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Abstract
Auditability allows to track operations performed on a shared object, recording who accessed which
information. This gives data owners more control on their data. Initially studied in the context
of single-writer registers, this work extends the notion of auditability to other shared objects, and
studies their properties.

We start by moving from single-writer to multi-writer registers, and provide an implementation
of an auditable n-writer m-reader read / write register, with O(n + m) step complexity. This
implementation uses (m + n)-sliding registers, which have consensus number m + n. We show that
this consensus number is necessary. The implementation extends naturally to support an auditable
load-linked / store-conditional (LL/SC) shared object. LL/SC is a primitive that supports efficient
implementation of many shared objects. Finally, we relate auditable registers to other access control
objects, by implementing an anti-flickering deny list from auditable registers.
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1 Introduction

The ability to track operations on shared objects is a fundamental feature in distributed
systems. Auditability, in particular, enables data owners to monitor access to their data by
recording who accessed which information. This mechanism provides a robust alternative
to traditional access control mechanisms, shifting the emphasis from access restriction to
post-hoc accountability. Auditability is helpful for preserving data privacy, as it can be used
after a data breach, to enforce accountability for data access. This is particularly useful in
shared, remotely accessed storage systems, where, for instance, understanding the extent of
a data breach can help mitigate its impact.
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8:2 Auditable Shared Objects

Auditability has been initially studied in the context of non-atomic replicated storage [8]
and single-writer atomic registers [6]. This work explores auditability for other shared objects,
considering the following key questions: (1) What types of base objects are necessary and
sufficient to implement auditable multi-writer atomic registers? (2) How does auditability
impact the design of common synchronization primitives? (3) Can auditable registers be
leveraged to construct more complex access control mechanisms?

We begin to answer these questions by presenting a wait-free, linearizable implementation
of an auditable n-writer m-reader read/write register (abbreviated as (m, n)-auditable
register), with linear (in n + m) step complexity. To achieve these properties, our algorithm
uses sliding registers [19]: a k-sliding register keeps an ordered list of the latest k values
written to it. If each reader and writer writes at most once in an (m + n)-sliding register, the
sliding register can be used to uniquely order the operations. This implies a linearization of
the read and write operations on the auditable register. The key challenge is, therefore, how
to deal with multiple read and write operations on the auditable register. The backbone of
our (m, n)-auditable register implementation is a sequence of (m + n)-sliding registers, each
associated with a different value written to the auditable register. The sliding registers are
used to agree which write operation will set the next value of the register, and to track which
readers have read this value. An additional challenge is to be able to efficiently find the
“current” sliding register when reading and writing, to maintain bounded step complexity.

The consensus number of (m + n)-sliding registers is exactly m + n. (I.e., they allow to
solve consensus among exactly m + n processes.) Thus, consensus number m + n is sufficient
for implementing an (m, n)-auditable register. We prove that it is also necessary, by showing
that an (m, n)-auditable register can be used to solve consensus among m + n processes.

Beyond registers, we explore auditability for more expressive synchronization primitives,
like load-linked/store-conditional (LL/SC) objects [17]. The LL operation reads a value from
a memory location, while the SC operation writes a new value to the same location only if
no process has written to it since the LL operation. If another process has changed the value,
the SC fails, requiring the operation to be retried. LL/SC enables the efficient construction
of a wide range of non-blocking data structures [10]. We leverage the algorithmic ideas of
our auditable register to construct an algorithm that implements an LL/SC object for n

processes, using 2n-sliding register.
Finally, we relate auditable registers to Deny Lists [11], showcasing how auditability can

be leveraged to build security primitives. Allow Lists and Deny Lists, as defined by Frey,
Gestin, and Raynal [11], are two access control objects that give designated processes (called
managers) the ability to grant and/or revoke access rights for a given set of resources. Their
work specifies and investigates the synchronization power of Allow Lists and Deny Lists; the
latter in two flavors, with and without an anti-flickering property. (An anti-flickering Deny
List ensures that transient revocations do not undermine long-term access control policies.)

We give a relatively simple specification of an immediate Deny List, which is stronger than
the anti-flickering Deny List of Frey et al., and show that it can be efficiently implemented
from auditable registers. The step complexity of the resulting implementation (polynomially)
depends on the number of resources and the number of processes. In contrast, while being
wait-free, the step complexity of the anti-flickering Deny List implementation in [11] grows
with the number of operations, and is, essentially, unbounded.

Related Work
Auditability was introduced by Cogo and Bessani [8] in the context of replicated registers.
They considered a register as an abstraction for distributed storage that provides read and
write operations to clients. Cogo and Bessani define auditability in terms of two properties:
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completeness ensures that all readers’ data access are detected, while accuracy ensures that
readers who do not access data are not wrongly incriminated. They present an algorithm to
implement an auditable regular (non-atomic) register, using n ≥ 4f + 1 atomic read/write
shared objects, f of which may be faulty (writers and auditors fail only by crashing; faulty
readers may be Byzantine). Their implementation relies on information dispersal schemes,
where the input of a high-level write is split into several pieces, each written in a different
low-level shared object. Each low-level shared object keeps a trace of each access, and in order
to read, a process has to collect sufficiently many pieces of information in many low-level
shared objects, which allows to audit the read.

In asynchronous message-passing systems where f processes can be Byzantine, Del Pozzo,
Milani, and Rapetti [9] study the possibility of implementing an atomic auditable register.
They prove that without communication between servers, auditability requires at least 4f + 1
servers. They also show that allowing servers to communicate with each other admits an
auditable atomic register with optimal resilience of 3f + 1.

The auditability definition of [8] is tightly coupled with their multi-writer, multi-reader
register emulation in a replicated storage system using an information-dispersal scheme.
An implementation-agnostic auditability definition was later proposed by Attiya et al. [6],
based on collectively linearizing read, write, and audit operations. They show that auditing
adds power to reading and writing, as it allows to solve consensus, implying that auditing
requires strong synchronization primitives. They also give several implementations that use
non-universal primitives (like swap and fetch&add), for a single writer and either several
readers or several auditors (but not both).

Recent work [4] have extended auditability to ensure that even a curious (but honest)
reader cannot effectively read data without being audited; in fact, curious readers cannot
even audit other readers. The paper provides implementations of several auditable objects,
including registers. However, the constructions depend on universal primitives, including
compare&swap, in contrast to our constructions, which only employ sliding registers, whose
consensus number is bounded.

Alhajaili and Jhumka [1] study an interesting variant of auditability with malicious
processes, with and without a trusted party. Their definition of auditability has to do with
the ability of determining if a system runs as specified, and determine the incorrect behavior
in case it does not. This involves systematically tracking and recording system activities to
facilitate fault detection and diagnosis. The authors propose methodologies for integrating
auditability into system design, emphasizing its role in simplifying the debugging process
and improving overall system robustness.

Our algorithms (like most prior work) maintain a large amount of auditing information,
which grows with the number of operations performed in an execution. Hajisheykhi, Roohi-
tavaf, and Kulkarni [13] investigate how to reduce the space used for saving auditing data
(to be used to restore the state after a fault), by leveraging causal dependencies among them.
They propose protocols for ensuring accountability in distributed systems when auditable
events – deviations from standard protocols – occur. They introduce two self-stabilizing
protocols: an unbounded state space protocol that propagates auditable events across all
nodes and a more efficient bounded state space protocol that achieves the same awareness
without increasing resource demands. Their approach ensures that before a system can
recover from an auditable event, all processes are aware of it, preventing unauthorized
restorations and reinforcing accountability.

Access control objects regulate access to resources by defining policies for granting or
denying permissions. Some of the most common access control mechanisms include Access
Control Lists [21], which specify allowed or denied actions for individual users or processes,
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8:4 Auditable Shared Objects

and Capability-Based Access Control [18], where access is granted through transferable
tokens rather than predefined rules. Role-Based Access Control [20] simplifies management
by assigning permissions to roles instead of individuals, making it widely used in enterprise
environments, while Attribute-Based Access Control [15] dynamically evaluate attributes
such as user location, device type, and time of access. AllowLists and DenyLists [11] further
control access by explicitly specifying permitted or blocked users or processes, often used in
security filters and authentication systems.

An area related to auditability is data provenance (also called lineage) in databases [7, 12],
which involves tracking the origin and transformations of data, focusing on its lineage
across different processes or systems. Provenance is concerned with the integrity, quality, and
reproducibility of data as it moves through various stages, such as aggregation or computation.
While both auditability and provenance track interactions with data, auditability is more
focused on recording who performed an operation, primarily for access control and security,
while provenance aims to provide transparency about the history and transformations of the
data for purposes such as verification and accountability in data analysis.

Summary of Our Contributions and Organization of the Paper
We extend auditability from single-writer to multi-writer registers and characterize the
necessary and sufficient consensus number needed for their implementation.
We introduce and implement auditable LL/SC objects, demonstrating auditability can
be provided beyond read / write operations.
We construct an anti-flickering Deny List object from auditable registers, illustrating the
connection between auditability and access control mechanisms.

Section 2 presents our model and formally defines auditable shared objects. Sections 3
and 4 prove the necessary and sufficient conditions for auditable multi-writer registers,
respectively. Section 5 describes how to implement auditable LL/SC objects. Section 6
presents the algorithm to implement an anti-flickering Deny List object with auditable
registers. Finally, Section 7 concludes with open questions and future directions. Proofs
omitted due to space constraints can be found in the full version [5].

2 Definitions

We use a standard model, in which a set of processes p1, . . . , pn, communicate through a
shared memory consisting of base objects. The base objects are accessed with primitive
operations. In addition to atomic registers, our implementations use k-sliding registers, whose
consensus number is exactly k [19]. Specifically, a k-sliding register [19] stores the sequence
of the last k values written to it (or the last x values when only x < k values have been
written). A write with input v appends v at the end of the sequence and removes the first
one if the sequence is already of size k. A read operation returns the current sequence. A
standard read / write register is a 1-sliding register.

An implementation of a (high-level) object T specifies a program for each process and each
operation of the object T ; when receiving an invocation of an operation, the process takes
steps according to this program. Each step by a process consists of some local computation,
followed by a single primitive operation on a base object. The process may change its local
state after a step, and it may return a response to the operation of the high-level object.

In order not to confuse operations performed on the implementation of the high-level
object T and primitives applied to base objects, the former are denoted with capital letters
and the later in normal font.
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A configuration C specifies the state of every process and of every base object. An
execution α is an alternating sequence of configurations and events, starting with an initial
configuration; it can be finite or infinite. An operation completes in an execution α if α

includes both the invocation and response of the operation; if α includes the invocation of
an operation, but no matching response, then the operation is pending. An operation op

precedes another operation op′ in α if the response of op appears before the invocation of op′.
A history H is a sequence of invocation and response events. The notions of complete,

pending and preceding operations extend naturally to histories.
The standard correctness condition for concurrent implementations is linearizability [14]:

intuitively, it requires that each operation appears to take place instantaneously at some
point between its invocation and its response. Formally:

▶ Definition 1. Let A be an implementation of an object T . An execution α of A is
linearizable if there is a sequential execution λ(α) (a linearization of the operations on T in
α) such that:

λ(α) contains all complete operations in α, and a (possibly empty) subset of the pending
operations in α (completed with response events),
If an operation op precedes an operation op′ in α, then op appears before op′ in λ(α), and
λ(α) respects the sequential specification of the high-level object T .

A is linearizable if all its executions are linearizable.

An implementation is wait-free if, whenever there is a pending operation by process p,
this operation returns in a finite number of steps by p.

An auditable register supports, in addition to the standard read and write operations,
also an audit operation that reports which values were read by each process [6]. An audit
has no parameters and it returns a set of pairs, (j, v), where j is a process id, and v is a value
of the register. A pair (j, v) indicates that process pj has read the value v. The sequential
specification of an auditable register enforces, in addition to the usual specification of read
and write operations, that a pair appears in the set returned by an audit operation if and
only if it corresponds to a preceding read operation.

We implement a load-linked / store-conditional (LL/SC) variable, supporting the following
operations: LL(x) returns the value stored in x, and SC(x, new) writes the value new to
x, if it was not written since the last LL(x) performed by the process; otherwise, x is not
modified. SC returns true if it writes successfully, and false otherwise. An auditable LL/SC
variable adds an audit operation, whose sequential specification returns a set of process-value
pairs, corresponding to preceding LL operations.

3 Consensus number of n-Writer, m-Reader Auditable Register
≥ m + n

An (m, n)-auditable register can be written by n processes, read by m processes, and be
audited by all processes. An audit operation returns a set of pairs (p, v) where p is a process
id, and v is a value. This set holds the values returned by the read operations that precede
the audit.

▶ Theorem 2. For every pair of integers m, n > 0, there is an (m + n)-process consensus
algorithm using (m, n)-auditable registers.

Proof. The proof is by induction on ℓ = n + m. The base case, ℓ = 2, is proved in [6,
Proposition 19].

DISC 2025



8:6 Auditable Shared Objects

For the induction step, assume the lemma holds for all pairs of values n′, m′, such that
n′ + m′ = ℓ ≥ 2, and we prove it for ℓ + 1 > 2. Pick m > 0, n > 0 such that n + m = ℓ + 1;
note that m, n ≤ ℓ. To solve consensus among ℓ + 1 processes p1, . . . , pℓ+1, we partition the
processes into two sets: R (the readers) of size m, and W (the writers) of size n. Since m > 0
and n > 0, both sets R and W are non-empty.

Each process pi, 1 ≤ i ≤ ℓ + 1 has a standard single-writer multi-reader register Si. By
the induction hypothesis, since n ≤ ℓ, the n writers can agree on one of their proposals with
an n-process consensus that uses (1, n − 1)-auditable registers. Similarly, the m readers can
agree on one of their proposal using (m − 1, 1)-auditable registers. Each reader and writer
process pi writes the value agreed upon in its register Si.

We use now one (m, n)-auditable register, AR, whose initial value is ⊥. Writers and
readers access AR to select one of the two consensus values. Each writer ∈ W writes ⊤ to
AR and each reader ∈ R performs a read operation on AR. Writers and readers then audit
AR. If the set returned is empty or contains no pair (pr, ⊥) where r ∈ R, then the first
operation performed on AR is a write and the writers win. Then, the decision for consensus
can be read from at least one of the registers of the writers. Otherwise, the audit operation
returns a set containing a pair (pr, ⊥) with r ∈ R. In that case, the first operation performed
on AR is a read operation and the readers win. As in the previous case, the decision for
consensus can be found by reading the readers’ registers. ◀

4 Implementing an n-Writer m-Reader Auditable Register Using
(n + m)-Sliding Registers

We present a wait-free and linearizable implementation of an n-writer m-reader auditable
register; it can support any number of auditors. The implementation uses (m + n)-sliding
registers. Since the consensus number of (m, n)-auditable registers is m + n (Theorem 2),
objects with consensus number ≥ m + n, like (m + n)-sliding registers, are required. (Objects
with consensus number ∞, like compare&swap, can also be used [4], but our goal is to use
objects with the minimal consensus number.) Our main result is:

▶ Theorem 3. There is a wait-free linearizable implementation of an m-reader, n-writer
auditable register from (m + n)-sliding registers. The step complexity of each operation is in
O(m + n).

4.1 The Algorithm
An implementation of an auditable register has to keep track of the latest value written to
the register as well as, for each written value, its set of readers. This can be easily achieved
using a single sliding register SLR, provided that its window is unbounded. Such a register
hence stores the complete sequence of values written to it, ordered by the oldest first but has
infinite consensus number. To perform a write(v), a writer simply writes v to SLR. For
auditing purpose, a reader pi first writes its identifier i to the sliding register, before reading
it. The value returned by this read is then the nearest non-identifier value in the sequence
read from SLR previous to the identifier i written by pi. The reader set of each value can
easily be inferred from the sequence stored in SLR. For a value v in the sequence, its reader
set is the set of processes whose identifiers follows v, and are before the first non-identifier
value that succeeds v, if any.

Our implementation (Algorithms 1 and 2) is based on this simple idea, but instead of a
single sliding register with an unbounded window, we use an unbounded array SLR[−1, . . .]
of sliding registers, each with a bounded window of size m + n. In order not to confuse
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identifiers and written values, write operations insert into the sliding registers w-tuples of
the form (w, j, v, h), where j the identifier of the writer, v is the input value of the write
operation, and h a helping set of readers’ identifiers (whose role will be explained later).

Each sliding register SLR[x] contains initially the empty sequence (), except the first
SLR[−1] whose sequence contains the w-tuple (w, j0, v0, ∅) where v0 is the initial value of the
auditable register and j0 an arbitrary writer’s identifier. At any point in the execution, the
current value v of the auditable register is found in the sliding register with highest index x

whose sequence contains a w-tuple. Specifically, v is the value contained in the first w-tuple
in the sequence stored in SLR[x]. Similarly to the basic implementation sketched above,
readers of this value (if any) are the processes whose identifiers appear before any w-tuple in
the next sliding register SLR[x + 1].

Therefore, reading or writing the auditable register involves finding the valid sliding
register (that is, one that does not contain a w-tuple) with lowest index. If this is not
done with care, progress of some operation may be lost. For example, the same writer may
be always the first to write in each sliding register (i.e., each non empty sequence in any
sliding register starts with a w-tuple posted by this writer), thus preventing read operations
from completing or other writers from changing the value of the auditable register. We also
have to make sure that each writer or reader writes at most once to each sliding register.
Otherwise, the auditing may become inaccurate (as readers identifiers may be removed from
some sequence), or the current value of the auditable register may be lost.

To solve theses challenges, the implementation combines the following ideas:
First, we observe that a write operation can terminate after writing in a given sliding

register SLR[x], even if its corresponding w-tuple is not the first in the sequence held in
SLR[x], provided that that it is concurrent with the write operation that writes first its
w-tuple into SLR[x]. Indeed, in that case, the write operations that are late to post their
w-tuple may be linearized immediately before the write whose w-tuple is first. Accordingly,
the value, denoted vx, in the first w-tuple in the sequence stored in SLR[x] is said to be
visible. The values in the other w-tuple are never returned by any read operation, and are
thus invisible.

Second, we use a max register M to store the current smallest index widx of the still valid
sliding registers. Recall that a max register retains the largest value written to it; wait-free
and linearizable max registers can be implemented from atomic read/write registers with
linear step complexity [3]. A write thus starts by retrieving this index from M , writes its
w-tuple in SLR[widx], and finally updates M with the new index widx + 1. This ensures
that, if several write operations post w-tuples in the same sliding register SLR[x], they are
concurrent.

In addition, M stores an m-vector ridx of indexes of sliding registers (which is part of the
helping mechanism described next) and, for convenience, the auditset of the values written
whose set of readers is already completely determined (the set of readers of each visible
value vx, for x < widx). Triples (widx, ridx, auditset) are ordered by their first field. An
audit operation therefore reads M , and for M.widx = x, gets the definitive readers of values
vx′ , x′ ≤ x − 2 from M.auditset, to which it adds the possibly non-definitive set of readers
of vx−1 by reading SLR[x].

Finally, a helping mechanism is used to make sure that read operations are wait-free.
The set of readers of the visible value vx (that appears in the first w-tuple stored in SLR[x])
are the processes whose identifiers are before any w-tuple in SLR[x + 1] or are in the helping
set h of the first w-tuple of SLR[x + 1]. An additional array H indicates, for each reader,
the index of the latest sliding register in which it attempted to write its identifier before
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8:8 Auditable Shared Objects

Algorithm 1 Multi-writer auditable register: read and write and audit.

1: shared variables
2: M : a max-register storing a triple (widx, ridx, auditset) ordered by their first field
3: widx initially 0 ▷ index of sliding registers
4: ridx array of size m, initially [−1, . . . ,−1]

▷ ridx[i] highest index of sliding register in which a read by pi is recorded
5: auditset set of pair (process,value), initially ∅
6: SLR[−1, 0, .. +∞]: unbounded array of (m + n)-sliding registers,

initially, SLR[−1] = ((w, j0, v0, ∅)), SLR[ℓ] = () for all ℓ ≥ 0
7: H[1..m]: array of SWMR register, one per reader, initially [−1, . . . ,−1]
8: local variables: reader
9: lsr ← −1; lval← ⊥ ▷ index of last sliding register read and last value read

10: function read( ) ▷ code for reader process pi, i ∈ {1, . . . , m}
11: if lsr ≥ 0 then window ← SLR[lsr].read() ▷ check for new write since last read
12: if there is no w-tuple (w, _, _, _) in window then return lval ▷ no new write

(widx, ridx, auditset)←M.read() ▷ new write, check if it needs help to complete
13: if widx = lsr then
14: for each j ∈ readers(window) do
15: ridx[j]← lsr; auditset← auditset ∪ {(j, lval)}
16: M.writeMax(lsr + 1, ridx, auditset)
17: repeat
18: (widx, ridx, auditset)←M.read()
19: if ridx[i] > lsr then ▷ found help
20: lsr ← ridx[i]; lval← getValue(lsr − 1) return lval

21: lsr ← widx; H[i].write(lsr) ▷ catch up with writers, announce attempt
22: SLR[lsr].write(i); window ← SLR[lsr].read(); lval←getValue(lsr − 1)
23: if ∃(w, _, _, _) ∈ window then ▷ help corresponding write to complete
24: for each j ∈ readers(window) do
25: ridx[j]← lsr; auditset← auditset ∪ {(j, lval)}
26: M.writeMax(lsr + 1, ridx, auditset)
27: until i ∈ readers(window)
28: return lval

29: function write(v) ▷ code for writer pj , j ∈ {1, . . . , n}
30: widx, ridx, auditset←M.read(); to_help← ∅
31: for all i ∈ {1, . . . , m} do aidxj ← H[j].read() ▷ help ongoing read operations
32: if ridx[j] < aidxj then ▷ reader pj may need help
33: window ← SLR[aidxj ].read()
34: if j /∈ readers(window) then to_help← to_help ∪ {j}
35: SLR[widx].write(w, j, v, to_help); ▷ announce new write
36: window ← SLR[widx].read(); val← getvalue(widx− 1)
37: for each j ∈ readers(window) do ridx[j]← widx; auditset← auditset ∪ {(j, val)}
38: M.writeMax(widx + 1, ridx, auditset); return
39: function audit( )
40: widx, _, auditset←M.read() ▷ readers of val with seq. num ≤ widx− 2
41: window ← SLR[widx].read(); val← getValue(widx− 1)
42: auditset← auditset ∪ {(j, val) : j ∈ readers(window)} ▷ readers of val with seq. num

widx− 1
43: return auditset
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Algorithm 2 Multi-writer auditable register: auxiliary functions getValue and readers.

44: function getValue(sn)
45: window ← SLR[sn].read(); let (w, id, val, _) be the first w-tuple (w, _, _, _) in window

46: return val

47: function readers(window)
48: readers← {j : there is no w-tuple (w, _, _, _) preceding j in window}
49: if ∃(w, _, _, _) ∈ window then
50: let (w, id, _, h) be the 1st (w, _, _, _) in window; readers← readers ∪ h

51: return readers

any w-tuple. The array ridx (stored, as seen above, in the max register M), records for
each reader the highest index of a sliding register in which it has received help (that is,
the identifier of the reader is included in the helping set of the first w-tuple of that sliding
register). A writer pj hence determines if a given reader pi needs help by comparing H[i]
and M.ridx[i]. If M.ridx[i] < H[i], pi has an ongoing read operation, and i is therefore
added to the helping set of the w-tuple of the writer. Similarly, reader pi discovers if it has
received help by comparing M.ridx[i] with the index of the latest sliding register in which it
writes its identifier.

Hence, besides w-tuples, a given sliding register SLR[x] may also include identifiers i of
readers, with the following meaning:
1. If i appears before the first w-tuple in SLR[x], then pi’s read returns vx−1, which is the

value stored in the first w-tuple in SLR[x − 1].
2. If i appears in the helping set of the first w-tuple in SLR[x], then pi’s read also returns

vx−1 as in the previous case.
3. If i appears after the first w-tuple, then it is too late and fails to read vx−1.

The reader processes satisfying Cases (1) and (2) are said to be recorded in SLR[x]. The
function readers in Algorithm 2 returns the ids of readers recorded in a sliding register
(which is used, in particular, to update the audit set). The processes satisfying Case (2) are
called helped in SLR[x].

Regarding Case (3), we prove that after at most two failed attempts, a reader pi receives
help, or succeeds in appearing before any w-tuple in a sliding register. The algorithm also
ensures that a read operation is helped at most once. Before an attempt to write its id into
SLR[x], reader pi knows, by checking if ridx[i] ≥ H[i], if it has already received help. If this
is the case, it directly returns the corresponding value without updating H[i].

4.2 Proof of Correctness
In this section, we prove Theorem 3, starting with basic properties. We show that each
operation returns within O(m + n) of its own steps, and then explain how to construct a
sequential execution λ that contains all completed operations in an execution α, and some
pending operations. Lemma 13 shows that λ preserves the real-time order between operations
in α. By Lemma 14, Lemma 15, and Lemma 16, λ is a sequential execution of a m-reader,
n-writer auditable register.

To proceed with the detailed proofs, fix a finite execution α of the algorithm. We start
with some basic properties. Lemma 4, whose proof is in the full version, shows that that
each sliding register retains the complete history of the writes applied to it.

▶ Lemma 4. Each process applies at most one write to SLR[k], for any k ≥ 0,
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The max register M stores a triple (widx, ridx, auditset), where ridx is a m-vector and
audiset a set of (process,value) pairs. Triples are ordered in increasing order of their first
element. At any point in the execution, the triple stored in M is thus a triple with the largest
first member written to M . We also partially order m-vectors as follows: ridx ≤ ridx′ if and
only ∀i ∈ {1, . . . , m}, ridx[i] ≤ ridx′[i].

▶ Proposition 5. The successive values of M.widx are 0, 1, 2, . . ..

In the full version, we prove the following lemma by induction on k.

▶ Lemma 6. Suppose writeMax(k, iv, _) and writeMax(k′, iv′, _) are applied to M . (1) if
k = k′ then iv = iv′ and, (2) if k < k′ then iv ≤ iv′.

By Proposition 5, the successive values of M.widx are 0, 1, . . . By Lemma 6(1), M.ridx

remains the same while M.widx does not change. Lemma 6(2) implies that the successive
vectors in M.ridx are ordered and form an increasing sequence.

Let WIDX denote the highest index of a sliding register to which a w-tuple has been
written. That is, at the end of a finite execution α, WIDX = k if and only a w-tuple was
written in SLR[k], and no w-tuple was written in SLR[k′], for any k′ > k. When WIDX
is changed to k + 1 as a result of some process p applying write(w, _, _, _) to SLR[k + 1],
M.widx ≥ k + 1. Indeed, before writing a w-tuple to SLR[k + 1], p has read k from M.widx

in line 30. Observe also that when M.widx is changed from k to k + 1 by some process
p, M.widx ≥ k. Indeed, before applying M.writeMax(k + 1, _, _), p reads a sequence from
SLR[k] that contains a w-tuple (line 11 or line 22, p is performing a read), or has written a
w-tuple to SLR[k] (line 35, p is performing a write). This implies that M.widx is always
in {WIDX , WIDX − 1}, which shows:

▶ Proposition 7. For every x ≥ 0, if SLR[x] is accessed then SLR[x − 1] contains a w-tuple.

Combining these observations with Lemma 6(2), we have:

▶ Lemma 8. For some k ≥ 0, the finite execution α can be written as either
D0ρ0E0µ1D1ρ1E1 . . . µkDk or D0ρ0E0µ1D1ρ1E1 . . . µkDkρkEk, where:

ρℓ is the first step that writes a w-tuple to SLR[ℓ] (applied by a writer, line 35), µℓ is the
step that changes M.widx from ℓ − 1 to ℓ (applied within a read, line 26 or line 16, or
a write, line 38).
in any configuration in Dℓ, M.widx = ℓ = WIDX + 1, and in any configuration in Eℓ,
M.widx = ℓ = WIDX

Therefore, the first step that writes a w-tuple to SLR[x] is preceded by steps ρ0, . . . , ρx−1
that write w-tuples to SLR[0], . . . , SLR[x − 1], and they are never deleted (by Lemma 4).

Let x0 be the value of the local variable lsr when read operation op by process pi starts.

▶ Proposition 9. If op enters the repeat loop (line 12), then x0 < x1 < x2 < . . . where xk,
k > 0, is the value read from M.widx (line 18) at the beginning of the kth iteration.

If op does not terminate in the kth iteration of the loop (line 20), after reading (xk, _, _)
from M , then xk is written to H[i] (line 21) before an attempt is made to place i ahead of
any w-tuple in SLR[xk]. In the full version, we further prove:

▶ Lemma 10. If xk is written to H[i] then i /∈ readers(win), for any sequence win in any
sliding register SLR[x], x0 < x < xk.
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Finally, we prove, in the full version, that op does not find help in SLR[x], for any
x, x0 < x < x1.

▶ Lemma 11. i /∈ readers(win), for any sequence win in a sliding register SLR[x],
x0 < x < x1.

An audit operation reads M once and a single sliding register. A write operation
applies a single writeMax and a single read to M , reads O(m) registers and writes O(1)
registers. Since there is a linearizable implementation of max registers for (m + n) processes
using registers with O(m + n) step complexity per operation [3], this implies that the step
complexity of a write or a audit operation is in O(m + n).

Lemma 20 (Appendix A) shows that read operations are also wait-free, by proving that
the repeat loop has at most 3 iterations. This is because a writer may place a w-tuple in at
most one sliding register without detecting a concurrent read operation and helping it.

To prove linearizability, let H be the history of read, write and audit operations in
the execution α. For simplicity, we assume that the values written to the register in α are
unique. We start by classifying the operations in H. Each classified operation op is also
associated with an integer idx(op), which is the index of a sliding register.

For read, we distinguish silent, direct and helped operations. Let op be a read operation
by some process pi. We denote by x0 the value the local variable lsr when op starts.

rop is silent if it is not the first read operation by pi and it immediately returns after
reading SLR[x0] (line 12). This corresponds to the case in which no new write operation
has occurred since the last read by pi. We set idx(op) = x0.

If there is no x > x0 for which i ∈ readers(SLR[x]), op is unclassified. In that case, note
that op has no response in H. Otherwise, let x1 > x0 be the smallest index such that
i ∈ readers(SLR[x1]). We set idx(op) = x1 and say that

op is direct if i precedes any w-tuple in SLR[x1], and helped otherwise, as in that case, i

appears in the helping set of the first w-tuple in SLR[x1].

A write(v) operation op by some process pj applies at most one write to a sliding register
(line 35). op is unclassified if does not write to a sliding register. Otherwise, let x be the
index of the sliding register op writes to. x = idx(op) and we say that

op is visible if (w, j, v, _) is the first w-tuple written to SLR[x1], and hidden otherwise.

For audit, only operations that have a response in H are classified. Let op be an audit
operation that terminates. We define idx(op) = x, where x is the value read from M.widx in
the first step of op (line 40). op is non-definitive if there is no w-tuple in the sequence it reads
from SLR[x] (in line 41), and definitive otherwise. Indeed, once a w-tuple has been written
to SLR[x], the set of readers of vx−1 no longer changes, while read operations may still
return vx−1 after op terminates otherwise (vx−1 the value in the first w-tuple in SLR[x − 1].).
In Appendix A, we prove:

▶ Lemma 12. If an operation op terminates before an operation op′ starts in H ′, then
idx(op) ≤ idx(op′).

We define H ′ that contains every completed operation of H as well as some incomplete
operations, to which we add a matching response. We first discard from H every audit and
every silent read invocation without a matching response, as well as every invocation of
an unclassified read and write operation. We then add at the end a response for each
remaining read and write operation that has no response in H. The return value of a
read operation op with idx(op) = x is the value val in the first w-tuple in (w, _, val, _) in
SLR[x − 1]. Responses are added in arbitrary order.
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A linearization λ(α) of α is defined in two steps. We first order operations in H ′ according
to their associated index, in ascending order (rule R0). We then order operations with
the same index. Let B(x) be the set of operations op ∈ H ′ such that idx(op) = x. These
operations are ordered according to the following rules.
R1 We place first silent read, direct read and non-definitive audit operations. They

are ordered according to the order in which they apply a read (for silent read and
non-definitive audit) or a write (for direct read) to SLR[x] in α.

R2 We then place helped read in arbitrary order, followed by the definitive audit operations.
The definitive audit are ordered according to the order in which they apply a read to
SLR[x] in α.

R3 We next put every hidden write. They are ordered according to the order in which
their write to SLR[x] is applied in α.

R4 The (unique) visible write is placed last.

Let λ be the linearization obtained by applying linearization rules R0-R4 to the operations
in H ′. In Appendix A, we prove:

▶ Lemma 13. If an operation op terminates before an operation op′ starts in H ′, then op

precedes op′ in λ.

▶ Lemma 14. If read operation op in H ′ returns v, then v is the value written by the last
write that precedes op in λ, or the initial value v0 if there is no such write.

Finally, we prove (in Appendix A) that a pair (p, v) is in the set returned by an audit
operation op if and only if there is a read by p returning v precedes op.

▶ Lemma 15. Let aop be an audit operation in H ′ that returns A. If there is a read
operation rop by process pj returning v and that precedes aop in λ, (j, v) ∈ A.

▶ Lemma 16. Let aop be an audit operation in H ′ whose response contains (j, v). There
exists a read operation by pj returning v that precedes aop in λ.

5 Auditable LL/SC from 2n-Sliding Register

We show how to adapt our auditable register algorithm to implement an auditable LL/SC
object for n processes, and an arbitrary number of auditors. An audit operation returns a
set of pairs (p, v), representing the values returned by the processes by the ll operations
preceding the audit. The implementation uses 2n-sliding registers, showing:

▶ Theorem 17. There is a wait-free, linearizable implementation of an n-process auditable
LL/SC object from 2n-sliding registers and standard registers with O(n) step complexity per
operation.

Algorithm 3 is essentially the same as Algorithm 1. ll operations are identified with
read operations, and sc with write. At the end of a finite execution α of Algorithm 1,
the sequences stored in the sliding registers in the array SLR indicate, for each x, which
is the xth value vx held in the auditable register, and which processes write or read this
value. Specifically, given the sequence winx stored in SLR[x], the first w-tuple (w, j, v, h)
in winx indicates that vx = v, and its writer is pj . The readers of vx−1 are the processes
pi, where i ∈ h, or precedes (w, j, v, h) in winx. Each other w-tuple (w, j′, v′, _) in winx
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Algorithm 3 n-process LL/SC with auditable LL.

1: shared variables
2: M , H[1..n]: max register and helping array of n SWMR register, initialized as in Algorithm 1
3: SLR[−1, 0, . . .]: unbounded array of 2n-sliding registers, initialized as in Algorithm 1
4: local variables
5: lsr, val, as in Algorithm 1
6: function ll( ) ▷ identical to read in Algorithm 1
7: function sc(v) ▷ code for process pi, i ∈ {1, . . . , n}
8: widx, ridx, auditset←M.read(); to_help← ∅
9: if widx > lsr then return false ▷ a successful sc happened since pi’s last ll

10: for all i ∈ {1, . . . , m} do aidxj ← H[j].read() ▷ help ongoing ll operations
11: if ridx[j] < aidxj then ▷ an ll by pj may need help
12: window ← SLR[aidxj ].read()
13: if j /∈ readers(window) then to_help← to_help ∪ {j}
14: SLR[widx].write(w, j, v, to_help); ▷ announce new sc
15: window ← SLR[widx].read(); val← getvalue(widx− 1)
16: for each j ∈ readers(window) do ridx[j]← widx; auditset← auditset ∪ {(j, val)}
17: M.writeMax(widx + 1, ridx, auditset);
18: if (w, j, v, to_help) is the 1st w-tuple in window then return true else return false

19: function audit,getValue, readers ▷ as in Algorithm 1

corresponds to an invisible write operation, whose input v′ is never read. We may think
as these operations as unsuccessful, in the sense that they fail to change the value of the
auditable register, being immediately overwritten by another write.

Alternatively, we may think of the sequences in SLR as a trace of an execution β of an
LL/SC object implementation by identifying reads with ll and writes with sc. Again, the
xth value held by the object in β is vx, the value in the first w-tuple (w, j, v, h) in winx. Each
process pi, with pi ∈ h or preceding this tuple has an ll that returns vx−1. The first w-tuple
(w, j, v, h) indicates a successful sc(v) by process pj , that changes the object from vx−1 to
vx = v. And every following tuple (w, j′, v′, _) marks an unsuccessful sc(v′) by process pj′ .
Recall that, per its specification, an sc is successful if and only if it is preceded by an ll by
the same process, without any successful sc operation between them. In particular, β is a
valid sequential execution if (1) in each sequence winx, the first w-tuple (w, j, v, h) is after
pj ’s ll and (2) each sc(v′) operation corresponding to a following (w, j′, v′, _) tuple is after
sc(v) in β.

The code of an ll operation is the same as for a read operation in Algorithm 1, while
audit and the auxiliary functions getValues and readers are identical. sc operations
follow the code of write, with two additions (line 9 and line 18) highlighted in gray .

To maintain property (1), an sc operation op by process pi should be prevented from
writing a w-tuple to a sliding register SLR[x] in which pi ’s last ll is not recorded. In
Algorithm 1, the local variable lsr of a process pi is the highest index of a sliding register
that keeps track of pi’s last read, and hence here, SLR[lsr] records pi’s last ll. Therefore,
before writing to SLR[widx] (in line 14), pi checks that lsr = widx. If this is not the case, a
successful sc has occurred since pi’s last ll, and op may immediately return false (line 9).
The other addition is the return statement at line 18: true is returned if pi’s w-tuple is the
first in SLR[widx], and false otherwise.

For property (2), the linearization rules are slightly modified. In Algorithm 1, write
operations recorded in the same sliding register SLR[x] are linearized in the reverse order of
their corresponding w-tuple appearance in the sequence stored in SLR[x]. Here, we do the
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opposite, linearizing sc operations in the same order their corresponding w-tuple appear in
SLR[x]. Only the first w-tuple represents a successful sc, which is aligned with the return
statement of line 18.

Finally, as each process may write twice to a sliding register, once in an ll operation,
and once in a sc operation, SLR is an array of 2n-sliding registers. The code of audit may
easily be adapted to report which process has successfully stored which value instead of or in
complement to values returned by ll operations to the processes.

The code of audit is the same in Algorithm 1 and Algorithm 3, and the same code is
shared by read and ll operations. For sc, the additional statements (line 9 and line 18) in
the code do not affect termination or step-complexity. Therefore, the step complexity of ll,
sc, and audit is O(n).

Fix a finite well-formed execution β, in which each process alternates ll and sc operations.
Thanks to the similarities in the code, a linearization µ(β) of β can be obtained from a
linearization λ(α) of an execution α of the auditable register implementation induced by
β. α is constructed as follows. We introduce a new class for sc operations that terminate
immediately after reading M.widx in line 9. Those operations are said to be silent (similarly
to silent read operations). We next extract from β an execution α of Algorithm 1 by
removing all steps applied by silent sc, and replacing each invocation of sc and ll by and
invocation of write and read, respectively, with the same input. α is a valid execution of
Algorithm 1, as besides early termination for sc (line 9), which we dispose of by removing
steps of silent sc operations, the code of sc and ll is the same as the code of write and
read, respectively, and the code for audit is identical. We explain in Appendix B how a
linearization µ(β) can be inferred from the linearization λ(α) of α.

6 Immediate Deny List from Auditable Registers

A Deny List [11] is used to control resources, by having a set of managers maintain a list of
which users are unauthorized to access which resources. To access a resource, a user must
prove that the corresponding user-resource pair has not been added to the Deny List. The
managers have to agree on the set of process-resource pairs in the Deny List. A Deny List
has an anti-flickering property that ensures that there are no transient periods: once access
is disallowed, it is never allowed again.

More formally, a deny list object over a set of resources S supports three operations, for
x ∈ S: append(x), prove(x) which returns a Boolean value, and read(), which returns a
set of process-resource (p, x) pairs. A prove(x) that returns false is invalid; otherwise, it
is valid. The intuition is that an append(x) revokes the authorization to access a resource
x to all processes. A valid prove(x) by process p indicates that p is authorized to access
x. The set of processes that can invoke append is called the managers, and those that can
invoke prove are called the provers. These sets of processes are predefined and static. The
property termination requires that the operations prove, append, and read return within
a finite number of steps.

In the original definition [11], an append can be successful or unsuccessful. Their
sequential specification in the anti-flickering flavor of a deny list is as follows:
Append progress: Only a finite number of append(x) operations are unsuccessful; that is,

append(x) is eventually successful.
Prove progress: After a successful append(x) operation, only a finite number of prove(x)

operations can be valid; that is, prove(x) is eventually invalid after a successful
append(x).
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Prove validity: A prove(x) operation is invalid only if a successful append(x) operation
appears before it.

Prove anti-flickering: If a prove(x) operation op is invalid, then all following prove(x)
operations are invalid.

Read validity: The set of object-process pairs returned by a read() operation includes
exactly all preceding valid prove(x) operations and the processes that invoked them.

We consider a stronger version, called immediate deny list, where all append(x) are
successful, and where all prove(x) operations that follow an append(x) are invalid. The
sequential specification for the immediate deny list is therefore as follows:
Strong prove validity: A prove(x) operation is invalid if and only if an append(x) operation

appears before it.
Read validity: The set of object-process pairs returned by a read() operation includes

exactly all preceding valid prove(x) operations and the processes that invoked them.

An Immediate Deny List guarantees all the properties of the Anti-flickering Deny List:
Since all append(x) are successful, we trivially guarantee Append progress. Our Strong prove
validity includes the Prove validity and Prove progress where the number of prove(x) that
can be valid after an append(x) is 0. Prove anti-flickering is trivially implied by our Strong
prove validity property.

It is already known that the consensus number of an Anti-flickering Deny List object
where n processes can both do append(x) and prove(x), denoted anti-flickering n-deny list,
is n [11]. In particular, they show how to solve consensus among n processes using this object
with a single resource. Thus, an Anti-flickering n-deny list has at least consensus number n,
and therefore, the consensus number of an immediate n-deny list is also at least n.

They also present an algorithm to show that the consensus number of the anti-flickering
n-deny list over a set of resources S is at most n. In the following, we show how to implement
(Algorithm 4) an immediate-n-deny list object using (1, n − 1)-auditable registers, which have
consensus number n as proved in Sections 3 and 4. This proves that the immediate n-deny
list has consensus number at most n. Our algorithm provides a somewhat simpler proof for
their upper bound. We present the algorithm for a single resource. The generalized version
can be easily built thanks to the locality property of linearizability, and by implementing
the read() on the set of resource S using classical techniques to implement a snapshot by
applying the read() on each x ∈ S.

Algorithm 4 implements an immediate n-deny list for a resource x. It uses a vector
ARx[1 . . . n] of binary auditable registers, initially true. ARx[i] is written by process pi and
read by all other processes. When a process pi wants to perform append(x), it writes false
in its auditable register ARx[i] and locally stores the information that it did an append.

To perform prove(x), a process simply checks if it previously did an append(x), and if
not, it reads all the auditable registers (but its own) to check if some process wrote into one
such register. If none of the previous conditions happen, then it can return true.

The read() repeatedly audits all the registers to collect the processes that have executed
a valid prove(x). These are the ones that read true in all registers. To obtain a snapshot,
the read() terminates when two consecutive collects returns the same set. Appendix C
presents proof sketch of the correctness of the algorithm.

7 Conclusions and Future Work

In this work, we extended the concept of auditability from single-writer registers to more
general shared objects. We start by providing a rigorous characterization of the synchro-
nization power required to support auditable multi-writer registers. Our results establish a
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Algorithm 4 Immediate n deny-list object from auditable registers, code for process pi.

Shared objects
ARx[1 . . . n] is a vector of (1, n− 1)-auditable registers, initially true

1: local variables
2: appendx is a boolean initially false, that is set to true when pi does append(x)
3: function append(x)
4: ARx[i].write(false); appendx ← true return
5: function prove(x)
6: if appendx then return false;
7: for all j ∈ {1, . . . , n} with j ̸= i do
8: b← ARx.read(); if ¬b then return false
9: return true

10: function read( ) ▷ audit all registers until you get a successful double collect
11: c2← ∅
12: repeat
13: c1← c2; c2← ∅
14: for all j ∈ {1, . . . , n} do aj ← ARx[j].audit()
15: c2← {(q, x) : ∀j ̸= q, (q, true) ∈ aj}
16: until c1 = c2
17: return c2

tight bound on the consensus number necessary for achieving auditability, demonstrating the
feasibility of implementing auditable storage mechanisms.

Looking ahead, there are several promising directions for future research. First, extending
auditability to a broader range of shared objects beyond registers and LL/SC remains
an open challenge. Second, investigating the impact of adversarial behavior on auditable
implementations could lead to more robust security guarantees. Finally, exploring efficient,
scalable implementations of auditable objects in real-world distributed storage systems could
bridge the gap between theoretical feasibility and practical deployment. In particular, while
sliding registers are not supported in hardware (to the best of our knowledge), they bear
resemblance to shift registers. This hardware object [16] holds the last w bits “shifted in”
the register and has a functionality similar to a sliding register; the consensus number
of shift registers is w [2], Although they cannot directly replace sliding registers in our
implementations, our algorithmic insights might be leveraged to develop other algorithms
that employ shift registers.
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A Additional Lemmas and Proofs for Section 4

We present in this appendix missing proof and additional lemmas for Section 4. Omitted
proofs can be found in the full version.

The function readers extracts from a sequence read from some sliding register SLR[x]
a set of processes. This set does not change once a w-tuple has been written to SLR[x].

▶ Proposition 18. If win and win′ are two sequences read from SLR[x] after
SLR[x].write(w, _, _, _) has been applied, then readers(win) = readers(win′).

▶ Lemma 19. M.ridx[i] ≥ x if and only if SLR[x] holds a sequence win such that
i ∈readers(win).

▶ Lemma 20. The step complexity of a read operation is in O(m + n).

▶ Lemma 12. If an operation op terminates before an operation op′ starts in H ′, then
idx(op) ≤ idx(op′).

Proof. Let x = idx(op) and x′ = idx(op′), and let pi and pi′ be the processes that perform
op and op′ respectively.

We first prove that when op terminates, M.widx ≥ x. As M.widx is increasing (Proposi-
tion 5), it is enough to show that M.widx ≥ x in a configuration in the execution interval
of op. If op is a write or an audit, op writes to SLR[x] (line 35) or reads from SLR[x]
(line 41) after reading x from M.widx (line 30 or line 40).

If op is a direct read, pi writes i to SLR[x] (line 22) after having read x from M.widx

(line 18). If op is helped, M.ridx[i] = x when M is read at the beginning of some iteration
of the loop (line 18). Therefore M.widx > x, as the writeMax that changes M.ridx[i] to
x also set M.widx to x + 1 (lines 15-16, lines 25-26, or lines 37-38). If op is silent, it is
preceded by direct read op′′ with the same index x, and hence M.widx ≥ x already when
op′′ terminates.

We next examine several cases according to the type of op′.
op′ is a silent read. In op′, SLR[x′] is read by pi′ and does not contain a w-tuple. Hence,
before op starts, WIDX = x′ − 1 (the largest index of a sliding register to which a w-tuple
has been written), and therefore, by Lemma 8, M.widx ≤ x′ − 1, from which we have
x ≤ x′ − 1, as x ≤ M.widx when op terminates.
op′ is a direct or a helped read. Let x0 be the value of the local variable lsr when op′

starts. op′ does not terminate before reading some value x1 from M.widx (line 18) in the
first iteration of the repeat loop. By Lemma 11, for every y, x0 < y < x1, the helping set
of the first w-tuple in SLR[y] does not contains i′. Therefore, x1 ≤ x′ = idx(op′) and
hence x ≤ x′ as x ≤ M.widx before op′ starts.
op′ is a write or an audit. pi′ reads x′ from M.widx (line 30 and line 40, respectively).
As x ≤ M.widx when op terminates, x ≤ x′. ◀

To show real-time order is preserved, we first prove the following facts about the precedence
of operations with the same sequence number.

▶ Lemma 21. Let op, op′ be two operations in H ′ with idx(op) = idx(op′) = x. Let x ≥ 0.
1. If op is a silent read, a direct read, or a non-definitive audit, and op′ is a helped read,

a definitive audit, or a write operation, then op′ does not precede op.
2. If op is any operation and op′ is a write, then op′ does not precede op.
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▶ Lemma 22. Let op be a helped read operation in H ′ with idx(op) = x. The first write of
a w-tuple to SLR[x] happens during the execution interval of op.

▶ Lemma 13. If an operation op terminates before an operation op′ starts in H ′, then op

precedes op′ in λ.

Proof. By Lemma 12, idx(op) ≤ idx(op′). If idx(op) < idx(op′), op is before op′ in λ by rule
R0. We assume in the following that idx(op) = idx(op′) = x.

If op′ is a silent read, a direct read, or non-definitive audit, it follows from Lemma 21(1)
that op also falls into this category. Therefore, op and op′ are both ordered in λ using rule
R1. They are ordered according to the order in which a step in their execution interval
occurs in α. Hence, op precedes op′ in α implies that op precedes op′ in λ.
If op′ is a helped read or a definitive audit, it follows from Lemma 21(1) and Lemma 21(2)
that op also falls into this category, or is a silent or direct read, or a non-definitive audit.
In the latter case, op is ordered in λ according to rule R1, and op′, rule R2, from which
we have that op precedes op′ in λ.
In the former case, as op and op′ are both helped read, their execution interval intersect
(Lemma 22) and thus op cannot precedes op′. If op and op′ are both definitive audit,
they are placed according to the order in which they apply a read to SLR[x] in α. Hence
op is before op′ in λ. If op is an helped read and op′ a definitive audit, op is placed
before op′ in λ by rule R2. The last case remaining is op being a definitive audit and
op′, a helped read. As op is a definitive audit, it sees a w-tuple mark in SLR[x], but
the step in which the first such tuple is written to SLR[x] is in the execution interval of
op′ (Lemma 22). Therefore op cannot terminate before op′ starts.
If op′ is a write visible or hidden, Lemma 21(2) implies that op cannot be a write.
Therefore, op is placed according to rule R1 or R2, and sthus precedes op′ which is placed
after, according to R3 or R4. ◀

▶ Lemma 14. If read operation op in H ′ returns v, then v is the value written by the last
write that precedes op in λ, or the initial value v0 if there is no such write.

Proof. Let x = idx(op), and let pj be the process that performs op.
We first consider the case x > 0. If op is helped or direct, the value returned by op is

the value v in the first w-tuple (w, i, v, _) stored in SLR[x − 1] (lines 45). Note that i and
v are well defined, as when pj reads from or writes to SLR[x], a w-tuple has already be
written to SLR[s − 1] (Proposition 7). Let wop be the operation pi is performing when it
writes (w, i, v, _) to SLR[x − 1]. By definition, idx(op) = x − 1, and wop is a visible write.
Therefore, among the operations with index x − 1, wop is placed last in λ (rule R4), and
there is no other write operation between wop and op (every write operation with index
≥ x is after op in λ.)

If rop is silent, it is preceded by a direct read op′ by the same process with the same
index x. By the linearization rule R1, there is no write operation between op′ and op in λ.
Also, op and op′ return the same value. By the same reasoning as above, it follows that op

returns the input value of the last write operation that precedes it in λ.
If x = 0, op returns the initial value v0. Indeed, SLR[−1] is initialized with a sequence

that contains a single tuple (w, i0, v0, ∅). There is no write that precedes op in λ, as for
every write operation wop, idx(wop) ≥ 0. ◀

▶ Lemma 23. If i ∈ readers(SLR[x]) then there exists a read operation op in H ′ by
process pi with idx(op) = x.

DISC 2025
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Proof. Suppose that i precedes any w-tuple in SLR[x]. pi writes i to SLR[x] (line 22)
while performing the kth iteration of the repeat loop (lines 17-27) in some read operation
op. Let x0 be the value of lsr when op starts, and let x1 < . . . < xk be the value read
from M.widx (line 18) in the first k iterations of the loop. Note that x = xk. As before
writing i to SLR[xk = x], H[i] is changed to xk (line 21), it follows from Lemma 10
that for every x′, x0 < x′ < xk, i /∈ readers(SLR[x′]). As i ∈ readers(SLR[xk]),
xk = min{x′ > x0 : i ∈readers(SLR[x′])} and therefore by definition x = xk = sn(op).

Suppose now that i is in the helping set of the first w-tuple (w, j, _, h) written to SLR[x].
Before writing (w, j, _, h) (line 35), pj reads x from M.widx , y from M.ridx[i] (line 30) and
xℓ from H[i] (line 31). As i is placed into to_help, y < xℓ.

H[i] is changed by pi (line 21) in an iteration of the repeat loop while performing some
read operation op. Let x0 be the value of lsr when op starts, and pi is performing iteration
ℓ when it writes xℓ to H[i]. By the code, xℓ is the value read from M.widx in that iteration,
and by Lemma 10, i /∈ readers(SLR[x′]), for every x′, x0 < x′ < xℓ.

To summarize, starting from i ∈readers(SLR[x]), we have shown that there exists a
read operation op by pi that starts with lsr = x0, and that for every x′, x0 < x′ < x(= xℓ),
i /∈readers(SLR[x′]). By definition, idx(op) = x. ◀

▶ Lemma 15. Let aop be an audit operation in H ′ that returns A. If there is a read
operation rop by process pj returning v and that precedes aop in λ, (j, v) ∈ A.

Proof. By linearization rules R0-R2, idx(rop) = x ≤ idx(aop). Let pi be the process that
performs the audit operation aop.

If rop is silent, it is preceded by a direct read operation by the same process, with the
same output value v and the same index x. In the following, we thus assume that rop is
direct or helped. In SLR[x], j is written before any w-tuple, or the first w-tuple written to
SLR[x] has an helping set h containing i. Note that v is the value of the first w-tuple in
SLR[x − 1].

Let us assume that x < idx(aop) = x′. In aop, pi reads x′ from M.widx and a set as′

from M.auditset (line 40). Before this step, M is changed from x to x + 1 (in line 16, line 26
or line 38), after a win containing a w-tuple is read from SLR[x]. Hence, j ∈ readers(win),
and therefore (j, v) is added to the audit set as written together with x + 1 to M . By the
code (line 15, line 25 or line 37 and line 42), we have that as ⊆ as′ ⊆ A.

We now assume that x = idx(aop). If aop is a non-definitive audit, no w-tuple has
been written to SLR[x] when pi reads SLR[x]. As rop precedes aop in λ, there are both
placed in λ following rule R1 and therefore pj writes j to SLR[x] before the sliding register
is read in aop, from which it follows that (j, v) ∈ A (line 42). Otherwise, aop is a definitive
audit, which means that the value win reads from SLR[x] (line 42) contains the first w-tuple
(w, _, _, h) written to SLR[x]. As j precedes this tuple or i ∈ h, j ∈ readers(win) and
therefore (j, v) ∈ A. ◀

▶ Lemma 16. Let aop be an audit operation in H ′ whose response contains (j, v). There
exists a read operation by pj returning v that precedes aop in λ.

Proof. Let pi be the process that performs aop, and let A be the set of pairs (process,value)
returned by this operation. As (j, v) is in A, there exists x such that i ∈readers(SLR[x])
and v is the value in the first w-tuple (w, _, v_) written to SLR[x − 1]. Indeed, pair (j, v)
is inserted to A by pi after reading SLR[x], if x = idx(aop) (line 42), or when M.widx is
changed to x + 1 (lines 15-16, lines 25-26 or lines 37-38) if x < idx(aop).
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By Lemma 23 shows there is a read operation op by process pi with idx(op) = x. This
read returns v, which is the value of the first w-tuple written to SLR[x − 1]. It remains to
prove that op precedes aop in λ. If x < idx(aop), op precedes aop in λ (rule R0). Otherwise,
x = idx(aop). If aop is definitive, it is linearized after rop by rules R1 and R2. Else, aop

is non-definitive, and j is before any w-tuple in SLR[x]. j is also written to SLR[x] before
before SLR[x] is read by pi. op is hence direct, and linearized before aop by rule R1. ◀

B Proof Sketch for Section 5

Recall that β is an execution of the auditable LL/SC implementation (Algorithm 3) and α an
execution of the auditable register implementation induced from β. We build a linearization
µ(β) of β from the linearization λ(α) of α as follows:
1. write operations with the same index x are reordered, by applying first rule R4 and

then rule R3. Hence, the write operation corresponding to the first w-tuple in SLR[x] is
placed first, and then the writes corresponding to the other w-tuples follow, in arbitrary
order. The resulting sequence λ′(α) is no longer a valid linearization of an auditable
register, but still extends the real-time order among operations, as writes with the same
index are concurrent (Lemma 21(2)). Observe that in λ′(α), as in λ(α), writes with the
same index form a contiguous block, denoted Wx. A read operation no longer returns
the input of the last preceding write, but rather the input vx of the first write in the
last block Wx that precedes it.

2. We revert to ll/sc operations, by replacing in λ′(α) each read and write operation by
the ll or sc operation it originated from. This results in a partial linearization µ′(β) of
β, missing silent sc operations. In µ′(β), an ll operation op returns the input vx of the
first sc operation sop in the last block Wx that precedes it. Every sc operation in Wx

writes a w-tuple to SLR[x], sop being the first to do so. Hence, except sop, each of them
returns false (line 18). Consequently, op returns the input of the last preceding successful
sc.
If pi has a sc operation in Wx, its matching preceding ll operation op is recorded in
SLR[x] (line 9) and therefore, has index idx(op) = x. By rules R1-R2, op is before Wx,
and after any operation op′ with index idx(op′) < x (rule R0). Only the first sc operation
sop in Wx returns true, and indeed, there is no sc between sop and its last preceding
ll. Each other sc operation in Wx is unsuccessful, in agreement with the fact that it
preceded by the successful sc sop, with no ll operation in between.
ll and audit are ordered in µ′(β) as their corresponding read and audit in λ(α), and
each ll returns the same value as its corresponding read. Hence, a pair (p, v) is included
in the response of an audit operation op if and only if there is an ll by p that returns v

before op in µ′(β).
3. Finally, we bring back the silent sc operations that were removed from β to form a full

linearization µ(β). Each silent sc operation op that returns is unsuccessful and therefore
can be inserted in µ′(β) without affecting the outcome of other sc or ll operations, as
long as there is a successful sc between the matching ll op′ by the same process and op.
Let x be the value read by op from M.widx. We insert op in µ′(β) within the operations
whose index is x and after every operation that terminates before op starts. As x > x′,
op is placed after the operations with index x′. In particular, op follows the successful sc
operation sop that writes the first w-tuple to SLR[x], which in turn follows op′. This
can be done while preserving the real-time order, as when x > x′ is read from M.widx in
op, a w-tuple has already been written to SRL[x′] (Lemma 8).
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C Proof Sketch for Section 6

To prove the correctness of Algorithm 4, we start by noting that all operations terminate
within a finite number of their own steps. This is obvious for append and prove, relying
on wait-freedom of the encapsulated auditable register operations. For a read operation,
note that the sets it returns are monotonically contained in each other; the maximal set is
the one containing all process-object pairs. Furthermore, if two sets are equal, the operation
terminates. Thus, the loop can be repeated at most n times.

We next prove that Algorithm 4 implements a linearizable immediate n-deny list. First,
for all i ∈ {1, . . . , n}, we linearize all the append(x) in the step corresponding to the write
to the auditable register. append(x) that have not reached this step are discarded.

A prove(x) operation by pi that returns false and that does not return at line 6 is
linearized at the last read primitive pi applies to an auditable register ARx[j]. A prove(x)
that returns at line 6 is linearized at its invocation. A read is linearized at the last audit
of the second last loop (i.e., the last audit before c1 is set for the last time). We remove
incomplete read.

prove(x) operations that return true are inserted at the beginning before the first
append(x), according to their real-time order. In particular, we pick one by one in the order
of their last step (i.e., the last read from an auditable register), the ones that happen earlier
first), denoted s. We put prove(x) immediately before the first read() whose linearization
point follows s or immediately the first append(x) if such read() does not exist.

Strong prove validity: A prove(x) by a process p returns false, either if p previously
performed an append(x) or if it read false in one auditable register. In both cases, there is
an append(x) in the set of operations we linearize and it is linearized before the prove(x)
according to our rules. The only if part is immediate since we linearize all prove(x) that
return true before the first append(x).

▶ Lemma 24. The set of object-process pairs returned by a read() operation includes exactly
all preceding valid prove(x) operations and the processes that invoked them.

Proof. A op = prove(x) that returns true is linearized before the first audit, namely op′,
whose linearization point follows the last read primitive applied by op to an auditable register.
After the step where it is linearized op′ executes a second loop where it audits all the auditable
registers. At that point op is added in c2. By the definition of the linearization point of op′,
op is in the set returned by op′.

On the other hand, suppose that a pair (q, true) is in the set c2 returned by a read() by
p. Then, there is a prove(x) by q that read true in all the auditable registers (but ARx[q])
before p start the execution of the last loop. By a simple inspection of the pseudo code it is
easy to see that op returns true. Our linearization rule completes the proof. ◀

Finally, we show that our linearization respects the real-time order of operations. All
operations but the prove(x) that return true are linearized in a point of their execution.
A prove(x) operations that returns true is linearized before the first append(x) in the
linearization. As it reads true in all low-level auditable registers, there is no append(x) that
completes before this prove(x) is invoked, otherwise one of the low-level read would have
returned false. If prove(x) op completes before a read() op′ starts, then the last step of op

precedes the linearization point of op′. Thus, op is linearized before op′. Similarly if op is
invoked after op′ completes, then the linearization point of op′ precedes the last step of op

which is then linearized after op′. This concludes the proof since prove(x) are linearized in
the order of their last step.
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