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Abstract
We consider the Download problem in the Data Retrieval Model, introduced in DISC’24, where a
distributed set of peers, some of which may be Byzantine, seek to learn n bits of data stored at a
trustworthy external data source. Each bit of data can be learned by a peer either through a direct
and costly query of the source or through other peers that have already learned it; the goal is to
design a collaborative protocol that reduces the query complexity defined as the maximum number
of bits queried by any honest peer.

We begin with a randomized protocol for the Download problem that achieves optimal query
complexity, up to a logarithmic factor. For a stronger “dynamic” adversary that can change the set
of Byzantine peers from one round to the next, we achieve optimality (within log factors) for both
query complexity (in expectation) and time complexity, but with larger messages. In broadcast
communication, where all peers (including Byzantine peers) are required to send the same message
to all peers, we achieve (up to log factors) an optimal trade-off between query complexity, time
complexity, and message size with the dynamic adversary. All of our protocols can tolerate any
constant fraction β < 1 of Byzantine peers.
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9:2 Distributed Download from an External Data Source in Byzantine Settings

1 Introduction

Almost 45 years ago, the Byzantine Generals Problem, which launched the study of Byzantine
agreement, was posed as follows:

“We imagine that several divisions of the Byzantine army are camped outside an enemy
city, each division commanded by its own general. The generals can communicate
with one another only by messenger. After observing the enemy, they must decide
upon a common plan of action.” [18]

One component of the problem is that each general v must first evaluate the situation and
make observations about the enemy that are used to guide its choice of action x(v) (“attack”
or “retreat”). The common formal definition of the agreement problem, as given in the
literature, abstracts away the observation stage, and considers the action choice x(v) of each
general v as its input bit (allowing those bits to differ even among the honest generals).

The Data Retrieval (DR) model [4] “zooms in” on the stage of collecting the observations.
Suppose that there are n questions of interest about the enemy, which the generals are
required to answer to reach a correct action choice. Denote the answers to these questions
(conveniently assumed to be Boolean) by the observation bits b1, . . . , bn. Making all n

observations and learning the entire observations vector b̄ is possible but expensive for any
single general v. The DR model addresses this by allowing the generals to collaborate in
order to make all n observations and share the bits bi correctly. Consequently, each general
v can compute its choice x(v) based on the entire observations vector b̄.

The original Byzantine Generals problem was introduced to model protocols that function
correctly despite the failure of components of a computer system, where perhaps there
is no external information that can be independently verified. In contrast, our modified
variant of the Byzantine Generals problem can be thought of as a metaphor for scenarios
(that are common these days) where there is a need to ascertain factual information that is
spread across many sources, and the cost for an individual to validate every fact would be
prohibitively expensive. This raises a need for a collaborative protocol to share these costs,
where, as in the original Byzantine Generals Problem, there are untrustworthy peers who
might communicate false findings.

Formally, our model represents the process of making observations as a trustworthy
external “read-only” data source. Making observation i is modeled as sending a query on bi

to this data source. Note that in the DR model, making the right choice is always possible
(albeit at a very high cost); each peer can learn each observation bit bi by querying the
source directly. Hence, a significant advantage of this approach is that impossibility concerns
are eliminated; reaching an agreement is always possible, for any number of corrupt peers.
Instead, the focus shifts to efficiency: the peers must collaborate to share the cost of learning
the observation bits from the source.

The DR model consists of a peer-to-peer network and an external data source in the
form of an n-bit array X. There are k peers, some of which may be Byzantine. They can
query information from the array and communicate with each other through messages. The
peers initially do not know the array’s contents, but are required to compute some function
of the n bits. The peers can learn information about the bits either by querying the data
source directly or from other peers. The primary goal is to minimize the maximum number
of queries by any honest peer.

The DR model gives rise to a natural class of problems, called retrieval problems. In
a retrieval problem, each peer needs to output f(X) for some computable function f of
the input. In this work, we focus on the specific problem where f is the identity function,
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hereafter referred to as the Download problem. We view this as the most fundamental
retrieval problem since every computable function f of the input can be computed by the
peers by first running a Download protocol and then computing f(X) locally at no additional
query, communication, or time cost. Hence, the query cost of the Download problem serves
as a baseline against which to compare the costs of other specialized protocols for specific
problems. Observe that a lower bound on query complexity for computing any Boolean
function on X serves as a lower bound for Download as well.

The DR model was introduced in [4] and was inspired by distributed oracle networks
(DONs) which are a part of blockchain systems. In such networks, peers are tasked with
retrieving information from external data sources such as stock prices via well-defined
Application Interfaces (APIs). Calls to these APIs incur a cost that increases with the
oracle’s usage. Thus, reducing the number of API calls also reduces the overall cost of the
DON.

The Download problem is easily solved in a query-balanced manner in the absence
of failures. This problem becomes challenging in the presence of faults. We consider a
synchronous1 failure-prone setting where up to βk peers are Byzantine and at least γ ≥ 1−β

fraction are honest. For such systems, a tight bound on query complexity is established
in [4] for deterministic Download, complemented by two randomized protocols that solve
Download w.h.p.2 The first can tolerate any constant fraction β < 1 of Byzantine faults
but has non-optimal query complexity of O

(
n

γk +
√

n
)

, while the second has optimal query

complexity of Õ
(

n
γk

)
but can only tolerate up to β < 1

3 fraction of Byzantine faults3. In
this paper, we explore both the query and time complexity of the Download problem, with
our main contribution being a novel randomized synchronous protocol that combines the
best of both results, achieving optimal query complexity while tolerating any fraction β < 1
of Byzantine faults.

1.1 The Model
The Data Retrieval model consists of (i) k peers that form a clique and (ii) a source of data
that is external to the clique called the source that stores the n-bit input array and provides
read-only access to its content through queries.

Clique network and communication mode. In a clique (complete) network, the k peers
are identified by unique IDs, assumed to be from the range [1, k]. In each round, every
peer can send a message of up to b bits to each of the other peers. The common variant of
this communication mechanism, referred to as peer-to-peer message passing communication,
allows a peer to send in each round a different message to each of the other peers. However,
we also discuss (in Sect. 4.3) a variant termed broadcast communication, where each peer
(including a Byzantine one) can send at most one message per round, and that message is
delivered to all other peers. This variant can be implemented in a peer-to-peer network using
Byzantine Reliable Broadcast, albeit at additional time and message costs. However, there
are communication networks, such as radio networks, where the behavior of communication
matches the description of our broadcast model.

1 The companion paper [6] considers the asynchronous setting, which behaves rather differently.
2 Throughout this paper, we use the term “with high probability” to mean the following: with probability
≥ 1− n−c, for some constant c ≥ 1. We often abbreviate the phrase “with high probability” as “whp”
or “w.h.p.”

3 We use the Õ(·) notation to hide β factors and polylogarithms in n and k.

DISC 2025



9:4 Distributed Download from an External Data Source in Byzantine Settings

The source. The n-bit input array4 X = {b1, . . . , bn} is stored in the source. It allows
peers to retrieve that data through queries of the form Query(i), for 1 ≤ i ≤ n. The answer
returned by the source would then be bi, the true ith element in the array. This type of
communication is referred to as source-to-peer communication. Note that we assume the
source to be a completely passive entity, and thus it cannot perform computations (such as
error correcting codes) as part of the execution of protocols.

Network delay and rounds. We consider a synchronous setting where peers share a global
clock and time is partitioned into rounds as follows. Each round consists of three sub-rounds:
1. The query sending sub-round, in which each peer can send q queries (0 ≤ q ≤ n) of the

form Query(·) to the source.
2. The query response sub-round, in which the source responds to all the queries.
3. The message-passing sub-round of peer-peer communication, which consists of message

exchange between peers. Every message is of size O(log n) unless otherwise stated.
We assume that local computation is instantaneous and is performed at the beginning of
each sub-round. We also assume that a peer can choose to ignore (not process) messages
received from another peer during the execution. Such messages incur no communication
cost to the recipient peer.

The adversarial settings. The behavior of the environment in which our protocols operate
is modeled by an adversary A that selects the input data, and determines the peers’ failure
pattern, but it cannot corrupt the communication with the source. In executing a protocol,
a Byzantine peer can deviate from the protocol arbitrarily (controlled by A). The adversary
A can corrupt at most βk peers for some given5 β ∈ [0, 1). A peer is considered honest if
it obeys the protocol throughout the execution. Letting γ = 1− β, there is (at least) a γ

fraction of honest peers. We denote the set of Byzantine (respectively, honest) peers in the
execution by F . (resp., H).

The Byzantine adversary can select peers to corrupt at the start of each round. We
consider two types of Byzantine adversaries. Under the fixed adversary, a corrupted peer
remains corrupted for the rest of the execution. The dynamic adversary can decide on the
set of corrupt peers arbitrarily at the start of any round, or more explicitly, it can make a
peer v Byzantine on one round and honest on the next. In both cases, the total number
of corrupted peers at any given time is bounded by βk, and the adversary can adaptively
decide which peers to corrupt.

As in [4], we assume a strong adversarial model. At the beginning of each round t, A has
knowledge of all the local random bits generated up to round t− 1 and all peer-peer and
source-peer communications up to round t− 1.

Definitions. The following complexity measures and parameters are used in our analysis.
Query Complexity (Q): the maximum number of bits queried by an honest peer during the

execution,
Round Complexity (T ): the number of rounds (or time) it takes for the protocol to terminate,
Message Complexity (M): the total number of messages sent by honest peers during the

execution,
Message_size (ϕ): the maximum number of bits sent in one message by an honest peer

during the execution.

4 Throughout this paper, we assume n ≥ k. In typical applications, n≫ k.
5 We do not assume β to be a fixed constant (unless mentioned otherwise).
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Table 1 Our main results (with β treated as any positive constant < 1). Here, * indicates results
that only hold in expectation and # indicates results that hold in worst-case.

Comparison of the Existing and Developed Results for Byzantine Fault
Adversary Theorem Resiliency Query Time Message Size

[4] β < 1 Õ(n/k +
√

n) O(n) O(log n)
Fixed Byzantine [4]# β < 1/3 Õ(n/k) O(n) O(log n)

Thm 5 β < 1 Õ(n/k) O(n log k) 1

Dynamic Byzantine Thm 8 β < 1 Õ(n/k +
√

n) 2 Õ(n/k +
√

n)
Thm 10 β < 1 Õ(n/k)* O(log k) O(n)

Dynamic Byzantine Cor 11 β < 1 Õ(n/k)* O(log n) O(n/k)
and Broadcast Thm 12 β < 1 Õ(n/k)# O(log2 n) Õ(n/k)

Given that queries to the source generally incur higher costs, we focus on minimizing the
query complexity Q. Note that our definition of Q (measuring the maximum cost per peer
rather than the total cost) favors a fair and balanced load of queries across honest peers.

The Download problem. Consider a DR network with k peers, where at most βk can be
Byzantine, and a source that stores a bit array X = [b1, . . . , bn]. The Download problem
requires each peer to learn X. Formally, each honest peer µ outputs a bit array resµ, and it
is required that, upon termination, resµ[i] = bi for every i ∈ {1, · · · , n} and µ ∈ H, where H
is the set of honest peers.

To solve this problem in the absence of failures, all n bits need to be queried, and this
workload can be shared evenly among k peers, giving Q = Θ(n/k). The message complexity is
M = Õ(nk), assuming small messages of size Õ(1), and the round complexity is T = Õ(n/k)
since Ω(n/k) bits need to be sent along each communication link when the workload is
shared.

1.2 Related Work
Following the model introduced in [4], our work studies a new class of fault-tolerant problems
that is heavily inspired by Blockchain oracles. Our focus is on the synchronous setting, but
we also explore the asynchronous version, which is quite different, in our companion paper [6].
There are multiple classic Byzantine Fault-Tolerant (BFT) problems (e.g., agreement, broad-
cast, and state machine replication) that provide insight and inspiration when considering the
Download problem, cf. [9, 14, 19, 23, 24]. We were also influenced by protocols developed
for Oracle networks, such as OCR and DORA [10, 13]. Our model and algorithms have a
similarity to some work on recommendations systems, in particular [7]. See Sect. 5 for a
more detailed comparative discussion.

1.3 Our Contributions
We explore the Download problem under various adversarial and network models and present
several deterministic and randomized protocols and a lower bound for Download. Here, we
state only simplified bounds, in which the Õ(·) notation hides factors dependent on β and
poly log factors in n. The main results are summarized in Table 1 for convenience.

Query Optimality with Synchronous Point-to-point Communication and Byzantine Failures.
We start with closing the gap left open in [4]. The model studied in that paper involves a
synchronous point-to-point communication network and Byzantine failures. In this model,
for deterministic protocols, the Download problem turns out to be expensive, requiring Ω(βn)

DISC 2025



9:6 Distributed Download from an External Data Source in Byzantine Settings

queries in the worst case (a matching upper bound is shown which works under asynchrony
as well). Every peer essentially has to query the entire input array for itself. However,
[4] gives a randomized protocol that solves the Download problem (and consequently any
function of the input) for an arbitrary fraction β < 1 of Byzantine faults while requiring at
most Õ(n/k +

√
n) queries per peer. The result is nearly as efficient as the failure-free model

whenever k <
√

n. The time and message costs are T = O(n) and M = Õ(kn + k2√n). A
natural question then, is whether the additive

√
n term is necessary for k >

√
n. It was shown

in [4] that as long as β < 1/3, one can be fully efficient for all k ∈ [1, n], getting Q = Õ
(

n
k

)
,

T = Õ(n), and M = Õ(nk2). In Section 2 we close the gap and show the existence of a
randomized Download protocol with query complexity Q = O

(
n

γk

)
, T = O(n log k), and

M = O(nk2) for β ∈ [0, 1). In that protocol, we use a blacklisting technique, i.e., during an
execution, honest peers can blacklist Byzantine ones, after identifying a deviation from the
behavior expected of an honest peer, and subsequently ignore their messages. A Byzantine
peer can be blacklisted for a variety of reasons, e.g., if it is directly “caught” in a lie about
some bit value, or stops sending messages while they are expected of it, or sends more
messages than it is expected to. The protocol is carefully constructed such that the amount
of “noise” that can be caused by Byzantine peers, is bounded, and does not cause a large
overhead for the honest peers.

Faster Query-optimal Solutions with Synchronous Communication and Byzantine failures.
We next ask whether Download can be achieved faster than linear time. To exclude the
extreme end of the scale, we show (in Sect. 3) that hoping for a single round Download
(assuming arbitrarily large messages can be sent in a single round) is too ambitious. We
show that every randomized protocol in which each peer queries no more than (n− 1) bits
fails to solve Download with constant probability greater than 0 (for β ≈ 1/2).

Nevertheless, we next derive faster protocols (in Section 4) than the one in Section 2.
Specifically, in Subsection 4.1 we show how Download can be achieved in two rounds. This
solution enjoys the additional advantage that it can cope with a stronger type of adversary,
termed dynamic adversary, which can change the set of Byzantine peers from one round to
the other, provided that this set never exceeds a size of βk. To achieve this result, during
the execution of the protocol, we consider a multi-set of the bit strings proposed by different
peers that purport their respective strings to be equal to a particular interval of the input
bit array. If it is known that at least t > 0 proposers were honest peers that correctly know
the interval, we can discard all strings in the multi-set that do not appear at least t times,
and conclude that the remaining set of distinct strings contains a correct string. A decision
tree for a set S of strings is a rooted binary tree. Each internal node x is labeled by an index
i of the input array X and each leaf is labeled by a string s such that if a root-to-leaf path
goes to the left subtree of a node labeled i, then the ith bit of s is 0, else it is 1. Given a
set of strings S of which one is consistent with X, one can build a decision tree with |S| − 1
nodes and determine the correct leaf with |S| − 1 simultaneous queries.

Unfortunately, this protocol no longer attains query-optimality; its query complexity is
O(n/(γk) +

√
n). We improve this query complexity in Subsection 4.2 where we describe

an iterated version of the 2-step protocol with expected query complexity O(n log n/(γk))
and O(log n) time. Note that in some settings, large messages can be simulated by several
rounds of smaller messages, but here, in a randomized setting with an adaptive adversary, it
may not be possible. An adversary can observe the smaller messages that arrive piecemeal
over multiple rounds and may be able to adaptively corrupt peers more effectively.
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Finally, in Subsection 4.3 we show how the same nearly optimal results can be achieved,
with worst case query complexity and small message size, provided we assume broadcast
communication among peers rather than point-to-point. That is, in each round, each peer
must send the same message to all other peers, and this applies also to the Byzantine peers.
In this model, we get a protocol with the worst case query complexity O((1/γ) log2 n) and
O((1/γ) log2 n) time, and message size O(log n/γ). A lower bound in Section D shows that
this protocol demonstrates an optimal trade-off among these parameters, up to log n factors.

2 Query-optimal Download

In this section, we show how to optimize the query complexity of Download up to a factor
of log n, achieving Q = O

(
n log n

γk

)
= Õ

(
n

γk

)
for any β < 1. This provides an improvement

over the best previously known results for Download [4], which either guaranteed a query
complexity of Q = Õ

(
n

γk +
√

n
)

or imposed the additional restriction of β < 1
3 .

The protocol described next works when 2γk > 2δ · lg2 n, for some constant δ6. Note
that, for smaller values of k, the desired bound of Õ

(
n

γk

)
on the query complexity holds

trivially: when k ≤
(

2δ

2γ

)
· lg2 n, this bound is Õ

(
n

γk

)
= Õ(n), which is attainable by the

trivial protocol where every peer queries the entire input vector.
Our protocol runs in n epochs. For 1 ≤ i ≤ n, an honest peer µ dedicates the ith epoch

to learning the ith input bit. Furthermore, each epoch i is divided into phases. During each
phase j of the epoch i, µ attempts to learn the ith input bit bi in one of two ways:

(i) based on messages received from the other peers in earlier phases, or
(ii) by querying the source directly (which happens with gradually increasing probability).

µ relies on the messages of its peers for learning bi = b in phase j only if the number of peers
who sent it the value b exceeds a specified threshold (depending on j) and the number of
peers who sent it the value (1− b) is below that threshold. If µ fails to learn the bit in phase
j, then it proceeds to phase (j + 1), in which it doubles its probability of querying. This is
repeated until µ successfully learns bi. (Note that a head is always thrown when 2j exceeds
γk
lg n ).

Once µ learns bi, it broadcasts it and blacklists any peers that sent contradictory values.
In subsequent phases, µ never relies on bits sent by blacklisted peers. See Algorithm 1 for
the pseudocode. Note that in each epoch i, µ learns the value of the ith bit either by gossip
learning (i.e., receiving messages with a decisive majority, in line 9 of the protocol) or by
query learning (in line 19). We name the epoch accordingly as a gossip epoch or as a query
epoch. Furthermore, in every epoch i, µ performs a “learning step” in exactly one phase,
hereafter referred to as the learning phase of epoch i and denoted ℓ(i).

Correctness. Let Pj = 1−
(

1− 1
γk

)2j

be the probability that when flipping 2j independent
random coins, each with bias 1

γk toward head, at least one turns heads. The following
technical lemma provides upper and lower bounds on Pj .

▶ Lemma 1. For j ∈ [f, fend] (see line number 6 in Algorithm 1), Pj ∈
(

2j

γk

(
1− 1

2 lg n

)
, 2j

γk

)
.

6 For any positive real number x, we use the notation lg x to denote log2 x.

DISC 2025



9:8 Distributed Download from an External Data Source in Byzantine Settings

Proof. The binomial expansion of (1 − ε)m yields the bounds 1 −mε < (1 − ε)m < 1 −
mε + m(m−1)

2 ε2. Setting ε = 1/γk and m = 2j , we get 1 − 2j/γk < (1 − 1/γk)2j

<

1− 2j/γk + 2j(2j − 1)/(2(γk)2), or

2j

γk
> Pj >

2j

γk
− 2j(2j − 1)

2(γk)2 >
2j

γk

(
1− 1

2
2j

γk

)
>

2j

γk

(
1− 1

2 lg n

)
,

where the last inequality follows from the assumption that 2j < γk/ lg n. ◀

To prove the correctness of the protocol, we need to show that all honest peers µ compute
Xµ = X correctly with high probability. This is shown by inductively proving that, for any
honest peer µ and any bit i, 1 ≤ i ≤ n, bµ

i = bi with high probability. The induction is on i

for a fixed honest peer µ. We prove the following two invariant statements inductively.

Blacklisting Statements (BLi). All peers blacklisted by some honest peer µ until the end
of the i-th epoch (i.e., the ith iteration of the outer for loop, line 2 of Algorithm 1) are
indeed Byzantine, with high probability. For convenience, BL0 refers to the empty blacklist
before the execution enters the loop and is clearly true.

To capture the inner for loop (i.e., the phases) as well (see Algorithm 1, line 6), we use
BLi,j , for j ∈ [f, fend] and 1 ≤ i < n, to refer to the statement that all peers blacklisted by
some honest peer µ until the end of the jth inner for loop of the (i + 1)-th epoch are indeed
Byzantine with high probability. For convenience, we may use BLi,f−1 to refer to BLi. Also,
note that BLi,fend implies BLi+1.

Correctness Statement (Ci). All honest peers have executed the first i epochs correctly,
with high probability, i.e., bµ

i′ = bi′ for all 1 ≤ i′ ≤ i and all honest peers µ. Again, C0
refers to the execution being vacuously correct before any bit is processed by the peers.
Furthermore, Ci,j , 1 ≤ i < n and j ∈ [f, fend], refers to the following statement at the end
of phase j in epoch (i + 1): for all honest peers µ, bµ

i′ = bi′ for all 1 ≤ i′ ≤ i and bµ
i+1 = bi+1

for all honest peers that have set their respective Ivoted bit to 1, with high probability. For
convenience, we sometimes use Ci,f−1 to refer to Ci. Also, note that Ci,fend implies Ci+1.

Observe that peer µ performs a query if (a) it is the first phase of that particular epoch
and it has obtained “heads”, or (b) it is phase j > f , it is the first time µ has drawn “heads”,
and COUNT b

i ≥ ν2j for both b = 0 and b = 1.
The basis for the induction is provided by the statements BL0 and C0, which are both

true. The inductive step is given by the following lemma.

▶ Lemma 2. Consider some epoch i ∈ [1, n] and assume that conditions BLi−1 and Ci−1
hold at the start of epoch i. For any fixed c ≥ 1, there is a suitably small fixed choice for the
constant δ such that the statements BLi and Ci hold with probability at least 1− 1

nc+1 at the
end of the epoch i.

Proof. Fix c ≥ 1. To prove the claim, we show that BLi−1,j and Ci−1,j hold for all
phases j ∈ [f, fend]. By definition, BLi−1,fend = BLi and Ci−1,fend = Ci. For the sake of
contradiction, suppose statement Ci does not hold, and let j∗ be the first phase j in epoch i

when statement Ci−1,j is false, namely, some peer µ tosses heads and goes on to set its Ivoted

bit to 1, but incorrectly assigns bµ
i = 1− bi. Since j∗ is the first such occurrence of incorrect

behavior, BLi−1,j∗−1 and Ci−1,j∗−1 are true. If j∗ = f , then µ will explicitly query the bit,
so bµ

i = bi, a contradiction. So, we focus on the case where j∗ > f .
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Without loss of generality, let bi = 0. We claim that the number of votes received by
µ in favor of bi = 0 will be at least ν · 2j∗ = 2j∗−2 with probability at least 1− 1

nc . Since
BLi−1,j∗−1 and Ci−1,j∗−1 are true, all honest peers that tossed heads in earlier phases j < j∗

would have correctly voted for bi = 0. To establish the required contradiction, we show that
the number of such votes is at least ν · 2j∗ = 2j∗−2. Let Gold be the set of votes received
by µ from honest peers in epoch i during phases j for j ≤ j∗ − 2 (if such phases exist). Let
Grecent be the set of votes received by µ from honest peers in phase j′ = j∗ − 1; we know
this phase exists as j∗ > f . Our goal is to show that X = Gold ∪ Grecent has cardinality
|X| ≥ 2j∗−2 with high probability. Let G denote the set of all honest peers; |G| ≥ γk. Note
that for every peer in G \Gold, the probability of joining Grecent is Pj′ = Pj∗−1 by Lemma
1, so the expected size of X is

IE[|X|] ≥ |G| · Pj∗−1 ≥ γk · 2j∗−1

γk

(
1− 1

2 lg n

)
= 2j∗−1

(
1− 1

2 lg n

)
≥ 0.9 · 2j∗−1,

for sufficiently large n (say, n ≥ 32). Thus, applying Chernoff bound, we get

Pr[|X| < 2j∗−2] = Pr
[
|X| < 0.5 · 2j∗−1

]
≤ Pr

[
|X| < (1− 4/9)IE[|X|]

]
< e− (4/9)2

2 IE[|X|] ≤ e− (4/9)2
2 ·0.9·2j∗−1

≤ e− 4
45 ·2f

= e− 4
45 ·2δ+lg lg n

= e− 4
45 ·2δ·lg n

< n− 4
45 ·2δ

<
1

nc+2 ,

where the last inequality holds when δ ≥ lg(45(c + 2))− 2).
Thus, the number of votes received by µ for the correct bit value (0, as per our assumption

wlog) must be at least ν ·2j∗ relying on the fact that by the inductive assumption BLi−1,j∗−1,
no honest peer was added to B. From the else part (see line 15 of Algorithm 1), if both bit
values received ν · 2j votes (or more), then µ will query bit i and this will ensure Ci−1,j∗ .
On the other hand, if the number of votes for bit value 1 is less than ν2j∗ , then, µ will vote
for 0, which will be the correct bit. Thus, the contradiction is established, thereby implying
Ci with probability at least 1− 1

nc+1 (applying the union bound over all peers µ).
If Ci holds, then all other honest peers µ′ ̸= µ also vote correctly for 0, so µ will not

blacklist any of them. This implies that the invariant BLi also holds. ◀

Applying Lemma 2 and taking the union bound over all n epochs, we get the following.

▶ Corollary 3. For δ fixed as in Lemma 2, Algorithm 1 ensures that all honest peers µ

correctly compute Xµ = X with probability at least 1− 1
nc .

Query complexity analysis. In the absence of Byzantine peers, the total number of (nec-
essary) queries is O(n), so the average cost per peer is Q = O

(
n

γk

)
. The reason for the

additional wasteful queries is two-fold. First, the fact that the protocol is randomized and
must succeed in learning all bits with high probability requires some redundancy in querying.
Second, Byzantine peers spread fake information, forcing honest peers to perform queries to
blacklist the culprits and clarify the true values of X.

Let R(µ) denote the sequence of independent random coins flipped by peer µ during
execution (each with a bias of 1

γk towards heads). For notational convenience, we will often
write R to mean R(µ), when the underlying peer µ is clear from the context. Let Ri,j denote
the subsequence of R that was drawn at the beginning of phase j of the epoch i, and let Ri

denote the subsequence of R that was drawn during the entire epoch i. Respectively, let
R = |R|, Ri = |Ri| and Ri,j = |Ri,j |.

DISC 2025



9:10 Distributed Download from an External Data Source in Byzantine Settings

The variable Si,j used in the protocol denotes the number of coins of Ri,j that turned
heads. Similarly, let Si denote the number of coins of Ri that turned heads.

▶ Lemma 4. For any fixed c′ ≥ 1, there is a suitably small fixed choice for the constant δ

such that Algorithm 1 has query complexity Q = O
(

n log n
γk

)
with probability 1− 1

nc′ .

Proof. Throughout the proof, we consider an honest peer µ.
For every 1 ≤ i ≤ n, let B(i) denote the number of peers that were blacklisted by µ in

epoch i and let C(i) denote the number of queries performed by µ in epoch i. (Note that
C(i) is 0 if i is a gossip epoch and 1 if i is a query epoch.)

As C(i) = 0 for a gossip epoch i, the total cost of gossip epochs is

Cgossip =
∑

gossip i

Cgossip(i) = 0. (1)

Hence, we only need to analyze query epochs. We bound the number of queries in these
epochs by first bounding the number of random coins flipped in these epochs.

Consider such an epoch i, with learning phase ℓ = ℓ(i). There are two cases. The first is
when ℓ = f . In this case, perhaps no Byzantine peers were blacklisted, so B(i) ≥ 0 and the
number of random Coins flipped in this epoch is Ri = Ri,f = 2f .

The second case is when ℓ > f . The fact that µ had to query in phase ℓ implies that
gossip learning was not possible, so both COUNT 0

i ≥ ν2j = 2ℓ−2 and COUNT 1
i ≥ 2ℓ−2.

This, in turn, implies that the number of Byzantine peers that µ gets to blacklist in this
epoch is B(i) ≥ 2ℓ−2. On the other hand, the number of Coins used during this epoch is
Ri =

∑ℓ
j=f Ri,j = 2ℓ+1 − 2f .

Combining both cases, we get that for every epoch i, B(i) ≥ (Ri − 2f )/8. Summing over
all i, we get

βk ≥ B =
∑

i

B(i) ≥
∑

i

Ri − 2f

8 = R− 2f n

8 .

Rewriting, and recalling that f = ⌈δ + lg lg n⌉, we get

n · 2δ lg n ≤ R ≤ 8βk + 2f n ≤ 8βk + n · 2δ lg n, (2)

where the first inequality follows from the fact that in every epoch i, Ri ≥ Ri,f ≥ 2δ lg n.
Note that C(i) ≤ Si for every i, hence

Cquery =
∑

query i

C(i) ≤
∑

query i

Si = S. (3)

Recalling that R is a sequence of R independent Bernoulli variables with probability 1
γk for

heads, we have that IE[S] = R
γk , and applying Chernoff bound we get

Pr[S > 2R/γk] = Pr[S > 2IE[S]] ≤ e−IE[S]/3 = e−R/3γk ≤ e−n2δ lg n/3γk ≤ 1
nc′ , (4)

where the penultimate inequality relies on the left side of Eq. (2) and the last one holds
when δ ≥ lg(3γc′), also relying on the assumption that k ≤ n. Combining Equations (3), (4),
and the right side of (2), we get that with probability at least 1− 1

nc′ ,

Cquery ≤ S ≤ 2R

γk
≤ 2(8βk + cn lg n)

γk
= O

(
n log n

γk

)
. (5)

Finally, the lemma follows by Equations (1) and (5). ◀
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Each epoch lasts O(log(γk)) phases, so the time complexity is O(n log(γk)). Each peer
sends at most n bits to each of the other machines, so the total number of messages sent
is O(nk2). Moreover, the messages sent in line numbers 10 and 20 of Algorithm 1 can be
encoded as one-bit messages as µ and i are known from context. Thus, we have the following
theorem.

▶ Theorem 5. In the synchronous point-to-point model with Byzantine failures, there
is a randomized protocol for Download such that, with high probability, Q = O

(
n log n

γk

)
,

T = O(n log(γk)), and M = O(nk2). Moreover, it only requires single bit messages.

3 Lower Bounds

Having established the existence of a query-optimal protocol for Download with an arbitrary
bound β < 1 on the fraction of Byzantine peers, we turn to the issue of time complexity and
derive faster Download protocols. In this section, we first establish that any single-round
protocol is inefficient, requiring Q = n. Then, we utilize information theory to show a lower
bound on the trade-off between query complexity, time complexity and messages size.

Indistinguishability arguments typically require showing that two carefully constructed
executions with different outputs “look the same” from the point of view of at least one
peer µ that is honest in both of them. Hence, the peer µ will behave the same (and will
output the same value) in both executions. In the well-studied Byzantine agreement context,
the prover must show that a peer has the same input and will receive the same messages
in both executions. In the case of randomized protocols, this becomes more complicated.
Even under a fixed adversarial strategy, there is a probability space of executions over the
random choices of all the peers. Therefore, we carefully construct probabilistic arguments
over these execution spaces to show indistinguishability. In the DR model, these arguments
are further complicated by the additional element of queries. Even if we show that the input
of an honest peer and the messages it received are the same in both executions if the queries
made by this peer in the different executions are not the same, then those executions do
not “look the same” from its point of view and we can’t say that it will act the same in the
different executions. We obtain the following lower bound.

▶ Theorem 6. Consider an n peer system with external data, for odd n, and let the fraction
of Byzantine peers be bounded above by β = (n− 1)/2n. For every protocol A ∈ A(n− 1, 1),
there is an adversarial strategy such that A fails to learn all the input bits with probability at
least (1− e−1)/4. The lower bound holds even in the broadcast communication model.

Due to space considerations, readers interested in the proof details are referred to the full
version of the paper [5].

4 Faster Download with Near Optimal Query Cost

In this section, we show how to reduce the time complexity to O(log n). Unlike the previous
protocol, the protocols here do not use blacklisting and do not require fixed IDs from round
to round; only that there is a known lower bound on the number of honest peers present in
each round.

We first describe a key definition and a subroutine in these protocols. In a typical step of
these protocols, we fix a parameter φ depending on the round, and the input vector X is parti-
tioned into K = ⌈n/φ⌉ contiguous subsets of size φ, X[ℓ, φ] = (b(ℓ−1)·φ+1, b(ℓ−1)·φ+2, . . . , bℓ·φ),
for ℓ ∈ [1,K], with the last interval, (b(K−1)·φ+1, . . . , bn)), being possibly shorter. Each honest
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9:12 Distributed Download from an External Data Source in Byzantine Settings

peer queries all the bits of some interval X[ℓ, φ] and broadcasts its findings to all other peers,
in the form of a pair ⟨ℓ, s⟩, where s is the bit string obtained from the queries. Hence at
the end of a round, every peer receives a collection of strings for different intervals. Let s[j]
denotes the j-th bit of the string s. Note that a message ⟨ℓ, s⟩ can possibly be received in
multiple copies, from different peers, and the protocol keeps all copies.

Let S be a multiset of strings for a particular interval ℓ received by peer µ at the current
round. Define the set of t-frequent strings at a peer µ as

FS(S, t) = {s ∈ S | s appears ≥ t times in S}

Note that the FS function gets a multiset and returns a set of t-frequent strings.
A decision-tree T is a rooted ordered binary tree where leaves are labeled with strings

and each internal node v is labeled by an index i of the input array such that all the strings
s in the left (respectively, right) sub-tree of v has s[i] = 0 (resp., s[i] = 1). Given a set of
strings FS of which one is consistent with the input array (i.e., it appears exactly in the input
array at the specified indices), we can build a decision tree to determine which one of the
strings in FS is consistent with the input array with a cost of |FS| − 1 queries, by querying
the indices associated with all the internal nodes of the decision tree at the same time. The
path consistent with the results of these queries reaches a leaf that is labeled by the correct
string for the interval. See Algorithm 2.

4.1 A Simple 2-step Protocol

To illustrate the ideas of the following protocols in this section, we first give a 2-step protocol
with O(n/

√
γk) queries which succeeds with high probability. Note that if γk is very small,

every honest peer queries every bit and the protocol is always correct. Otherwise:
1. Split the n bit string into K equal length intervals of φ bits each. Each peer picks an

interval uniformly at random, queries all its bits, and broadcasts the discovered string s

together with the identifier ℓ ∈ [1,K] of its chosen interval.
2. Let FSℓ be the set of strings, each of which was received in at least t = γk/(2K)

messages from distinct honest peers for interval ℓ, disregarding any string sent by
a peer which sends more than one string. Formally, FSℓ = FS(Sℓ, t) where Sℓ =
{s | ⟨ℓ, s⟩ received from some peer}.
In parallel, for each interval ℓ ∈ [1,K], build a decision tree Tℓ from FSℓ and invoke
Procedure Determine(·), letting each peer determine the correct string for interval ℓ.

Correctness. Consider an execution of the protocol, and denote the number of honest peers
that pick the interval ℓ by kℓ. The protocol succeeds if kℓ ≥ t for every interval ℓ, since
every decision tree Tℓ will contain a leaf with the correct string for the interval ℓ returned by
Procedure Determine.

▷ Claim 7. For constant c ≥ 1, if t ≥ 8(c + 1) ln n, then kℓ ≥ t for every interval ℓ ∈ [1,K],
with probability at least 1− 1/nc.

Proof. Fix ℓ ∈ [1,K]. The expected number of honest peers that pick the interval ℓ is
IE[kℓ] = γk/K = 2t. Therefore, applying Chernoff bounds, Pr[kℓ < t] ≤ e−t/8 ≤ 1/nc+1 for
t ≥ 8(c + 1) ln n. Taking a union bound over all intervals, the probability that kℓ < t for any
interval ℓ is less than 1/nc. ◁
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Query complexity. The analysis of the query complexity is based on the fact that the query
cost in Step 2 for interval ℓ is the number of internal nodes of the decision tree, which is
|FSℓ| − 1. We defer the full analysis to Appendix B

Message size: The message size in this protocol is the number of bits required to describe
the first index of the interval chosen and its bits in Step 1, i.e., O(φ + log n) = O(φ) =
O(

√
n/γ + n log n/(γk)). In other words, the message size is not more than the query

complexity in the first round which is not more than Q, i.e., O(Q).

▶ Theorem 8. There is a 2-round randomized protocol for Download in the point-to-point
model with Q = O(n log n/(γk) +

√
n/γ) and message size O(n log n/(γk) +

√
n/γ).

4.2 Download with O(n log n/(γk)) Expected Queries and O(log γk)
time

The 2-step protocol presented in the previous subsection, while fast and simple, is not query-
optimal, with its main source of overhead being that every peer, after its initial query of
the randomly selected interval, builds a decision tree for every other interval and determines
the correct leaf (and hence the correct string) by performing additional queries. In this
subsection, we extend the previous protocol, achieving optimal query complexity at the cost
of going from O(1) to O(log n) rounds.

The protocol is based on the following idea. Let φ = ⌈(n/(γk))(8(c + 1) ln n)⌉. In Step
i, for i ∈ [0, . . . , ⌈lg(n/φ)⌉], the n bits are partitioned into Ki = ⌈n/φi⌉ intervals of size
φi = 2iφ. Each interval in step i consists of the concatenation of two consecutive intervals
from step i − 1, beginning with the first two intervals. In each step, each honest peer
determines a random interval of increasing size by splitting it into its two interval parts
and using the technique described in the 2-step protocol above on both parts, until the
entire input vector is determined. This significantly reduces the number of decision trees
constructed by each peer, from K to O(log n), which allows the improved query complexity.

See Algorithm 4 for a formal description.

Correctness. We defer some of the correctness proof to Appendix C, which is a straightfor-
ward extension of the argument in Section 4.1.

Denote by ℓi
µ the interval ID picked by peer µ at step i.

▶ Lemma 9. In every step i ∈ [0, ⌈lg(n/φ)⌉], every honest peer µ learns the correct value of
X[ℓi

µ, φi] w.h.p.

The correctness of the protocol follows from observing that at the last round ℓ = lg(n/φ),
the intervals are of size φℓ = 2ℓφ = n. Hence, by Lemma 9, every peer learns the entire
input.

Query complexity. Given an interval ℓ in Step i + 1, let x be the total number of strings
received for the subintervals in Step i that compose interval, i.e., x = xL + xR, where xu for
u ∈ {L, R} denotes the number of strings received for subinterval ℓu. Let mx be the number
of intervals in Step i + 1 such that the total number of strings received for that interval
equals x. Formally,

mx = |{ℓ | received exactly x messages of the form ⟨ℓL, s, i⟩ or ⟨ℓR, s, i⟩}|
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The probability of picking an interval in Step i + 1 with x strings is mx divided by the total
number of intervals, or mx/Ki+1. The expected cost of querying in Step i + 1 is therefore∑

x

mx

Ki+1
· x

ti
=

∑
x

mx

Ki+1
· 2x

γk/Ki
= 2Ki

γk · Ki+1

∑
x

mx · x ≤
4
γ

,

where the last inequality follows since each peer broadcasts at most one string, so
∑

x mx ·x ≤
k.

Step 0 requires φ = O(n log n/(γk)) queries. The expected cost of querying is O(1/γ) per
step i > 0 per peer, and there are fewer than log n steps, so the total expected query cost is
at most O(n log n/(γk)).

Message size. The maximum message size is that of the last round or n/2 + 1.

▶ Theorem 10. There is a O
(

log
(

γk
log n

))
-round protocol which w.h.p. computes Download

in the point-to-point model with expected query complexity Q = O(n log n/(γk)) and message
size O(n).

4.3 Broadcast Model: Worst-case O((1/γ) log2 n) Queries and Time,
and Message Size O(log n/γ)

Here we start by showing that in the Broadcast model, where every peer (including those
controlled by the adversary) must send the same message to all peers in every round, one
can drastically reduce the message size in Algorithm 4. Next, we show that the bound on
expected query complexity can be improved to a bound on the worst case query complexity
because of the “common knowledge” property guaranteed to the peers by the broadcast
medium. Specifically, our main results for the broadcast model are the following.

▶ Lemma 11. There is a O(log n)-round protocol that w.h.p. performs Download in the
Broadcast model with expected query complexity and message size O(n log n/(γk)).

▶ Theorem 12. In the Broadcast model, there is a protocol with worst case O(log2 n) time,
O((n/γk) log2 n) queries, and O((n/γk) log n) message size.

Again, readers interested in the details are referred to the full paper [5].

5 Discussion of Related Work

Byzantine fault tolerance was first introduced by Pease, Shostak, and Lamport [23, 19]
in 1980 and has since played a pivotal role in distributed computing. Throughout the
80’s, the focus was on Byzantine Agreement [9, 19, 23, 24] along with some closely related
problems like Byzantine Reliable Broadcast (BRB) [1, 14] and Collective Coin Tossing [11, 20].
Subsequently, Lamport introduced state machine replication (SMR) [17], which was extended
to Byzantine resilience by Castro and Liskov [12]. SMR lies at the heart of distributed ledgers
and blockchains, technologies that have gained popularity in the recent years.

In Byzantine Agreement, depending on the model assumptions and parameters, the
Byzantine adversary can use various strategies to misrepresent or suppress critical information
and foil agreement. In fact, even if communication is via broadcast, when β ≥ 1/2, half of the
input bits can be misrepresented, paving the way for a simple indistinguishability argument
that shows that Byzantine Agreement is impossible. When communication is point-to-point
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(and cryptographic primitives are not used), the Byzantine peers can equivocate, i.e., send
inconsistent messages. Exploiting equivocation, a more subtle argument (see Chapter 5 in [3])
can be used to prove that Byzantine Agreement is impossible when β ≥ 1/3.

A natural question then is to ask whether there are reasonable circumstances under which
any fixed β < 1 can be tolerated. The answer is affirmative in a version of the Byzantine
Resilient Broadcast [14] that allows peers to digitally sign messages. In the BRB problem, we
have a designated leader, known to all peers, that has a message. All other peers must learn
that message. The safety requirement of BRB, mandates that every honest peer outputs the
same message, while the validity requirement demands that all honest peers must output the
leader’s message when the leader is honest. This problem is challenging because the leader
may be Byzantine and can try to trick peers into having different views of the input message.
Without using cryptographic primitives, BRB can only be solved when β < 1/3. However,
BRB can be solved for any β < 1 when peers can digitally sign messages, a well-known result
since the early days [14]. Intuitively, BRB with digital signatures makes it difficult for the
Byzantine peers to suppress information or equivocate.

The Download problem first introduced in [4] also admits algorithms for any β < 1. The
source is accessible to all nodes in the network, which makes it difficult for Byzantine nodes to
suppress crucial information or equivocate without being caught. It is worth noting, however,
that the Download problem is fundamentally different from BRB and other traditional
problems. Unlike those problems, the Download problem admits a trivial protocol, tolerating
any β < 1 even without the use of cryptographic primitives. In fact, each peer can directly
query all the bits, but spending that many queries is prohibitively wasteful. Moreover,
BRB protocols require active engagement from the leader, for signing messages, applying
error-correcting codes and collision resistant hash functions, etc. In contrast, the source in
the DR model is a read-only data source with no computational power, and therefore cannot
be expected to execute such primitives. Thus, solutions for traditional problems such as
BRB do not translate to solutions for Download. Importantly, with impossibility a non-issue
for Download, our focus shifts to ensuring optimal query complexity (and other complexities
as well) without sacrificing fault tolerance. This work shows that one can achieve both the
optimal query complexity (within log factors) and resilience of up to β < 1 simultaneously.
It is also worth noting that while using primitives like BRB for solving Download is possible,
our solutions are significantly more efficient.

Recommendation Systems. The paper [7] studies the problem of determining the pref-
erences (represented as Boolean values) of each peer for each of n objects. In that paper,
in a single round, peers probe objects at unit cost per object and then post their results
with their identity on a public billboard. For each peer, there is a presumed lower bound
on the number of peers that have the same preferences, and this fact may be used, like in
our algorithms, to determine preferences for objects that have not been probed. The model
assumed in [7] is stronger than ours, with (1) a joint billboard, which facilitates broadcast
(one-to-all) communication among peers, (2) global randomness, and (3) a static adversary
that fixes its strategy before the start of the execution and cannot dynamically change it
according to the random coins generated by the algorithm. In contrast, our model generally
assumes point-to-point communication, uses only private randomness, and allows adaptive
Byzantine behavior. Subsequent papers on recommendation systems consider variants such
as lowering the cost by allowing the output to approximate the real preferences [2, 15, 21, 22],
or considering the problem in a limited asynchronous environment where message delays
(and order of probes) are fixed before the start of the execution [8]. These follow-up works
use the same stronger model mentioned above.
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Oracle networks. As mentioned above, in Oracle networks, a set of peers is assigned the
task of bringing external off-chain data to the network, where a subset of these peers can be
Byzantine. Generally, one can describe the operation of an Oracle network as follows. The
network generates a report containing the observations made by some (sufficiently many)
peers. Once a report is successfully generated, one or several peers transmit the report to an
intermediary program (known as a smart contract) that runs on the blockchain, verifies the
validity of the report, derives a final value from it (e.g., the median), and then exposes the
value for consumption on-chain. Since the traditional usage of these networks is to track
exchange rates (e.g USD-ETH) that change with time, studies on Oracle networks focus on
the problem of creating a report where the derived value (say the median) must be acceptable
(in the sense that it does not deviate much from the set of honest observations) while keeping
the costs (e.g., of sending reports to the smart contract) low and tolerating as many Byzantine
peers as possible, even at the expense of higher communication and computation off-chain.
The Off-Chain Reporting (OCR) protocol [10] solves this problem with β < 1/3 by running a
BA protocol to agree on 2f + 1 values, then a designated leader generates a report and sends
it to the contract (the leader acts as an aggregator). The Distributed Oracle Agreement
(DORA) protocol [13] takes it a step further by using an approximate agreement scheme,
the inherent ability of a Blockchain to act as an ordering service, and multiple aggregators.
They improve results to sustain β < 1/2 and β < 1/3 w.h.p when the size of the Oracle
network is significantly smaller than the size of the entire system. In both of these works,
every peer reads all the external data and goes on to participate in the report generation.
Our work complements the OCR and DORA protocols and focuses on how to efficiently
read the off-chain data while minimizing the number of bits read per peer (as reading from
an external source is also more costly than off-chain communication). Our approach would
drastically reduce cost when the Oracle network keeps track of a large number of (static)
variables (e.g., financial information). It could be used as a black box in the OCR and DORA
protocols, and save the need to query all of the n values individually by each peer. Note that
both OCR and DORA use cryptographic primitives, whereas we do not. A more in-depth
description of the relation between the Download problem and Blockchain oracles is provided
in the companion paper [6].

6 Conclusions and Future Work

In this work, we studied the Data Retrieval model, introduced in [4], and improved the
previous results on the Download problem by achieving both optimal query complexity and
optimal resiliency of any fraction β < 1 of Byzantine peers. In addition, we presented several
new results, including a protocol with O(log n) time complexity and near-optimal expected
query complexity in a model with a dynamic adaptive adversary, and, in the Broadcast
model, near-optimal worst case time, query, and message complexity. We also established a
lower bound for single-round protocols, demonstrating that it is necessary to query every bit
to solve the Download problem within a single round.

Our work is useful in the context of blockchain oracles, specifically, as a sub-routine for
data extraction from multiple data sources, where the data sources have some (possibly
probabilistic) guarantee of being trustworthy. A relevant question in this context involves
handling data that changes over time, such as stock prices or exchange rates. We leave this
question open for future exploration, as these temporal changes must be formalized carefully
and may require adjustments to the model.



J. Augustine, S. Chatterjee, V. King, M. Kumar, S. Meir, and D. Peleg 9:17

References
1 N. Alhaddad, S. Das, S. Duan, L. Ren, M. Varia, Z. Xiang, and H. Zhang. Balanced byzantine

reliable broadcast with near-optimal communication and improved computation. In Proc.
ACM Symp. on Principles of Distributed Computing, pages 399–417, 2022.

2 N. Alon, B. Awerbuch, Y. Azar, and B. Patt-Shamir. Tell me who I am: An interac-
tive recommendation system. Theory Comput. Syst., 45:261–279, 2009. doi:10.1007/
S00224-008-9100-7.

3 H. Attiya and J. Welch. Distributed computing: fundamentals, simulations, and advanced
topics. Wiley, 2004.

4 J. Augustine, J. Biju, S. Meir, D. Peleg, S. Ramachandran, and A. Thiruvengadam. Byzantine
Resilient Distributed Computing on External Data. In 38th Symp. on Distributed Computing
(DISC), pages 3:1–3:23, 2024.

5 J. Augustine, S. Chatterjee, V. King, M. Kumar, S. Meir, and D. Peleg. Distributed download
from an external data source in faulty majority settings. CoRR, abs/2412.19649, 2024.
doi:10.48550/arXiv.2412.19649.

6 J. Augustine, S. Chatterjee, V. King, M. Kumar, S. Meir, and D. Peleg. Brief Announcement:
Distributed Download from an External Data Source in Asynchronous faulty settings. In
DISC, 2025. These proceedings.

7 B. Awerbuch, Y. Azar, Z. Lotker, B. Patt-Shamir, and M. R. Tuttle. Collaborate with
strangers to find own preferences. Theory Comput. Syst., 42:27–41, 2008. doi:10.1007/
S00224-007-9016-7.

8 B. Awerbuch, A. Nisgav, and B. Patt-Shamir. Asynchronous active recommendation systems.
In Proc. 11th Conf. on Principles of Distributed Systems OPODIS 2007, pages 48–61, 2007.

9 G. Bracha. Asynchronous byzantine agreement protocols. Inf. & Computat., 75:130–143, 1987.
doi:10.1016/0890-5401(87)90054-X.

10 L. Breidenbach, C. Cachin, A. Coventry, A. Juels, and A. Miller. Chainlink off-chain reporting
protocol. Technical report, Chainlink Labs, 2021.

11 A.Z. Broder and D. Dolev. Flipping coins in many pockets (byzantine agreement on uniformly
random values). In 25th Symp. on Foundations of Computer Science, pages 157–170, 1984.

12 M. Castro and B. Liskov. Practical byzantine fault tolerance. In 3rd Symp. on Operating
Systems Design and Implementation, OSDI, pages 173–186. USENIX Assoc., 1999.

13 P. Chakka, S. Joshi, A. Kate, J. Tobkin, and D. Yang. DORA: distributed oracle agreement
with simple majority. CoRR, abs/2305.03903, 2023. doi:10.48550/arXiv.2305.03903.

14 D. Dolev and H. R. Strong. Authenticated algorithms for byzantine agreement. SIAM J.
Computing, 12(4):656–666, 1983. doi:10.1137/0212045.

15 Seth Gilbert, Rachid Guerraoui, Faezeh Malakouti Rad, and Morteza Zadimoghaddam. Collab-
orative scoring with dishonest participants. In Proceedings of the Twenty-Second Annual ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA ’10, pages 41–49, New York,
NY, USA, 2010. Association for Computing Machinery. doi:10.1145/1810479.1810488.

16 R. Impagliazzo and R. Williams. Communication complexity with synchronized clocks. In
25th IEEE Conf. on Computational Complexity, pages 259–269, 2010.

17 L. Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16:133–169, 1998.
doi:10.1145/279227.279229.

18 L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM Trans. Program.
Lang. Syst., 4:382–401, July 1982. doi:10.1145/357172.357176.

19 L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM Trans. Program.
Lang. Syst., 4:382–401, 1982. doi:10.1145/357172.357176.

20 S. Micali and T. Rabin. Collective coin tossing without assumptions nor broadcasting. In
CRYPTO, pages 253–266, 1991.

21 A. Nisgav and B. Patt-Shamir. Finding similar users in social networks. Theor. Comp. Sys.,
49:720–737, 2011. doi:10.1007/S00224-010-9307-2.

DISC 2025

https://doi.org/10.1007/S00224-008-9100-7
https://doi.org/10.1007/S00224-008-9100-7
https://doi.org/10.48550/arXiv.2412.19649
https://doi.org/10.1007/S00224-007-9016-7
https://doi.org/10.1007/S00224-007-9016-7
https://doi.org/10.1016/0890-5401(87)90054-X
https://doi.org/10.48550/arXiv.2305.03903
https://doi.org/10.1137/0212045
https://doi.org/10.1145/1810479.1810488
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1007/S00224-010-9307-2


9:18 Distributed Download from an External Data Source in Byzantine Settings

22 A. Nisgav and B. Patt-Shamir. Improved collaborative filtering. In 22nd ISAAC, pages
425–434, 2011.

23 M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. J. ACM,
27(2):228–234, April 1980. doi:10.1145/322186.322188.

24 M. O. Rabin. Randomized byzantine generals. In 24th FOCS, pages 403–409, 1983.

A Supplementary Pseudocode

Algorithm 1 Resilient Download for any fixed known β < 1; code for peer µ.

1: B ← ∅ ▷ Set of blacklisted peers
2: for i from 1 to n do ▷ Epoch i deals with input bit bi

3: Ivoted ← 0 ▷ Indicator of learning the i-th bit and voting on it
4: COUNT 0

i ← 0; COUNT 1
i ← 0; ▷ Counters for the number of peers that voted 0/1 for bit i

5: f ← ⌈δ + lg lg n⌉; fend ← ⌈lg(γk)− lg lg n⌉; ▷ See Lem. 2 & 4 for choice of constant δ.
6: for j from f to fend do ▷ Phases within each epoch.
7: if Ivoted = 0 (µ has not voted for bit i yet) then
8: if COUNT 1−b

i < ν · 2j for ν = 1/4 and for some b ∈ {0, 1} AND (j ̸= f) then
9: bµ

i ← b ▷ Perform a “gossip learning” step
10:

Broadcast a vote ⟨µ, i, bµ
i = b⟩

11: Set Ivoted ← 1
12: else
13: if j = fend then
14: Set coinflip to heads
15: else
16: Toss 2j independent Coins with bias 1/γk towards heads.
17: Let Si,j be the number of Coins that turned heads. Set coinflip to heads if

Si,j ≥ 1.
18: if heads then ▷ Perform a “query learning” step
19: bµ

i ← b← query(i); ▷ µ learns bµ
i = b by query

20:
Broadcast a vote ⟨µ, i, bµ

i = b⟩ ▷ In practice, sending one bit suffices.
21: Set Ivoted ← 1
22: Receive messages from other peers.
23: for b ∈ {0, 1} do
24: COUNT b

i ← |{µ′ ̸∈ B | µ received message ⟨µ′, i, bµ′

i = b⟩ during epoch i}|
▷ count voters for b ∈ {0, 1}; ignore peers blacklisted in earlier epochs

25: if Ivoted = 1 then ▷ Including the case when Ivoted changed during the current phase
26: B ← B ∪ {µ′ | µ′ sent message with bµ′

i ̸= bµ
i } ▷ peers with contradictory vote

https://doi.org/10.1145/322186.322188
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Algorithm 2 Const_Decision_Tree(S)
input: Set of strings S

output: Node labeled tree T .

1: Create a root node v

2: if |S| > 1 then
3: Set i← smallest index of bit on which at least two strings in S differ
4: label(v)← i

5: Set Sb ← {s ∈ S | s[i] = b} for b ∈ {0, 1}
6: T 0 ← Const_Decision_Tree(S0)
7: T 1 ← Const_Decision_Tree(S1)
8: Let T be tree rooted at v with left-child(v)← T 0 and right-child(v)← T 1

9: else
10: label(v)← s, where S = {s} ▷ |S| = 1, v is a leaf
11: Let T be a tree consisting of the singleton v.
12: Return T

13: procedure Determine(T)
14: J = {j | ∃u ∈ T s.t. j = label(u)}
15: for all j ∈ J do in parallel
16: query(j)
17: Let v be the root of T

18: while v is not a leaf do
19: Let j = label(v).
20: if bj = 0 then
21: Set v ← left-child(v)
22: else
23: Set v ← right-child(v)
24: Return label(v)

Algorithm 3 2-Round Download with β < 1; Code for peer µ.

1: if k ≤ 32(c + 1) ln n/γ then query every bit and return
2: if k <

√
n/γ ln n then φ← ⌈32(c + 1)n ln n/(γk)⌉

3: else φ← ⌈32(c + 1)
√

n/γ⌉
4: t← γk/(2K)
5: Randomly select ℓµ ∈ [1,K]
6: Set string sµ ← query(X[ℓµ, φ])
7: Broadcast ⟨ℓµ, sµ⟩
8: for ℓ = 1 to K do in parallel
9: Construct the multiset Sℓ ← {s | ⟨ℓ, s⟩ received}

10: Tℓ ← Const_Decision_Tree(FS(Sℓ, t))
11: sℓ ← Determine(Tℓ)
12: Output s1s2 · · · sK

B Query complexity analysis of Algorithm 3

The cost of querying in Step 2 for interval ℓ is the number of internal nodes of the decision
tree, which is |FSℓ| − 1. Let xℓ be the number of strings received for interval ℓ in Step 1
(including copies). Then |FSℓ| ≤ xℓ/t. Since each peer sends no more than one string overall,∑

xℓ = k. Hence, the cost of determining all intervals is
∑

ℓ |FSℓ| ≤
∑

ℓ xℓ/t ≤ k/t.

DISC 2025
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Algorithm 4 Download Protocol with Õ(n/γk) Expected Queries and O(log γk) Time β < 1.

1: for i = 0 to ⌈lg(n/φ)⌉] do
2: Randomly pick an interval ℓ ∈ [1,Ki] of size φi

3: if i = 0 then
4: Set string s = query(X[ℓ, φ]) and broadcast ⟨ℓ, s, 0⟩
5: else
6: ℓL ← 2ℓ− 1;ℓR ← 2ℓ

7: for u ∈ {ℓL, ℓR} do in parallel
8: Construct the multiset S(u)← {s | received a message of the form ⟨u, s, i−

1⟩}
9: ti−1 = 2i−2φ(γk/n)

10: Tu ← Const_Decision_Tree(FS(S(u), ti−1))
11: su ← Determine(Tu)
12: Set sℓ to sℓL

sℓR
and broadcast ⟨ℓ, sℓ, i⟩

13: return the determined string for interval [1, . . . , n]

The query cost per peer, Q, is the cost of determining every interval using decision trees
plus the initial query cost; hence Q ≤ k/t + φ. Since t = γk/(2K), Q ≤ 2⌈n/φ⌉(1/γ) + φ.
To satisfy the premise of Claim 7, it is required that t = γk/(2K) ≥ 8(c + 1) ln n. To set the
value of φ we consider the following cases.

Case 1 (k ≥
√

n/γ ln n). Set φ = ⌈32(c + 1)
√

n/γ⌉. Since t = γk
2⌈ n

φ ⌉ ≥
γk

4n/φ ≥ 8(c+1) ln n,

then t satisfies the premise of Claim 7 and Q ≤ k/t + φ = k
γk

2⌈ n
φ

⌉
+ φ = 2⌈n/φ⌉

γ + φ =

O(
√

n/γ).
Case 2 (32(c + 1) ln n/γ < k <

√
n/γ ln n). Set φ = ⌈32(c + 1)n ln n/(γk)⌉. Then

t = γk
2⌈ n

φ ⌉ ≥
γk

4n/φ ≥ 8(c + 1) ln n, satisfying Claim 7. Also k/t ≤
√

n/γ ln n/t = O(
√

n/γ).
Thus, Q ≤ k/t + φ = O(

√
n/γ + n ln n

γk ).
Case 3 (k ≤ 32(c + 1) ln n/γ). Each peer queries all n bits, resulting in Q = n.
Since the protocol can check to see which case it is in (by inspecting k, n, and γ), the overall
query complexity is Q = O(min{

√
n/γ + n ln n/(γk), n}).

C Proof of Lemma 9

The proof of Lemma 9 follows the next lemma.

▶ Lemma 13. For every step i ∈ [0, ⌈lg(n/φ)⌉], every interval in step i (those of size φi) is
picked by at least ti honest peers w.h.p

Proof. Fix Step i. The number of intervals in step i is Ki. The expected number of honest
peers which pick a given interval at Step i is Ei = γk/Ki = (γk/(n/(2iφ)) ≥ 2i(8(c + 1) ln n).
Setting ti = Ei/2, the probability of failure for any one interval, as given by Chernoff bounds
(see previous subsection) is no more than e−Ei/8 ≤ n−c+1.

Taking a union bound over the
∑lg(n/φ)

i=0 Ki <
∑∞

i=0⌈
n
φ⌉

1
2i < n intervals over all steps i,

the probability of any failure in any step is less than n · n−(c+1) ≤ n−c for c ≥ 1. ◀

Proof of Lemma 9. By induction on the steps. The base case, step 0, is trivial since every
honest peer that picks an interval queries it completely.
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For step i > 0, consider the interval ℓ = ℓi
µ picked by peer µ in step i. During step i, µ

splits ℓ into two subintervals ℓL, ℓR of size φi−1. By Lemma 13, the intervals ℓL, ℓR were
each picked by a least ti−1 honest peers w.h.p. during step i − 1, and by the inductive
hypothesis, those peers know (and broadcast) the correct strings sL, sR respectively. For
u ∈ {L, R}, let FSu = FS(S(ℓu), ti−1) denote the ti−1 frequent sets constructed in step i for
ℓu. Then, sL ∈ FSL and sR ∈ FSR. Hence, the decision trees built for ℓL and ℓR will contain
leaves with labels sL, sR respectively, which will then be returned correctly by Procedure
Determine, implying that µ learns the correct bit string for the interval ℓ, sℓ = sLsR. ◀

D Trade-off among time, queries, and message size

Here we use information theory to prove a lower bound on the trade-offs among these
parameters, as in [16].

▶ Lemma 14. A lower bound on the trade-off among time t, number of non-faulty peers γk,
number of queries (per peer) Q and maximum message size (per round) ϕ for a deterministic
protocol is given by the following: (γkt)[⌈lg ϕ⌉+ ϕ] + Q ≥ n.

Proof. We observe that there are 2n possible outputs; hence n bits of information must
be communicated to any peer. Assume that the adversarially controlled peers do not send
any messages. Since an honest peer receives no more than ϕ bits (per round) from each of
the other γk − 1 honest peers over t rounds, the information received by the peer can be
represented by a sequence of (γk − 1)t consecutive intervals, one for each message received,
ordered by peer identity and time. Each interval contains the bits of the message, preceded
by a sequence of ⌈lg ϕ⌉ bits giving the exact number of bits in the message. Note that the
⌈lg ϕ⌉ bits that represent the exact number of bits in the message are required to be able to
know where every interval starts and ends. Hence, the total information received by a peer
can be described by no more than ((γk − 1)t)(⌈lg ϕ⌉+ ϕ) + Q bits, and this must be at least
n. ◀

▶ Corollary 15. If ((γk − 1)t)(⌈lg ϕ⌉+ ϕ) + Q ≤ n− 1 then a deterministic protocol outputs
incorrect results for at least half of the possible 2n possible inputs.

For randomized protocols: Assume the randomness is global. Any random protocol
can be viewed as tossing the random coins first and then executing a deterministic protocol
selected by the random coins.

▷ Claim 16. Let A be a randomized protocol. If all the information that the peer learns
which depends on the input can be described in a sequence of only n− 1 bits, then there is
an input X such that Pr(A(X) = X) ≤ 1/2.

Proof of Claim. Suppose to the contrary that for every input X, Pr(A(X) = X) > 1/2. Let
pi be the probability that A chooses deterministic protocol Ai. Let 1X,i = 1 if Ai(X) = X.
Then

∑
X∈{0,1}n

∑
i pi1X,i > 2n ∗ (1/2) = 2n−1.

But from the Corollary above, |{X | Ai(X) = X}| ≤ 2n−1. Rearranging the terms,∑
X∈{0,1}n

∑
i

pi1X,i =
∑

i

pi

∑
X

1X,i ≤
∑

i

pi2n−1 = 2n−1,

giving a contradiction. ◁

DISC 2025
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It is easy to see that if one assumes global randomness, then the description length is the
same as what’s needed for a deterministic protocol. Hence, the same lower bound on the
trade-off applies. That is,

▶ Theorem 17. Suppose there is a randomized protocol with time t, number of non-faulty
peers γk, number of queries (per peer) Q, and maximum message size (per round) ϕ. If on
every input, its output is correct with a probability greater than 1/2, then

((γkt)− 1)[⌈lg ϕ⌉+ ϕ] + Q ≥ n− 1.

Note that this holds true for a protocol with public randomness and a fortiori, with private
randomness. Furthermore, the same analysis holds in the Broadcast model. Hence the result
of Theorem 12 is optimal up to log n factors in terms of the trade-off among queries, time,
and message size.
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