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—— Abstract

As Immersive Analytics (IA) increasingly uses Virtual Reality (VR) for stereoscopic 3D (S3D) graph
visualisation, it is crucial to understand how users perceive network structures in these immersive
environments. However, little is known about how humans read S3D graphs during task solving,
and how gaze behaviour indicates task performance. To address this gap, we report a user study
with 18 participants asked to perform three analytical tasks on S3D graph visualisations in a VR
environment. Our findings reveal systematic relationships between network structural properties and
gaze behaviour. Based on these insights, we contribute a comprehensive eye tracking methodology
for analysing human perception in immersive environments and establish eye tracking as a valuable
tool for objectively evaluating cognitive load in S3D graph visualisation.
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Figure 1 Left: Our immersive environment displaying a 3D graph with highlighted nodes shown
in red for the common neighbours task (Tcn). The question panel displays the task instruction and
progress indicator. Right: Visualisation of the perspective reconstruction and ray casting. The
large sphere represents the camera position. A cone of nine rays emanates from the camera origin.
The black rectangular plane represents the question panel.

1 Introduction

Graph visualisation in stereoscopic 3D (S3D) is gaining significant attention, with an increas-
ing number of research publications focusing on visualisation and interaction methods that
enhance graph analysis through immersive environments. Early studies in the 1990s indicated
the beneficial effects of head-tracking S3D displays on graph analysis performance [49].
Subsequent research has reaffirmed these findings across various tasks and technologies,
including community detection [13] and augmented reality (AR) applications [2]. The advent
of affordable, high-quality head-mounted display (HMD) systems and the emergence of
Immersive Analytics as a research domain have contributed to a substantial increase in
studies addressing not only graphs but also a diverse array of abstract data types [23, 19, 12].

Despite this progress, the extensive design space encompassing technology, graph repres-
entation, environmental characteristics, movement, interaction, and navigation has resulted
in only a partial understanding of the effects of S3D graph visualisation. Current evidence
from studies covers only a limited portion of this design space. The insights gathered thus
far suggest that there is no general superiority of S3D over 2D visualisation [13, 53]; rather,
performance appears to be highly dependent on various factors, including graph character-
istics, representation methods, task types, and interaction support [19, 11, 14, 25, 42]. For
some settings also differences between accuracy and response time or even trade-offs have
been reported [13, 25]. Consequently, it is crucial to investigate how graph reading and
task-solving strategies differ between S3D and 2D and why these differences exist. While
these questions are complex and cannot be fully addressed in a single project, this study aims
to advance our understanding by examining task-related graph perception in S3D. To explore
potential issues, misperceptions, or advantages associated with S3D, we employ eye-tracking
technology to analyse graph reading behaviour.

Although recent studies have begun to investigate perception in 2D graph visualisations
(e.g. [32, 41, 26, 48]), research on S3D graph perception remains limited compared to
traditional 2D setups. Experimental evidence regarding analysis performance presents a
mixed picture for 2D versus S3D, with some tasks and scenarios favouring 2D and others
demonstrating advantages for S3D [13, 25, 42, 11]. Investigating the perception and gaze
behaviour of analysts in S3D can help identify potential challenges and obstacles associated
with 3D visualisations, thereby contributing to the development of improved quality measures
and layout methods specifically tailored for S3D.
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A key component of this investigation is the collection and analysis of eye-tracking data.
In addition to achieving the aforementioned goals, eye tracking can provide insights into
reading behaviour and help identify or validate task-solving strategies and comprehension
models, which are often derived from self-reports [3, 27]. An important consideration for
S3D is the applicability of existing quality criteria and the potential need for new criteria.
While numerous quality metrics exist for 2D graph layouts, they do not necessarily translate
directly to 3D due to factors such as perspective dependency, particularly concerning edge
crossings. Although eye tracking has been underutilised in graph visualisations, it has
proven effective in investigating readability factors to enhance quality measures, such as edge
crossing angles [15], and in comparing layout effects [40, 39]. However, eye tracking for S3D
visualisations presents unique challenges, including depth perception issues, occlusion, and
perspective changes. Consequently, there is significantly less research employing eye tracking
in S3D graph visualisation compared to 2D.

In this study, we make a significant contribution by exploring the use of eye tracking
in one of the first investigations of its kind, aiming to gain insights into gaze behaviour
during task-solving. This represents an initial step toward identifying and differentiating
behaviour categories among individuals, as well as confirming or refuting hypotheses regarding
task-solving strategies, readability obstacles, and quality metrics.

2 Related Work

Our work investigates the use of eye tracking to analyse human perception and task solving
for graph visualisation in S3D. We give an overview of previous works where we focus on
the specific aspects of perception and graph visualisation, in particular for VR and AR.
Stereoscopic 3D graph visualisations have been investigated over several decades now, with
rather sparse coverage before the advent of affordable mainstream VR hardware and a strong
increase shortly after. Due to the rich literature on general aspects of 3D graph visualisation
and for applications, we refer to corresponding surveys [19, 23, 12]. For a general overview
on eye tracking in 3D environments, see the survey on gaze interaction and eye tracking in
XR HMDs [38] and the review on eye tracking visualisation in 3D [45].

Human Graph Perception

Previous studies examined how graph layout impacts readability and perception. Huang et
al. [15, 16] found that eye movement smoothness and readability depend on edge-crossing
angles. Sharif and Maletic [40] showed clustered UML layouts improve class search per-
formance. Force-directed layouts were found most readable in node/path tasks [39], while
tapered edges aided trajectory perception [35]. Kypridemou et al. [26] and Soni et al. [41]
examined the perception of graph characteristics such as density in dependence of the graph
layout used, with mixed results on the significance of the layout impact. Mooney et al. [33]
designed a perceptual study to train novices to tell “stress” in graph drawing. Zhao et
al. [56] investigated degree centrality perception and identified several impact factors. The
human-centred experiments on node-link diagrams and visual complexity were surveyed in
[54]. With eye tracking technology, Chen et al. explored reading strategies for graphs laid
out on a flattened Torus topology and successfully distinguished different strategies based on
gaze data [6]. Moreover, Steichen et al. [43] and Wang et al. [47] used gaze data to predict
visualisation tasks and user cognitive abilities. Okoe et al. implemented gaze interaction
techniques to facilitate graph reading tasks [36].
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In the field of immersive analytics, Whitlock et al. [52] emphasised the importance of
tailoring visualisations to human cognitive processes in VR. Yang et al. [53] showed that
visual cues such as motion, shading, and perspective significantly influence accuracy in
HMD-based scatterplot tasks. Sun et al. [44] provided a comprehensive review of visual
perception models for immersive displays, advocating for designs aligned with perceptual
characteristics. Tory et al. [46] used eye tracking to compare 2D and 3D view arrangements,
finding higher engagement with 3D, especially when centrally positioned.

Overall, prior work shows that graph layout and eye tracking are both key to understanding
visual perception. In immersive environments, additional cues such as depth, motion, and
spatial arrangement further shape how graphs are read. Eye tracking in VR thus offers
a unique opportunity to capture human attention shifts, helping us to understand the
exploration strategy during graph reading.

Graph Visualisation in Virtual and Augmented Reality

Marques et al. [29] demonstrated that augmented reality offers superior spatial perception
and immersion for unit visualisation. Graph visualisation in immersive environments has
been an active research field, and comprehensively surveyed [19, 23, 12]. Most publications
have targeted specific aspects of the design for graph visualisation, such as the encoding [5],
the perspective and viewpoint selection [42], spatial arrangement [11], or the interaction, in
particular for navigation [10]. Further investigations were related to specific application use-
cases, such as brain activity analysis [24, 8, 17]. Prior works have explored how immersive
visualisation techniques impact user performance. Joos et al. [18] tried to quantify the
perceptual quality of 3D viewing perspectives by a set of standard quality measures and used
the results for user-guidance by mapping on a sphere for viewpoint selection. Kwon et al. [25]
found that egocentric rendering and interaction in VR improved response times. Sorger et
al. [42] further demonstrated benefits from egocentric perspectives with adaptive local scene
layouts. Greffard et al. [13] found that S3D projections aided community detection in complex
graphs, though 2D yielded faster responses. S3D also enables richer spatial organisation of
multiple structures. Feyer et al. [11] compared 2D, 2.5D, and 3D multi-layer graph layouts in
VR, highlighting perceptual trade-offs. Visual encoding remains underexplored in immersive
graph environments; Biischel et al. found straight edges preferable, as curved edges impaired
performance [4]. Ware and Franck, and Ware and Mitchell [49, 50, 51] have concluded that
the combination of stereo and kinetic cues can improve graph reading abilities up to an
order of magnitude compared to 2D settings. Belcher et al. [2] compared 2D viewing with
AR visualisations using a tangible interface. They observed smaller error rates but higher
answering times in AR and confirmed Ware and Franck’s conclusions that adding stereo cues
alone provides less advantage than kinetic depth cues.

While prior work has explored interaction methods, perceptual cues, and spatial arrange-
ments for immersive graph visualisation, it focused on isolated design aspects or coarse
performance metrics such as task accuracy and completion time. Only a few have examined
how perceptual mechanisms unfold over time or how users dynamically engage with 3D
graph structures during task-solving. Furthermore, limited attention has been given to the
methodological challenges of analysing depth-rich, mesh-based environments in stereoscopic
VR. Our work complements this literature by introducing a detailed ray-casting-based eye
tracking approach that captures fine-grained gaze behaviour, offering a deeper understanding
of how task demands and graph topology shape attention in immersive graph visualisations.
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3 Study Design

3.1 Graph Selection

For this initial study, our main aim is not to investigate the effects of scale by covering a large
range of graph characteristics. Still, we wanted to avoid observing peculiarities based on the
structure of only a single graph instance. Thus, three undirected simple graph instances were
included in our study: two real-world instances and one generated graph. The size range
between 50 and 75 nodes was chosen such that the graphs are neither trivial nor extremely
challenging due to visual and cognitive overload [55], e.g. for overview and navigation tasks.
The aim is to ensure graph visibility and interpretability and mitigate potential occlusion
between nodes at varying depths. In addition, it allows us to investigate the applicability of
our methodology without confounding results by effects from extreme cases, e.g. large or
extremely dense graphs, which deserve an investigation of their own.

The real-world instances were selected from the Konect collection: the Iceland® (Graph;.),
a graph of social contacts in Iceland with 75 nodes and 114 edges, and Edit-bmwikiquote?
(Graphegq), a bipartite edit graph from the Bambara Wikiquote containing users and pages
connected by edit events. As the original edit-bmwikiquote graph was unconnected with 84
nodes, we extracted the largest connected component, resulting in 56 nodes and 65 edges
for our analysis. The three-dimensional coordinates of nodes in these selected graphs were
generated using force-directed simulation algorithms implemented in D3-force®. Additionally,
we synthesised a third graph (Graph,,) with 50 nodes and 100 edges utilising the Watts-
Strogatz model generator in the OGDF library [7]. The graphs differ significantly in
several core characterisation measures (mean degree, diameter, mean clustering coefficient,
mean shortest path): Graph;. (3.04, 6, 0.286, 5.2), Graph.q (2.32, 11, O(bipartite), 3.19),
Graphy, (4.0, 6, 0.07, 2.86). We subsequently normalised the spatial coordinates of all nodes
to position each graph within a 1m? cubic volume in the virtual reality environment. The
edge lengths remain relatively consistent across the three graphs. The edge lengths for the
three graphs are as follows: Graphs, (1=0.21, 0 =0.05), Grapheq (#=0.22, 0 =0.08), and
Graph;. (#=0.20, 0 =0.06). Student’s T-test comparisons revealed no significant differences
in edge lengths across graphs (p > 0.05 for all pairwise comparisons).

3.2 Task Selection

Our study tasks contain three commonly performed graph perceptual tasks [31]:

Task shortest path (Tsp): How long is the shortest path between the two highlighted
nodes (in number of edges)? Two randomly selected nodes are highlighted with a red
sphere. The participants must search for the shortest path. All participants see the same
highlighted nodes for each graph. The length was controlled between 3 and 5 for a good
task complexity. The answer panel shows buttons for all possible answers (0 to 9).

Task highest node degree (Typ): Which node has the highest number of edges to other
nodes? We ensure there is a unique node in every graph with the highest degree. For our
study, the highest node degree ranged from 7 to 24. The participants must search for the
node with the highest degree, and then enter the chosen node label on the answer panel.

3 http://konect.cc/networks/iceland/
4 http://konect.cc/networks/edit-bmwikiquote/
® https://d3js.org/d3-force
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Task common neighbour (Teoy): How many common neighbours do the two highlighted
nodes share? All participants see the same highlighted nodes for each graph. For our
study, the number of common neighbours ranged from 3 to 5. The participants should
count the number of neighbours and select the answer from the panel (0 to 9).

3.3 Experiment Design and Setup
3.3.1 VR Environment

The VR environment was implemented with the WebXR Device API® and Babylon.js”
serving as the rendering framework. Participants accessed the study environment through
the immersive mode of HMD’s native web browser. The experimental procedures were
conducted using a Meta Quest 3 HMD integrated with the NeonXR eye tracking system [1]
from Pupil Labs. The refreshing rate was higher than 50 Hz during the entire study for a
smooth experience. The study environment closely replicated the setup of prior work [11, 21],
ensuring consistent visual encoding and interaction design (see Figure 1). All nodes were
labelled with ascending numerical identifiers starting from 0. Task-relevant nodes were
rendered in red (#FF0000), while task-irrelevant nodes appeared in yellow (#FFFF00)
with a diameter of 0.01. All edges were rendered in white by the Line System function in
Babylon.js.

Participants conducted the study within a VR environment that simulated a 5x5 metre
room with dark blue walls. A virtual question-and-answer panel was positioned on one wall
as the sole interaction interface. Graphs were rendered in the centre of the room at a height
ranging from 0.5 to 1.5 metres, allowing participants to explore them freely from multiple
perspectives. Participants interacted with the panel using the Meta Quest 3 controller
through a raycasting-based technique. Before beginning the experiment, all participants
received standardised training on this interaction method, ensuring consistent familiarity
with the VR controls across sessions.

3.3.2 Experiment Protocol

Participants began the study by clicking a start button, after which a calibration phase
was initiated following a 2-second delay. During calibration, participants were instructed
to follow five white crosses presented sequentially on a blue background. Each cross was
displayed for 1 second at the following locations on screen: centre, upper left, lower left,
upper right, and lower right. A 1-second interval separated the disappearance of one cross
and the appearance of the next. Following calibration, a graph-related question was shown
on a question-answering panel. Participants had unlimited time to read the question. Upon
clicking to begin the task, a graph visualisation appeared at the centre of the virtual room.
Participants could freely inspect the graph and, once confident in their solution, return
to the panel to click “Done”, triggering a response screen. After submitting an answer, a
confirmation screen allowed participants to revise their response if necessary. The next task
appeared upon confirmation, and participants were not allowed to revisit previous tasks.
The study began with three tutorial tasks, each using a simple graph representing one of
the three task types. The experimenter explained each task type and instructed participants
to think aloud while solving them. Participants could proceed only if all tutorial tasks

5 https://immersiveweb.dev/
" https://www.babylonjs.com/
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were solved correctly. The remaining nine tasks were the actual study. Task types and
graph stimuli were counterbalanced and rotated across participants to ensure that no two
consecutive tasks were of the same type or used the same graph.

3.4 Hypothesis

Our study aims to understand the key factors influencing users’ gaze behaviour in stereoscopic
3D and how this behaviour reflects answer correctness. As visual attention behaviour is
influenced by both bottom-up (graph) and top-down (task) factors, we hypothesise the
effects:
H1: Graph significantly influences users’ gaze behaviour during graph perception in
stereoscopic 3D.
H2: Task type significantly influences users’ gaze behaviour during graph perception in
stereoscopic 3D.
H3: Users’ gaze behaviour is significantly correlated with answer correctness during graph
perception in stereoscopic 3D.

We break the hypotheses down under these gaze metrics: a) saccade velocity, b) saccade
length, and c¢) the ratio of fixation count landing on task-related elements. As such, every
hypothesis consists of three sub-hypotheses, such as H1.b, which states that the graph
significantly affects saccade length during graph perception in stereoscopic 3D.

4 Result

The ethics committee at the local university approved the user study. We conducted our
user study at the local university. We recruited 18 participants (11 male, 7 female) between
21 and 28 years old (u=25.2, 0 =2 years). All participants had no visual impairment but
limited experience with VR. All 18 participants were counterbalanced across the three graphs
and three tasks, resulting in nine perceptual tasks for each participant. Participants were
compensated with 10€. The headset setup and eye tracker calibration lasted about five
minutes, and the tutorial tasks took each participant about three minutes.

4.1 Data Processing

The image plane of the scene camera measured 1,600x1,200 pixels, covering a 103°x77°
field of view [1]. We logged the VR headset’s position and rotation with timestamps and
event markers (e.g., task start/done) to segment the collected gaze data. The eye tracker
recorded gaze direction as azimuth and elevation at 200 Hz. Fixations were identified using an
enhanced Identify by Velocity Threshold (I-VT) algorithm for head-mounted eye tracking [9].

We synchronised timestamps between the VR system and the eye tracker using data
from the initial calibration phase (see Section 3.3.2). The five-point fixation pattern was
extracted from the eye tracking data and aligned with system log timestamps marking when
each calibration cross was rendered. The average time difference across all five points was
used to compute a temporal offset between the two systems.

To analyse participants’ perceptual engagement with the graph visualisation, we recon-
structed the full virtual environment using the Python Trimesh library®. Nodes and edges in
the graph were rendered at 5 times their actual size used in the user study environment for

8 https://trimesh.org/
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ray-mesh intersections. Ray casting was then employed to identify graph elements intersected
by participants’ gaze. Gaze rays were computed by combining eye tracking data with the
VR headset’s position and orientation. Each ray originated from the headset’s position, with
its direction derived from the headset’s rotation and the eye tracker’s azimuth and elevation.
The headset’s quaternion rotation ¢ = (z,y, z, w) is converted into a rotation matrix by:

1—-2(y2+22)  2(zy —wz2) 2(zz + wy)
Ryr=| 2@y+wz) 1-2x%+2%) 2(yz—wz) (1)
2(zz — wy) 2(yz +wx) 1 -2(x? +9?)

The eye tracker provided fixation data in terms of azimuth (6,.) and elevation (6)
angles, which were converted from degrees to radians. To compute the gaze direction vector,
we defined the initial forward direction in the local VR headset space as Ujocar = (0,0,1).
Rotation matrices for the elevation (pitch) and azimuth (yaw) angles were then constructed:

1 0 0
Ra=|(0 cos(0g) —sin(6e) (2)
0 sin(fe)  cos(ber)

cos(fa.) 0 sin(f,.)
R.. = 0 10 (3)
—sin(f,.) 0 cos(b,z)

The local gaze direction was then calculated by applying these rotations to the forward
vector Ugaze local = RazReiViocar- Finally, this local direction was transformed into world

coordinates using the VR headset’s rotation matrix and normalised to obtain the central ray
RVRﬁgazeilocal

IRV RUgaze_tocall

A single gaze ray is often insufficient for reliable object intersection due to eye tracking

direction dyqy =

inaccuracies and the spatial extent of foveal vision [28, 34]. Prior work has shown that cone-
based approaches with visual angles between 3—-10° enhance robustness to head movement
and positioning variability, while maintaining accurate detection in 3D environments [20].
Following these guidelines, we expanded the central gaze ray into a conical projection
with an angle of o = 3°. To generate the cone, we constructed an orthonormal basis around
the central gaze direction d, by identifying two perpendicular unit vectors ¥; and ¥, such
that J;, V1, Us formed an orthonormal frame. Eight surrounding ray directions were then
computed as d; = cos ad, + sin a(cos 0;7 + sin 6;7,), where 6; = %, 1€0,1,...,n—1, and
n = 8. All directions d; were normalised to unit length. Ray casting was performed using
this nine-ray cone (the central ray plus eight surrounding rays) within the reconstructed 3D
graph environment. All intersected graph elements and their respective distances from the

ray origin were recorded.

4.2 Taxonomy of Task-related Graph Elements

Graph elements (meshes) were systematically categorised into eight categories: question
panel, highlighted nodes, task nodes, task edges, confusion nodes, confusion edges, other
nodes, and other edges.

Highlighted nodes are the nodes colour-coded in red, which are two nodes in the
shortest path (Tgp) and identify common neighbours task (T¢n ), but the highest degree
task (Typ) contains no highlighted nodes.

Task-relevant elements vary according to the specific task conditions:
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Tsp: The nodes and edges compose the shortest path(s) between the two highlighted
nodes. When multiple shortest paths exist, all constituent elements are included.

Typ: The nodes include the node with the highest degree, and the edges include all
edges connecting to these highest-degree nodes.

Ten: The nodes represent the common neighbours shared by both highlighted nodes, and
the edges include all connections between these common neighbours and the highlighted
nodes.

Confusion elements represent potentially misleading graph components that could
interfere with task completion:

Tgp: Confusion nodes and edges comprise all nodes and edges belonging to the second

shortest path(s) between the highlighted nodes. When multiple second-shortest paths

exist, all constituent elements are included.

Tpyp: Confusion nodes include all nodes with the second-highest degree, while confusion

edges encompass their connections. When multiple nodes share the second-highest degree,

all such nodes and their edges are classified as confusion elements.

Ten: Confusion nodes encompass all neighbours of either highlighted node (including both

common and non-common neighbours), with confusion edges representing all connections

between these neighbours and the highlighted nodes.

Other elements include all remaining nodes and edges that do not fall into the above
categories. When a graph element could be assigned to multiple categories, we applied the
following hierarchical priority: highlighted nodes > task nodes/edges > confusion nodes/edges
> other elements.

4.3 Result
4.3.1 Task Performance Overview

The average task completion time is 53.85 seconds (o =33.28s), where Graph,,, Graph;,
and Graph.g are 57.44 (0 =34.00s), 69.20 (0 =36.35s), and 34.93 (0 =16.41s) seconds,
respectively. For tasks Tgp, Typ, and Ty, participants spent 50.55 (0 =31.295s), 57.45
(0 =33.385), and 53.56 (0 =35.30s) seconds, respectively. Participants have an average
answer correctness of 78.40%, while Tsp, Typ, and Toy have a correctness of 79.63%,
88.89%, and 66.67%, respectively. The correctness of the three graphs is 83.33%, 62.96%,
88.89%, respectively. See Figure 2 for the average task correctness and duration across task
types and graphs.

4.3.2 Gaze Behaviour

As shown in Figure 3, participants have a mean saccade velocity of 27.28 ° /seconds (o =5.00°),
and a mean saccade length of 7.89° (0 =1.45°). For saccade velocity, a two-way AN-
OVA revealed that graph has a significant influence, F(graph)=9.201, p<0.001. How-
ever, the impact of task types was insignificant, F'(task)=1.601, p=0.205, interaction
effect F(graph:task)=1.613, p=0.174. The hypothesis Hl.a is confirmed, but H2.a is
rejected. For saccade length, a two-way ANOVA revealed that graph has a significant
influence, F(graph) =4.553, p=0.012. However, the impact of task types was insignificant,
F(task) =1.210, p=0.301, interaction effect F(graph:task) =1.611, p=0.174. The hypothesis
H1.b is confirmed, but H2.b is rejected.

11:9
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Tasks Tasks
BN Shortest Path  mmm Highest Node Degree ~ mmm Common Neighbor mmm Shortest Path  mmm Highest Node Degree  mmm Common Neighbor
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Figure 2 Average task correctness and duration across task types and graphs. Error bars indicate
the standard error.

Participants have a mean fixation count of 145.65 (o =84.95), where 149.11 (o =94.11)
for Tsp, 139.61 (0 =75.26) for Ty p, and 148.24 (0 =85.71) for Te . Separating by graph,
the means were 154.19 (0 =82.83) for Graph,,, 181.98 (0 =96.65) for Graph;., and 100.80
(0 =47.45) for Graph.q. Considering that Graph;. has a significantly larger number of fixation
counts than Graph,, and Graph.4, we used the task-related fixation ratio for the following
tests. For task-related fixation ratio, a two-way ANOVA revealed that both graph and
task have a significant influence, F(graph)=22.758, p <0.001, F(task) =36.233, p < 0.001,
interaction effect F'(graph:task)=7.063, p<0.001. A post-hoc Tukey Test confirmed the
pairwise significant differences between T'sp and T¢y in Graphs, and Graph;., and between
Tsp and Typ, Tsp and Typ in Graph.y (see Figure 3). This confirmed hypotheses Hl.c
and H2.c.

For Tgp, the correlation between answer correctness with saccade velocity, saccade
length, and fixation task ratio are all insignificant, Spearman’s Rank Correlation r, =0.0310,
p=0.824, r, =0.0634, p=0.649, and, ry =-0.010, p=0.941, respectively. Answer correctness
is significantly correlated with saccade velocity, saccade length, and fixation task ratio under
Ten, Spearman’s Rank Correlation 4 = 0.4008, p =0.003, r, = 0.3856, p =0.004, r, =-0.3529,
p=0.009, respectively. For Ty p, the correlation between answer correctness with saccade
velocity, and fixation task ratio are insignificant, Spearman’s Rank Correlation r4 =0.2363,
p=0.085, s =0.1853, p=0.180, respectively, but significantly correlated to saccade length,
rs =0.2741, p=10.045. This leads to the confirmation of H3.a, H3.b, and H3.c under T¢n, but
rejection in Tgp and Ty p. Moreover, under T¢y, answer correctness correlates significantly
negatively with task duration, Spearman’s Rank Correlation r; =-0.4915, p <0.001. This
suggests that some participants spent a huge effort in counting common neighbours, but still
answered incorrectly.

4.3.3 Viewing Strategy

We adapted two effective visualisation techniques to have both temporal and spatial repres-
entation of how users observe graphs under task solving, providing qualitative insights into
the users’ strategies under immersive graph navigation.

Temporal Dynamics

Implementation. To capture the temporal dynamics of participants’ gaze behaviour, we
implemented a timeline visualisation in the form of uncertainty-aware scarf plots [37]. In this
visualisation, each vertical bar represents a single fixation event, with bar width encoding the
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Figure 3 We compared task-related fixation ratio, mean saccade length, and mean saccade
velocity across graphs and tasks. *** indicates p < 0.001. Error bars denote 95% confidence intervals.

fixation duration. Within each bar, coloured segments indicate the graph elements (nodes
and edges) intersected by the participant’s gaze ray during that fixation. For each intersected
mesh ¢ within a fixation, we calculated a weight w; based on the distance d; between the
mesh and the participant’s viewpoint:

0 ifd;=0
wi =19, . (4)
4, if di # 0
The proportion of vertical space allocated to each mesh block within the fixation bar was
then determined by normalising these weights by p; = i“iw, where p; represents the height
j J

proportion of block i relative to the total bar height. Meshes closer to the observer (smaller
d;) receive proportionally larger block heights and are positioned lower within the bar. The
colour coding corresponds to our eight-category classification described in Section 4.1.

Finding. The scarf plot (see Figure 4) revealed several noteworthy patterns. First, the
appearance of task-related meshes usually appeared later than highlighted nodes and confusion
meshes. Second, the number of intersected meshes generally decreased over time: the peak
of mesh hit count usually appeared early during viewing (first 15 seconds), then gradually
reduced to four or fewer meshes when attending to task-relevant meshes. Third, task-related
meshes were usually first located farther away from viewers (top), then came closer to the
foreground. This suggests that participants would adjust their viewpoints to reduce visual
clutter and minimise the spatial distance to relevant mesh elements, thereby improving
task-relevant visibility.
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Figure 4 Sample timeline visualisations. FEach vertical bar represents a fixation event, with width
indicating duration and coloured blocks showing graph elements that intersected with the eye gaze
ray. In each block, objects are displayed from closest (bottom) to farthest (top).

Spatial Distribution

Implementation. To understand the distribution of task-based visual attention, we first
overlaid visual saliency values on graph meshes. For each fixation that intersected n mesh
elements, we incremented the hit count of each intersected mesh by % The resulting hit
counts were mapped to a colour scale through linear interpolation. Given a mesh with hit
count v, minimum hit count v,,;,, and maximum hit count v,,., we first computed the
normalized value:

b= min(v, 'Umaa:) — Umin

()

We then applied gamma correction with the gamma value of 0.7 to emphasise differences
in the lower range, and the scaling factor of 1.2:

Dirans formea = clip(1.2(9)%7,0,1). (6)

The RGB colour was then calculated using linear interpolation between white Cpite =
(255,255,255) and dark blue Cpe = (0,0, 80), and then clipped to the range [0, 255]:

Umaz — Umin

C= thite + ﬁtransformed ‘ (Cblue - thite)~ (7)
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Figure 5 Aggregated visual saliency distribution from all participants of Graph;., where red
circles denote the highlighted nodes. Top: task shortest path. Middle: task highest node degree.
Bottom: task common neighbour.

Finding. We aggregated fixation data from all participants within each task-graph com-
bination, computing hit frequencies for individual mesh elements throughout the graph
(see Figure 5). The resulting saliency distribution revealed that visual attention allocation
emerged from an interplay between task demands and graph structure. Participants adapted
their visual strategies to task requirements while being guided by the graph’s topological
features, creating distinct yet structured attention patterns. The concentration of fixations
on areas with many connections and relationships — such as densely connected nodes, nodes
linking different parts of the graph, and tightly interconnected groups — indicates that viewers
leveraged the graph’s inherent organisation to efficiently locate task-relevant information,
rather than employing exhaustive search strategies. This dual influence of task constraints
and graph topology demonstrates that human visual processing of graphs involves a dynamic
optimisation between goal-directed search and structure-guided exploration.
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5 Discussion

5.1 Graphs, Tasks, and Gaze Behaviour

Eye tracking offers an objective framework for assessing perceptual and cognitive engagement
during graph viewing. Our findings support the hypothesis regarding graph influence (H1),
while revealing more nuanced effects related to task type and answer correctness (H2, H3).

Saccadic measures strongly support graph-related hypotheses. Different graphs signific-
antly influenced both saccade velocity (H1.a) and saccade length (H1.b), whereas task type
and correctness had no significant effects (rejecting H2.a, H2.b, H3.a, and H3.b). The data
reveal a systematic inverse relationship between graph density and saccadic behaviour. Graph
density varied across graphs: Graphg, (4.0 degree), Graph;. (3.12 degree), and Graph.q (2.32
degree). Correspondingly, saccadic parameters showed systematic progression: lengths of
7.53°, 7.80°, and 8.34°, and velocities of 25.94°/s, 26.39°/s, and 29.52°/s, respectively. This
monotonic pattern demonstrates that increasing graph density leads to more constrained
visual scanning in localised regions, whilst sparser structures promote broader exploration.
These distinct saccadic strategies likely reflect underlying cognitive demands, highlighting
the utility of eye movement metrics as physiological indicators of visual processing in graph
analysis.

Task-related fixation ratio analyses further support all three hypotheses regarding atten-
tion allocation (H1.c, H2.c, H3.c). Different graphs had multiplicative effects on attention
demands: Graph;., with the highest structural complexity (75 nodes, 114 edges), elicited the
greatest task-relevant fixation ratio (46.64%). Graph,, (50 nodes, 100 edges) and Graph.q (56
nodes, 65 edges) required substantially less attention to task-relevant elements (34.11% and
32.13%, respectively). Task type also shaped attentional demands: the common neighbours
task (Ton) imposed the greatest cognitive load, with 66.67% task correctness [30], compared
to 79.63% for the shortest path (Tsp) and 88.89% for the highest node degree (T p) tasks.
Finally, attention allocation correlated with correctness: the most complex graph (Graph;.)
and the most demanding task (T¢op) yielded the lowest task correctness (33.33%).

5.2 Spatio-temporal Attention Patterns in Graph Perception

Eye tracking captures rich spatio-temporal data, enabling sophisticated visualisation of visual
attention patterns. The temporal precision and spatial accuracy of gaze data support advanced
analytical techniques, including scarf plots that reveal the temporal evolution of participants’
focus and the sequential ordering of graph element inspection, and saliency distribution that
characterise the distribution of human visual attention across graph structures.

Our visualisation analysis reveals distinct task-specific attention strategies that reflect
underlying cognitive processes. In the shortest path task, participants exhibited distributed
fixation patterns across intermediate vertices, consistent with systematic route exploration.
Saliency analysis (Figure 5) showed moderate activation levels among candidate nodes, while
scarf plots (Figure 4) revealed frequent transitions between task-relevant and irrelevant
vertices. These patterns suggest a breadth-first visual search strategy, where participants
actively compared multiple paths before selecting an optimal route. In contrast, the highest
node degree task prompted more focused visual behaviour. Visual salience was concentrated
on structurally prominent nodes — appearing as dark blue clusters in the saliency distribution
— while scarf plots showed fewer transitions between relevant and irrelevant areas. This
indicates a targeted search strategy, with participants quickly identifying high-degree vertices
with minimal exploration. The common neighbours task exhibited a distinctly localised
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attention pattern. Participants primarily fixated on the neighbourhoods of the highlighted
nodes, as shown by tightly clustered saliency regions and infrequent transitions in scarf
plots. This behaviour reflects a local comparison strategy, where participants systematically
inspected nearby nodes to infer shared connections, rather than scanning the broader graph.

Despite these task-specific strategies, some consistent visual attention patterns emerged.
In particular, the hub nodes attracted attention across all tasks, implying that participants
consistently prioritised structurally significant elements during their analysis.

5.3 Limitations and Future Work
Challenges of Perception Analysis in Graph Visualisation

Analysing visual attention patterns in 3D graph visualisations presents substantial methodo-
logical constraints. The primary limitation arises from depth ambiguity, where multiple mesh
elements at varying depths align along identical sight vectors. Our conical ray casting detects
all intersected meshes, creating uncertainty regarding actual fixation targets. This ambiguity
intensifies in dense regions where individual fixations often intersect over ten elements, most
likely outside the participant’s attentional focus. Although restricting detection to the nearest
mesh offers a straightforward solution, this risks misclassification when participants attend
to background elements.

A secondary limitation emerges from long-distance edges spanning extensive 3D regions.
Current protocols classify entire edges as fixation targets upon any segment intersection, gen-
erating spurious detections and artificially inflating attention frequencies. Spatial partitioning
into discrete subregions offers a potential solution by recording intersections at regional
rather than mesh levels, though this approach requires accurate gaze depth computation [22]
to determine the specific attended subregion.

Real-time Gaze-based Applications

Our study was constrained by technical limitations related to the integration of eye tracking
and VR system. Specifically, fixation data were computed offline from raw gaze recordings,
and no real-time communication occurred between the eye tracker and the HMD. This
restricted our ability to support gaze-contingent interactions, such as highlighting graph
elements under direct visual attention or dynamically adapting the graph layout based on live
eye tracking metrics. These types of interactions have been shown to enhance usability and
user engagement in immersive analytics systems. Future work could address this limitation
by implementing a web socket to enable real-time data transmission between the eye tracker
and the VR application.

Additionally, the asynchronous nature of the two systems necessitated a post hoc
timestamp alignment process, based on a five-point validation. While generally effect-
ive, this method may introduce minor misalignments — typically on the order of a few
milliseconds — due to human reaction time variability. Although such discrepancies are
unlikely to affect high-level attention analyses, they may pose challenges for fine-grained
temporal studies or real-time applications. Addressing this synchronisation issue remains an
important technical challenge for future system designs in immersive eye tracking research.

6 Conclusion

This work contributes a comprehensive eye tracking study for understanding human percep-
tion of graph visualisations in immersive VR environments through visual analytics. With
the spatial-temporal gaze pattern analysis, our 18-participant user study reveals systematic
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relationships between graph analytical tasks and corresponding gaze behaviours, demonstrat-
ing that eye tracking metrics can serve as objective measures of cognitive load and visual
complexity in exploring 3D graph visualisation. These results provide foundational insights
for designing more effective immersive visualisation systems and suggest promising directions

for adaptive interfaces that respond to user cognitive states. Future work should explore

the generalisability of these gaze-based indicators across more graphs and tasks, as well as

investigate real-time applications of these metrics for enhanced user experience in immersive

analytics.
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