr—1 and use the right side of the first block as the controlling positions instead. The
number and size of the resulting amoebot structures remain the same, so the same arguments
hold as before. |

B Self-Contained Shapes are Star Convex

To show the properties of star convex shapes, we will use the following equivalent characteri-
zation:

» Lemma 24. A shape S is star convex with its origin as a center node if and only if S
is the union of parallelograms of the form L(d,¢) ® L(d',¢") and convex shapes of the form
T(d,1) ® L(d,?) ® L(d',¢"), where d' is obtained from d by a 60° clockwise rotation. The
number of these shapes is linear in |V (S)|.

7:19

DISC 2025

7:20

On the Shape Containment Problem Within the Amoebot Model

For the proof of Theorem 21, we first show several lemmas that provide the necessary
tools. To start with, we show that non-star convex shapes cannot become star convex by
scaling, and for a sufficiently large scale, every center candidate has a shortest path with a
missing edge. It is clear that star convex shapes stay star convex after scaling (by Lemma 24),
but non-star convex shapes gain new potential center nodes, making it less obvious why
there still cannot be a center.

» Lemma 25. Let S be an arbitrary non-star convex shape, then for every k € N, k- S is
not star convex, and for k > 2 and every node ¢ € V(k - S), there exists a shortest path from
ctoamnodeveV(k-S)in Ga with at least one edge not contained in k - S.

Next, we show a fized point property that is particularly useful for scales k and k + 1.

» Lemma 26. Let S be a shape and k € N a scale such that there exists a t € Va with
k-S+tC(k+1)-S. Then, t must be in V(S) and we call t a fixed node of S. Further, for
every node v € V(S), a shortest path from k-v+t to (k+1)-v is also a shortest path from t
to v and vice versa.

Finally, we eliminate the need for covering rotations by showing that for sufficiently large
scales k and k + 1, k- S(™ does not fit into (k + 1) - S for any r € {1,...,5} unless S is
rotationally symmetric.

» Definition 27. A shape S is called rotationally symmetric with respect to r € {1,2,3} (or
r-symmetric) if there exists a translation t € Va such that S +t = .

Note that r € {1,2,3} covers all possible rotational symmetries in the triangular grid and
1-symmetry is equivalent to 2- and 3-symmetry combined. Additionally, the translation ¢ is
unique. Also note that 1-symmetry is more commonly called 6-fold symmetry, 2-symmetry
is known as 3-fold symmetry and 3-symmetry is known as 2-fold symmetry.

» Lemma 28. Let S be a shape and r € {1,2,3} be arbitrary. If S is not r-symmetric, then
there is a scale ko € N such that for every k > ko, k- S") does not fit into (k+1) - S.

Using these lemmas, we can now prove the main theorem about self-contained and star
convex shapes:

» Theorem 21. A shape is self-contained if and only if it is star convex.

Proof. First, let S be star convex with center node ¢ and consider two scale factors k < &'.
By Lemma 24, S can be represented as

i=1 j=1

where the P; are parallelograms and the T; are Minkowski sums of parallelograms with
triangles. Then, we have k- P; Ck'- P; and k- T; C k' - Tj since each of the P; and Tj is a
convex shape. We choose t such that k-c+t =k’ - ¢, then each of the constituent shapes of
k- S+t is contained in its counterpart in k' - S. This already shows that every star convex
shape is self-contained.

Now, let S be a shape that is not star convex. We will show that .S is not self-contained by
finding a scale k € N such that for every t € R and r € {0,...,5}, (k-ST) 4+4)\((k+1)-S) # 0.
Using Lemma 25, we can assume that for every node ¢ € V(S), there exists a shortest path
IT to a node v € V(S) such that at least one edge of II is not contained in S. If this is not
the case for S already, we simply consider 3 - .S as the new base shape.

M. Artmann, A. Padalkin, and C. Scheideler

AV T e o VAVAVAVAVAVAR: \VAVAVAVA 3
\ \ \
\ “\ :
\ N
\ “\
\ O\ \
\ O\ X
\ \ N\
\ N\ \ A\
; AR XO00KN AR XO00KN
€k Uy 1 Ft1=12 4 Uy 1 Ftl=12 4
(a) (b)

Figure 7 Illustration of the constraints forcing vk to lie in a region unoccupied by (k + 1) - S for
k = 11. The scaled unoccupied edge (k + 1) - e and the empty parallelogram region it produces are
highlighted and shaded in orange. The parallelogram’s edges are drawn as dashed lines of length
k 4+ 1, incident to ug+1 and viy1. At most these edges of the parallelogram can be occupied by
(k+1)-S. The distance between ¢ and v resp. vy and vgy1 is £ =5 < k + 1. In the bottom left
corner of (a), the directions used by all shortest paths from viy1 to v (resp. v to ¢) are shown, with
the opposite direction of e emphasized because at least one such edge must be on every path. This
prevents vg from lying on an edge incident to vk+1, shown by the dotted blue lines and the small
black arrows. Similarly, vx cannot lie on any of the dashed black edges incident to ui41 because
it must be closer to vi41. In particular, its distance to vk41 is bounded by d = 8, as indicated by
the light blue dotted lines in (b). The red lines show the nodes with distance exactly £ to vi,1. By
combining all constraints, vx has to be one of the red nodes in the dark shaded area, none of which
are occupied by (k+1)-S.

By Lemma 28, we can find kg large enough that no non-zero rotation of k - S fits into
(k+1)-S for any scale k > ko unless S is rotationally symmetric. In this case, however,
the rotated version of S is the same as a translation of S, so we can disregard rotations

altogether because they do not affect the existence of valid translations of k- S in (k+1) - S.

Let H be the convex hull of S and let d € N be its diameter. Consider any scale k > d
and some placement ¢ € Va such that k- S+c¢C (k+1)-S. By Lemma 26, c € V(S). As
argued above, there is a node v € V(S) such that a shortest path II from ¢ to v has at least
one edge that is not contained in S. We choose v and II such that the last edge is missing,
w.l.o.g. Let u € V(H) be the predecessor of v on II, i.e., the missing edge e of II connects
u and v. Since S does not contain e, it cannot contain the two incident faces. Thus, there
is an area in the shape of a regular parallelogram with side length k& + 1 whose diagonal
is (k4 1) - e and whose interior does not intersect (k + 1) - S, i.e., only its edges could be
covered by edges of (k4 1) -5 (see Fig. 7). These edges are incident to vgy1 = (k+1) - v
and ug41 = (k+ 1) - w and they lie on different axes than e. By Lemma 26, the grid distance
between vy, = k- v + ¢ and vg41 is the length of II, which is bounded by d. By the choice
of k > d, the distance between uy11 and vg41 (which is k& 4 1) is therefore greater than the
distance between vy and vg11. Now, observe that for any node on one of the parallelogram’s
edges incident to uyy1, the distance to vi41 remains k + 1. Thus, v, cannot lie on any of
these two edges.

Furthermore, recall from Lemma 26 that any shortest path from ¢ to v is also a (translated)
shortest path from vy to vi41. Because such a path contains at least one edge parallel to
e, every shortest path from vi41 to vg contains at least one edge in the opposite direction

7:21

DISC 2025

7:22

On the Shape Containment Problem Within the Amoebot Model

of e. Therefore, since the edges of the empty parallelogram that are incident to vy lie on
different axes than e, v; cannot lie on these two edges either. The direction of e also implies
that v must be on the side of the two edges that is closer to ugy1.

Together, these constraints imply that vy, lies inside the parallelogram that is not contained
in (k+1)-S, so the placement identified by ¢ does not satisfy k-S+c C (k+1)-5, contradicting
our assumption. Since this works for every choice of ¢ € V(.9), there is no placement of k - S
in(k+1)-S. <

C Main Theorem

» Theorem 23. Let A be an amoebot structure and S a snowflake shape. Given a tree
representation of S, the amoebots can compute k = kmax(S, A) in a binary counter and
determine V(k - S, A) for all v € {0,...,5} within O (log® k) rounds if S is star convex
and O (K log K') rounds otherwise, where k < K = kyax(T(E,1),A) = O (v/n).

Proof. The amoebots first establish binary counters on all maximal segments in A, for all
axes. At least one of these will be large enough to store k = kpax(S, A) as long as S is
non-trivial. In the following, they use all these counters simultaneously and deactivate every
counter exceeding its memory during an operation.

Counsider the case where S is star convex. By Lemma 8, combined with Lemma 19,
the amoebots can compute k.« using a binary search and find all valid placements at all
six rotations within O (log? k) rounds. Now, let S be a snowflake that is not star convex.
In this case, S must contain at least one triangular face because all snowflakes without
faces are unions of lines meeting at the origin, which are star convex (observe that the
Minkowski sum of an edge with a line on a different axis always contains some faces). Then,
K = kmax(T(E, 1), A) is an upper bound for kmax(S, A). The amoebots can compute K
within O (log2 K) rounds and store it in binary counters, since triangles are star convex. A
simple linear search for kyax yields the runtime of O (K log K) by Lemma 6. K = O (y/n)
follows from the fact that the number of nodes covered by k - T(E, 1) grows quadratically
with k. |

	1 Introduction
	1.1 Geometric Amoebot Model
	1.2 Reconfigurable Circuit Extension
	1.3 Problem Statement and Our Contribution
	1.4 Related Work

	2 Preliminaries
	2.1 Coordination and Synchronization
	2.2 Chains and Chain Primitives
	2.2.1 Binary Operations
	2.2.2 The PASC Algorithm

	3 A Lower Bound for Finding Valid Placements
	4 Scale Factor Search
	5 Efficient Placement Search Procedures
	5.1 The Minkowski Sum Primitive
	5.2 The Translation Primitive
	5.3 The Triangle Primitive

	6 Shape Classification
	6.1 Snowflake Shapes
	6.2 Star Convex Shapes
	6.3 Shape Containment Solutions

	7 Conclusion and Future Work
	A A Lower Bound for Finding Valid Placements
	B Self-Contained Shapes are Star Convex
	C Main Theorem

