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Abstract
A witness Gabriel drawing Γ is a straight-line drawing of a graph in which any two vertices of Γ are
adjacent if and only if the disk having these vertices as antipodal points contains no element of a
special set of points called witnesses. A witness Gabriel drawing is linearly separable if the vertices
and the witnesses lie in opposite half-planes. We prove that every outerplanar graph has a linearly
separable witness Gabriel drawing by introducing and studying a new type of drawing that we call a
border parabola drawing. We then use border parabola drawings to characterize those triangle-free
graphs that admit a linearly separable witness Gabriel drawing. We also consider witness Gabriel
drawings where no witness lies in the interior of the convex hull of the vertex set, which we call
convexly separable drawings. We construct witness Gabriel drawable graphs for which any witness
Gabriel drawing must be convexly separable and that do not admit any linearly separable witness
Gabriel drawing.
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1 Introduction

A proximity graph of a set of distinct points S in the Euclidean plane is a geometric graph
G whose vertex set is S. Any two vertices u and v of G are adjacent if and only if no
other vertex w of G is in the “neighborhood” of u and v. Depending on the definition of
neighborhood, we have different types of proximity graphs. For example, in a Gabriel graph
uv is an edge if and only if the Gabriel disk, i.e., the disk having u and v as antipodal points,
does not contain any other vertex w. In a rectangle of influence drawing u and v are adjacent
if and only if the rectangle of influence of u and v, i.e., the axis-parallel rectangle having u

and v at opposite corners, does not contain any other vertex w.
For a given definition of proximity, different graph topologies correspond to distinct

distributions of their vertex sets, making these graphs effective descriptors of the morphological
properties of point configurations (see, e.g., [18,19]). As a consequence, proximity graphs find
applications in a variety of contexts, including machine learning, wireless networks, computer
vision, and business analytics (see, e.g., [5,16,19,21]). In information visualization, proximity
graphs are used to measure the faithfulness of network layouts (see, e.g., [6, 7, 10,11,17]).

© Carolina Haase, Philipp Kindermann, William Lenhart, and Giuseppe Liotta;
licensed under Creative Commons License CC-BY 4.0

33rd International Symposium on Graph Drawing and Network Visualization (GD 2025).
Editors: Vida Dujmović and Fabrizio Montecchiani; Article No. 13; pp. 13:1–13:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:haasec@uni-trier.de
https://orcid.org/0000-0001-6696-074X
mailto:kindermann@uni-trier.de
https://orcid.org/0000-0001-5764-7719
mailto:wlenhart@williams.edu
https://orcid.org/0000-0002-8618-2444
mailto:giuseppe.liotta@unipg.it
https://orcid.org/0000-0002-2886-9694
https://doi.org/10.4230/LIPIcs.GD.2025.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de


13:2 Separability of Witness Gabriel Drawings
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Figure 1 (a) A witness Gabriel drawing, (b) a convexly separable witness Gabriel drawing, and
(c) a linearly separable witness Gabriel drawing of a tree. The vertices are drawn as blue filled disks
and the witnesses are drawn as red empty squares.

From the graph drawing perspective, a proximity graph is a straight-line drawing where
adjacent vertices are close to one another while pairs of non-adjacent vertices are far from
each other according to a given definition of closeness. Partly motivated by the applications
above, the study of which graph topologies can be realized for some definition of proximity
is a well studied question that can be stated as the following graph drawing problem: Given
a graph G and a definition of proximity, does G admit a straight-line drawing Γ such that
the proximity graph of the vertex set of Γ is isomorphic to G? In the affirmative case, Γ is
a proximity drawing of G and G is said to be proximity drawable. See [15] for a survey on
proximity drawings and the proximity drawability problem.

This paper studies witness proximity drawable graphs, i.e., graphs that can be realized as
the witness proximity graph of some point sets. In a witness proximity graph we are given
two sets of points: the vertices, and the witnesses that act as obstacles to the existence of
the edges. Any two vertices u and v are adjacent if and only if there is no witness in the
neighborhood of u and v. Hence, a witness Gabriel drawing of a given graph G is computed
by defining a set of points that act as vertices and a set of witnesses that act as obstacles;
uv is an edge in the drawing if and only if the Gabriel disk of u and v does not contain any
witnesses. Note that the Gabriel disk of an edge uv may contain other vertices and that a
witness Gabriel drawing coincides with a Gabriel drawing if the witness set and the vertex
set coincide. Figure 1a shows a witness Gabriel drawing Γ of a tree where the Gabriel disk
of edge uv contains another vertex of Γ.

Motivated by the design of classifiers in pattern recognition applications, Ichino and
Sklansky [12] use witness rectangle of influence graphs1 to study the correlations among
different features, represented by points in the plane. Witness Gabriel graphs are introduced
in a seminal paper by Aronov, Dulieu, and Hurtado [2] who also study the witness Gabriel
drawability problem for different graph families, including trees and complete bipartite
graphs. The same authors extend the results of Ichino and Sklansky about witness rectangle
of influence graphs in [3] and study witness Delaunay graphs in [1]. It is worth remarking
that both the early work of Ichino and Sklanksy [12] and the subsequent papers of Aronov,
Dulieu, and Hurtado [1, 2, 3] stress the importance of the geometric separability between the
vertex set and the witness set in a witness proximity graph, since this property provides
useful information about the interclass structure of the two point sets.

1 These graphs are called interclass rectangular influence graphs in [12]. The term witness proximity
graph and drawing was first used by Aronov, Hurtado and Dulieu in [1].
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This has motivated recent studies about witness Gabriel drawings where the witnesses
are either linearly or convexly separable from the vertex set (see, e.g., [9, 13,14]); the witness
set is convexly separable from the vertex set when no witness is in the convex hull of the
vertices. At first sight, one might think that the geometric separability of the witness set from
the vertex set cannot give rise to sparse topologies. For example, the algorithm of Aronov,
Dulieu, and Hurtado [2] to construct witness Gabriel drawings of trees places witnesses well
in the interior of the convex hull of the vertex set. However, many sparse topologies are in
fact realizable even with linear or convex separability constraints; furthermore, we will show
that the geometric separability is actually required for some graph instances that include
sparse graphs. Figure 1b is a convexly separable witness Gabriel drawing of the tree of
Figure 1a, while Figure 1c is a linearly separable one.

An outline of our results is as follows.
We show that every outerplanar graph admits a linearly separable witness Gabriel
drawing. This extends the result of Aronov, Dulieu, and Hurtado about the witness
Gabriel drawability of trees by both enlarging the family of representable graphs and by
proving the linear separability of the drawings. The linear separability property for witness
Gabriel drawings of outerplanar graphs was previously known only for caterpillars [9].
We prove that any triangle-free graph has a linearly separable witness Gabriel drawing if
and only if it does not have K2,3 as a minor; that is, if and only if the triangle-free graph
is outerplanar [20]. This extends a result of [13,14] where it is shown that the complete
bipartite graphs admitting linearly separable witness Gabriel drawings are exactly those
not containing K2,3 as an (induced) subgraph.
We investigate the relationship between convexly separable and linearly separable witness
Gabriel drawable graphs. We construct infinitely many witness Gabriel drawable graphs
which admit convexly separable drawings but do not have a linearly separable witness
Gabriel drawing. In fact, we show that for any of these graphs, any witness Gabriel
drawing must be convexly separable. We believe that identifying graphs whose witness
Gabriel drawings require convex separability offers a novel perspective on the long-standing
open problem of characterizing witness Gabriel drawable graphs [2].

Our construction of witness Gabriel drawings of outerplanar graphs depends on a new
type of drawing which we call a border parabola drawing and that may be of interest in
its own right. It is a type of drawing in which every vertex is associated with a convex
region that contains it and such that there is an edge between two vertices if and only if
one end-vertex of an edge is in the region of the other. Any border parabola drawing of a
graph can be converted to a linearly separable witness Gabriel drawing with the addition of
appropriately chosen witness locations.

2 Preliminaries

We assume familiarity with graph drawing terms and concepts (refer, for example, to [4]). We
recall that the Gabriel disk of two distinct points p, q is the disk whose diameter is segment
pq. We denote the Gabriel disk of p and q as [p, q]. In the rest of the paper [p, q] is a
closed set, which is the standard definition of Gabriel disks [8]. We also denote by △[u, v, w]
the triangle whose corners are points u, v, and w, and by pq the line through points p and q.
The following lemma can be proved by elementary geometry.

▶ Lemma 1. Let p, q1 and q2 be three non-collinear points and let L be the line through
q1 and q2. Then the Gabriel disks [p, q1] and [p, q2] intersect at a point on L and their
union contains all points in △[p, q1, q2].

GD 2025
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The lemma has some immediate consequences.

▶ Corollary 2 ([2] Lemma 6). Let Γ be a witness Gabriel drawing, let uv and vw be two
adjacent edges of Γ. Then: (i) No witness is contained in △[u, v, w], and (ii) any vertex in
the interior of △[u, v, w] is adjacent to v in Γ.

▶ Corollary 3 ([2] Proposition 1). Let Γ be a witness Gabriel drawing, and let uv, vw, and uw

be edges of Γ forming a three-cycle. Any vertex r ∈ △[u, v, w] is adjacent to all of {u, v, w}.

3 Witness Gabriel Drawings of Outerplanar Graphs

We prove here that every outerplanar graph admits a linearly separable witness Gabriel
drawing. The drawings we produce have the additional property that for any edge, its
Gabriel disk does not intersect the (open) half-plane containing the witnesses. To do this, we
introduce and study a new type of graph drawing, which we call a border parabola drawing.

3.1 Border Parabola Drawings
▶ Definition 4. Given a point p ∈ R2 with y(p) > 0, the border parabola of p is the set
of points q ∈ R2 such that [p, q] is tangent to the x-axis. The border parabola of p can be
expressed by the function fp(x) = (x−x(p))2

4y(p) .

Note that we use x above both as a variable and as a projection function and that the
border parabola of p has p as its focus and (x(p), 0) as its vertex. The following property is
an immediate consequence of Definition 4.

▶ Property 1. For any points p and q in the upper half-plane:
if y(p) > fq(x(p)), then the Gabriel disk [p, q] lies above the x-axis;
if y(p) = fq(x(p)), then the x-axis is tangent to [p, q];
if y(p) < fq(x(p)), then the Gabriel disk [p, q] crosses the x-axis.

For any point q in the upper half-plane, let Bq = {p : y(p) ≥ fq(x(p))}; if p ∈ Bq, we
say that p lies within the border parabola of q. Property 1 immediately implies that p lies
within the border parabola of q if and only if q lies within the border parabola of p, and in
particular p is a point of the border parabola of q if and only if q is a point of the border
parabola of p.

▶ Definition 5. Given a set P of points in the upper half-plane, the graph G = (P, E), where
E = {(p, q) : q ∈ Bp} is called the border parabola (or PB) graph of P . The associated
straight-line drawing, denoted by Γ(P ), is called the border parabola drawing of P .

We say that G admits a border parabola drawing if G is the border parabola graph for
some set P ; if G admits a border parabola drawing, we call G a border parabola graph or say
that G is border parabola drawable. Figure 2 shows a border parabola drawing. The following
properties will be useful:

▶ Property 2. Let Γ(P ) be a border parabola drawing and {p1, p2, p3} ⊂ P be such that
x(p1) < x(p2) < x(p3). If {p1, p3} forms an edge and p2 lies above p1p3, then {p1, p2} and
{p2, p3} also form edges.

Proof. Since the segment p1p3 is contained in both Bp1 and Bp3 , the portion of the vertical
strip determined by {p1, p3} that lies above p1p3 is completely contained in Bp1 ∩ Bp3 and
so p2 must lie within both parabolas. Hence {p1, p2} and {p2, p3} also form edges. ◀
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Figure 2 A border parabola drawing of an outerplanar graph.

▶ Property 3. Let Γ(P ) be a border parabola drawing and let {p0, p1, p2} form a triangle in
Γ(P ). Then any point p ∈ P \ {p0, p1, p2} contained in the triangle △(p0, p1, p2) is adjacent
to each of {p0, p1, p2}.

Proof. It suffices to note that {p0, p1, p2} all lie in Bp0 ∩ Bp1 ∩ Bp2 , which is a convex set
and so contains every point in △(p0, p1, p2). ◀

3.2 Border Parabola Drawings of Outerplanar Graphs
A witness Gabriel drawing Γ(P, W ) with vertex set P and witness set W of a graph G is
strongly linearly separable if there is a line separating P from W such that no Gabriel disk of
an edge crosses the separating line. We shall say that Γ is a SLSWG drawing of graph G.
We assume without loss of generality that the separating line is the x-axis.

Property 1 implies that in a SLSWG drawing Γ(P, W ), for any p ∈ P , the border parabola
of p contains p and its neighbors, but no other point of P . That is, the drawing can be
computed from P alone, without reference to W . Hence, we have the following.

▶ Theorem 6. A graph G admits a SLSWG drawing Γ(P, W ) if and only if G is the border
parabola graph of P .

The question of which graphs admit a SLSWG drawing is therefore the question: Which
graphs G are border parabola graphs? We are going to show that outerplanar graphs are
border parabola graphs. We start with some definitions.

Let p and q be points in the plane such that x(p) < x(q). The (open) vertical strip for p

and q is the set S(p, q) = {r : x(p) < x(r) < x(q)}. The (open) lower half-strip for p and q

S−(p, q) is the portion of S(p, q) lying strictly below the line determined by p and q. Note
that neither p nor q is contained in S−(p, q) or S(p, q) because of the strict inequality used
in the definitions.

Let Γ(P ) be a border parabola drawing and let r ∈ R2 be any point in the upper half-plane.
We define the neighborhood of r in P to be the set NP (r) = Br ∩ P ; that is NP (r) is the
set of points of P that would be adjacent to r in Γ(P ∪ {r}). Finally, for {p, q} ⊆ P , we say
that a subset R of the upper half-plane is an extension zone for {p, q} if

for all r ∈ R, NP (r) ⊆ {p, q},
R contains points r1, . . . , r4 such that NP (r1) = ∅, NP (r2) = {p}, NP (r3) = {q}, and
NP (r4) = {p, q}.
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The purpose of an extension zone is to identify, given points {p, q}, a set of locations such
that a point r from the zone could be added to P so that Γ(P ∪ {r}) would contain the
edges of Γ(P ) along with both, either, or neither of {{p, r}, {q, r}} but would contain no
other additional edges.

Finally, let Γ(P ) be a border parabola drawing and let {p, q} ⊆ P . The meet of p and q,
denoted mp,q, is the point of Bp ∩ Bq having minimum y-coordinate. The meet of p and q

can be equivalently defined to be the point of intersection of fp and fq that lies in the vertical
strip determined by p and q. Note that the portion of Bmp,q below the line determined by p

and q is always a subset of S−(p, q) since p and q both lie on fmp,q
; thus mp,q ∈ S−(p, q).

▶ Lemma 7. Let Γ(P ) be a border parabola drawing and let {p, q} ⊆ P be such that
x(p) < x(q), S−(p, q) ∩ P = ∅ and NP (mp,q) = {p, q}. Then there exists a disk Ds centered
at s = mp,q such that Ds is an extension zone for {p, q}, Ds ⊂ S−(p, q), and every r ∈ Ds

satisfies
1. S−(p, r) ∩ P = ∅ and S−(r, q) ∩ P = ∅, and
2. NP ∪{r}(mp,r) = {p, r} and NP ∪{r}(mr,q) = {r, q},

In other words, if the pair {p, q} satisfies the hypotheses of Lemma 7 for P , then any
point r that is close enough to mp,q has the property that both {p, r} and {r, q} satisfy the
hypotheses of Lemma 7 for P ∪ {r}; see Figure 3 for an illustration of the Lemma.

Proof. Since x(p) < x(q) and Bs is a closed region, there exists an ε > 0 such that the
disk Dε(s) with radius ε and center s has the property that for any s′ ∈ Dε(s), NP (s′) ⊆
NP (s) = {p, q}. Consider any ε′ such that 0 < ε′ ≤ ε. Since the border parabolas fp and
fq intersect at s, fp is strictly increasing at s, and fq is strictly decreasing at s, the points
p1 = (x(s), y(s)+ε′), p2 = (x(s)+ε′, y(s)), p3 = (x(s), y(s)−ε′), and p4 = (x(s)−ε′, y(s)) are
all in Dε(s) and will satisfy NP (p1) = {p, q}, NP (p2) = {q}, NP (p3) = ∅, and NP (p4) = {p}
respectively, so Dε(s) is an extension zone for {p, q}. Also, if S−(p, q) ∩ P = ∅, then for any
r ∈ S−(p, q), S−(p, r) ∩ P = ∅ and S−(r, q) ∩ P = ∅, so the first condition is satisfied.

We now show that every r ∈ Dε(s), satisfies NP ∪{r}(mp,r) = {p, r}; the proof that
NP ∪{r}(mr,q) = {r, q} is analogous. First note that since S−(p, q) ∩ P = ∅, any point
t ∈ P ∩ NP ∪{r}(mp,r) other than p lies in the portion of NP ∪{r}(mp,r) above the line L

determined by p and q. But that portion of NP ∪{r}(mp,r) is completely contained in NP (s),
since fs intersects fmp,r at p and at a point whose x-coordinate is between those of p

and r, and between p and r, fmp,r
lies below fs. This, and an analogous argument that

NP ∪{r}(mr,q) = {r, q}, establish the second condition. Letting Ds = Dε(s) completes the
proof. ◀

▶ Theorem 8. Every outerplanar graph G = (V, E) admits a border parabola drawing and
hence it has a linearly separable witness Gabriel drawing.

Proof. We incrementally construct a set P and a function g : P → V such that at all
times the border parabola graph Γ(P ) of P is isomorphic to the subgraph of G induced
by g(P ) ⊆ V . We assume G is connected; otherwise the construction is applied to each
component of G separately, translating successive components far enough to the right of
previously drawn components so that if {u, v} lie in different components, the Gabriel disk
of u and v intersects the negative half-plane.

Assume that we have a topological embedding of G. If G is not a maximal outerplanar
graph, add new edges E′ to G until G′ = (V, E ∪ E′) is maximal outerplanar. Note that
this can be done so that the original embedding of G is preserved. We use the geometric
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Figure 3 Illustration for Lemma 7.

dual of G′ to impose an order on the vertices of G′. Let {v1, v2} be an edge on the outer
face of G′ and let v3 be their common neighbor. Now consider the tree whose vertices are
the triangular faces of G′ and whose edges connect faces of G′ that share an edge. Root
this tree at {v1, v2, v3}. We now order the remaining vertices so that the following invariant
holds: For each i > 3, vi forms a triangle with some pair {vj , vk} such that {j, k} are both
less than i (note that this also holds for i = 3 by construction). Any such ordering will serve
our purposes. We call {vj , vk} the parents of vi.

To begin the construction, if {v1, v2} ∈ E, let {p1, p2} be any two points such that
p2 ∈ Bp1 ; if {v1, v2} ∈ E′, let {p1, p2} be any two points such that p2 ̸∈ Bp1 and mp1,p2 ∈
S−(p1, p2). In either case, {p1, p2} can be chosen such that x(p1) ̸= x(p2), and y(p1) ̸= y(p2).
Let P = {p1, p2}, g(p1) = v1, and g(p2) = v2. Note that Γ(P ) is isomorphic to the subgraph
of G (not G′!) induced by {v1, v2}.

At any point in the construction of P , there will be pairs {pj , pk} ⊂ P such that {vj , vk}
is an edge of G′ and there exists a (unique) m such that {vj , vk, vm} is a triangle of G′ but
pm has not yet been constructed. We call such a pair {pj , pk} pending.

One other structure that we will take advantage of will be the polygonal chain C(P )
consisting of the points in P ordered by increasing x-coordinate, with consecutive pairs
forming line segments (note, some of these segments are edges of Γ(P ) but others may not
be); C(P ) is a monotone chain with respect to the x-axis. At all times, the next vertex vi

of G′ to be associated with a new point pi in P will have the property that its parents are
consecutive points in C(P ). After pi is added to P , the segment between the parents of pi in
C(P ) is replaced by segments from pi to each of its parents. Since it will always be the case
that the x-coordinate of pi is between the x-coordinates of its parents, C(P ) will remain
monotone at all times.

We now describe how to add points to P so that, for all i with 1 ≤ i ≤ n, after point pi

has been added to P , the following invariants hold:
1. Γ(P ) is isomorphic to the subgraph of G induced by {v1, . . . , vi}
2. For every j with 3 ≤ j ≤ i, pj is contained in the lower half-strip of its parents
3. The lower half-strips of any two pending pairs in P are disjoint, and

GD 2025



13:8 Separability of Witness Gabriel Drawings

4. For every pending pair {pj , pk}
a. {pj , pk} appear as consecutive elements in C(P )
b. S−(pj , pk) ∩ P = ∅,
c. mpj ,pk

∈ S−(pj , pk)
d. NP (mpj ,pk

) = {pj , pk}

Note that the invariants hold (mostly vacuously) for i = 1 and i = 2. So assume now that,
for some value i ≥ 3, the invariants hold for i − 1. Let {vj , vk} be the parents of vi; then
j, k : 1 ≤ {j, k} ≤ i − 1 and so {pj , pk} have already been added to P , and so by invariant 4,
{pj , pk} satisfy the hypotheses of Lemma 7. That is, letting s = mpj ,pk

, there exists a disk
Ds with center s such that Ds is an extension zone for {pj , pk}, Ds ⊂ S−(pj , pk), and such
that every r ∈ Ds satisfies
1. S−(pj , r) ∩ P = ∅ and S−(r, pk) ∩ P = ∅.
2. mpj ,r ∈ S−(pj , r) and mr,pk

∈ S−(r, pk), and
3. NP ∪{r}(mpj ,r) = {pj , r} and NP ∪{r}(mr,pk

) = {r, pk},

We now choose a location for pi ∈ Ds as follows
If {vj , vi} ∈ E and {vk, vi} ∈ E, choose pi so that NP (pi) = {pj , pk},
If {vj , vi} ∈ E and {vk, vi} ∈ E′, choose pi so that NP (pi) = {pj},
If {vj , vi} ∈ E′ and {vk, vi} ∈ E, choose pi so that NP (pi) = {pk},
If {vj , vi} ∈ E′ and {vk, vi} ∈ E′, choose pi so that NP (pi) = ∅.

Add pi to P and let g(pi) = vi, and observe that by virtue of the selection rule for pi,
Γ(P ) is still isomorphic to the subgraph of G induced by {v1, . . . , vi}. Also, pi is contained
in the lower half-strip of its parents. In addition, since S−(pj , pi) and S−(pi, pk) are disjoint
and contained in S−(pj , pk), and {pj , pk} is no longer pending, the lower half-strips of all
pending pairs are still disjoint, since pi can’t form a pending pair with any point of P other
than its parents pj and pk (the only neighbors in G′ of vi in {v1, . . . , vi−1} are vj and vk).
We thus just need to verify that conditions 4a-4d are still satisfied.
4a Before pi was added, Condition 4a held. After pi is added, {pj , pk} is no longer a pending

pair so {pj , pk} no longer need to be consecutive in C(P ). The only possible new pending
pairs are {pj , pi} and {pi, pk}; both of these pairs occur as consecutive points in C(P ).
and so Condition 4a is satisfied.

4b Similarly, Condition 4b is clearly satisfied since pi was added inside S−(pj , pk) and so
after it has been added to P , pi is not contained in the lower vertical strip of any pending
pair since all such pairs have disjoint strips.

4c Condition 4c is still satisfied for any pending pair not including pi, so it only needs to
be checked for S−(pj , pi) and S−(pi, pk) (which may or may not be pending pairs). But
the choice of location of pi along with Lemma 7 guarantee that mpj ,pi

and mpi,pk
are in

S−(pj , pi) and S−(pi, pk) respectively.
4d Assume that Condition 4d was satisfied before the addition of pi to P . We need to ensure

that, after pi is added to P , the condition still holds. Note that pi is selected to lie below
C(P ). As noted earlier, for any pair of points {p, q} ∈ P , the portion of Bmp,q below the
line determined by {p, q} is completely contained in S−(p, q). So for each pending pair
{p, q} in C(P ), the portion of Bmp,q

below C(P ) is disjoint from the portion of Bmp′,q′

below C(P ) for any other pending pair {p′, q′} in C(P ). Thus when pi is added to P , it
will not lie in Bmp,q

for any pending pair {p, q} (other than, perhaps, {pj , pi} or {pi, pk}),
and so the neighborhoods for those pending pairs are unchanged. But by Lemma 7,
NP (mpj ,pi

) = {pj , pi} and NP (mpi,pk
) = {pi, pk}, so Condition 4d is satisfied. ◀
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Figure 2 depicts a border parabola drawing constructed with the procedure described in
the proof of Theorem 8.

It is worth remarking that Theorem 8 extends a previous result by Aronov, Dulieu, and
Hurtado [2] about the witness Gabriel drawability of trees. We also note that the witness
Gabriel drawings of trees computed with the algorithm in [2] are neither linearly nor convexly
separable.

4 Linearly Separable Triangle-free Witness Gabriel Drawings

As proved in the previous section, any graph that admits a border parabola drawing also
admits a linearly separable witness Gabriel Drawing. In this section we will show that, for
the family of triangle-free graphs, the converse is also true.

▶ Lemma 9. Let Γ(P, W ) be a witness Gabriel drawing, and let {p1, p2, q1, q2} ⊆ P be four
distinct points such that

{p1, p2} and {q1, q2} are crossing edges of Γ(P, W ), and
{p1, q1} and {p2, q2} are non-edges of Γ(P, W ).

Then for any witnesses {w1, w2} ⊆ W for {p1, q1} and {p2, q2} respectively, the segment
w1w2 crosses edges {p1, p2} and {q1, q2}.

Proof. Note that for the hypotheses of the lemma to be satisfied, it cannot be that an
endpoint of one of the two edges lies on the other edge, since then the Gabriel disk of one of
the non-edges would lie inside the Gabriel disk of one of the edges, making witness placement
impossible. Thus the intersection point of the edges is in the interior of each edge.

Let L1 be the line through {p1, q2}, L2 be the line through {p2, q1}, and, if the lines are
not parallel, let c be their intersection point. By applying a suitable rotation, translation,
and/or reflection, we can assume, w.l.o.g., that

L1 and L2 are parallel with slope 0 and are equidistant from the x-axis, or c lies at the
origin and L1 and L2 have equal but oppositely signed slopes with all of {p1, p2, q1, q2}
appearing to the left of c,
{p1, p2, q1, q2} all lie on or above L1,
p1 lies to the left of q2 on L1, and so q1 lies to the left of p2 on L2,

Let [p1, p2], [q1, q2], [p1, q1], and [p2, q2] be the Gabriel disks of the two edges
and two non-edges. By Lemma 1, each of [p1, p2], [q1, q2] intersect each of [p1, q1],

[p2, q2] at two points and all eight such points of intersection lie on L1 and L2. Four of
the eight points are {p1, p2, q1, q2}; denote the other four by {P1, P2, Q1, Q2} as follows: If
r ∈ {p1, p2, q1, q2}, then R denotes the other point of intersection of the two Gabriel disks
that intersect at r. Note that if r ∈ {p1, p2, q1, q2} lies on Li, for 1 = 1, 2, then R lies on
L3−i. Figure 4 and 5 show the two possible configurations.

Note that since p1 is to the left of q2 on L1, P1 must be to the left of Q2 on L2; similarly
Q1 must be to the left of P2 on L1, since q1 is to the left of p2 on L2.

Consider first the case where L1 and L2 are parallel and consider L2 and the region
above it. Now consider the portions of the Gabriel disks for the two edges that lie above
L2. One portion connects q1 to Q2 and the other connects p2 to P1. But since q1 must be
to the left of p2 and P1 must be to the left of Q2, the projections of those portions onto L2
intersect and so either the portions cross or one is contained below the other. Since all of
the eight intersection points of the four Gabriel disks lie on L1 and L2 either every point on
the portions of the Gabriel disks of the two non-edges lying above L2 lie below some point
on a portion of one (or both) of the Gabriel disks for the two edges, or none do. But near
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Figure 4 Illustration for Lemma 9 – parallel case.
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Figure 5 Illustration for Lemma 9 – skew case.

the left-most of the four intersection points on L2 (q1 in Figure 4), the portion of [q1, q2]
above L2 contains the portion of [q1, p1] above L2. Similarly, near the right-most of the
four intersection points on L2 (p2 in Figure 4), the portion of [p2, p1] above L2 contains
the portion of [p2, q2] above L2. Thus no portion of either of the Gabriel disks for the
non-edges lies both above L2 and outside the union of the Gabriel disks for the two edges.

A similar argument holds for the region below L1. Therefore any witnesses for [p1, q1]
and [p2, q2] must lie in the horizontal strip between L1 and L2. Note now that the entire
quadrilateral bounded by {p1, p2, q1, q2} is contained in the union of the Gabriel disks of the
two edges. Note also that the only points to the right of that quadrilateral and between
L1 and L2 that disk [q1, p1] can contain are also contained in [p1, p2] ∪ [q1, q2]: for
any point p′ that lies in this region, the angle q1p′q2 is larger than the angle q1p′p1, so if
p′ lies in [q1, p1], then it also lies in [q1q2]. Similarly, the only points to the left of that
quadrilateral and between L1 and L2 that disk [p2, q2] can contain are also contained in

[p1, p2] ∪ [q1, q2]. Thus a witness for [q1, p1] must lie in the strip between L1 and L2 to
the left of the quadrilateral and a witness for [q2, p2] must lie in the strip between L1 and
L2 to the right of the quadrilateral, implying that the segment between them crosses both
{p1, p2} and {q1, q2}.

The proof in the case that L1 and L2 intersect is similar but slightly more involved.
Instead of three regions of interest (below L1, between L1 and L2, and above L2), there are
now four regions that we call the north, east, south, and west regions:

north: the intersection of the regions above both L1 and L2,
south: the intersection of the regions below both L1 and L2,
west: the intersection of the region above L1 and below L2, and
east: the intersection of the region below L1 and above L2.

Note that by construction, {p1, p2, q1, q2} are contained in the west region.
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The analogous proof for this case uses the following observations:
Any point within either of the Gabriel disks for the two non-edges that lies in the north
or south regions is also within the union of the Gabriel disks for the two edges. Thus any
witnesses for the two non-edges must lie in the west and/or east regions.
The Gabriel disks of the two edges completely contain the quadrilateral formed by
{p1, p2, q1, q2},
The only points to the left of that quadrilateral and within the west region that disk

[q2, p2] can contain are also contained in [p1, p2] ∪ [q1, q2].
However, it is not always the case that the disk [p1, q1] does not contain any points to
the right of that quadrilateral. There are two situations, depending upon whether c, the
intersection point of L1 and L2, lies inside the four Gabriel disks or not. (It either lies in all
four of the disks if ∠q1cq2 = ∠p1cp2 ≥ π/2 or in none of them if not.) If c lies outside of the
four disks, then, in fact, the only points to the right of that quadrilateral and within the west
region that disk [p1, q1] can contain are also contained in [p1, p2] ∪ [q1, q2]. Moreover,
in this case, neither of the Gabriel disks of the non-edges intersects the east region, and so
witnesses for the two non-edges must both lie in the west region, but on opposite sides of the
quadrilateral. Thus the segment between them will cross both {p1, p2} and {q1, q2}.

If c lies inside the four Gabriel disks, then the portion of [q2, p2] that lies in the east
region (and, in fact, all of [q2, p2]) will be contained in the union of the Gabriel disks of
the two edges, so there will be no location at which a witness for G[q2, p2] can be placed. ◀

As a final ingredient, we will prove the following generalization of Property 2:

▶ Property 4. Let Γ(P ) be a linearly separable witness Gabriel drawing and {p1, p2, p3} ⊂ P

be such that x(p1) < x(p2) < x(p3). If {p1, p3} forms an edge and p2 lies above p1p3, then
{p1, p2} and {p2, p3} also form edges.

Proof. It suffices to note that the portion of the Gabriel disk [p1, p3] below segment p1p3
contains the portions of the Gabriel disks [p1, p2] and [p2, p3] that lie below p1p3. ◀

We are now ready to state the main result of this section.

▶ Theorem 10. The following statements are equivalent for a triangle-free graph G:
G is outerplanar
G admits a linearly separable witness Gabriel drawing
G admits a border parabola drawing.

Proof. By Theorem 8, every outerplanar graph admits a border parabola drawing, and by
definition every border parabola drawing is also a linearly separable witness Gabriel drawing.
To show the equivalency, we still have to argue that, if a triangle-free graph admits a linearly
separable witness Gabriel drawing, then it must be outerplanar.

An immediate consequence of Lemma 9 is that if Γ(P, W ) is a linearly separable witness
Gabriel drawing, then P cannot contain four points satisfying the hypotheses of the lemma:
P and W are contained in disjoint half-planes and so no segment between two points in P

can cross a segment between two points in W . In particular, if Γ(P, W ) is a linearly separable
witness Gabriel drawing of a triangle-free graph, then Γ(P, W ) must be a planar drawing,
since any pair of crossing edges would satisfy the hypotheses of Lemma 9. Moreover, no point
of P in such a drawing could lie vertically above any edge, since, otherwise, by Property 4,
the drawing would contain a triangle, and so the drawing must, in fact, be outerplanar. ◀
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Figure 6 Illustration for the proof of Lemma 11.

We recall that results of [13,14] show that the complete bipartite graphs admitting linearly
separable witness Gabriel drawings are exactly those not containing K2,3 as an induced
subgraph. Following a characterization of triangle-free outerplanar graphs by Syslo [20],
Theorem 10 extends these results showing that any triangle-free graph has a linearly separable
witness Gabriel drawing if and only if it does not have K2,3 as a minor.

5 Convexly Separable Witness Gabriel Drawings

A witness Gabriel drawing Γ is said to be convexly separable if none of its witnesses lie
within the interior of the convex hull of Γ. Clearly, if a family of graphs admits linearly
separable witness Gabriel drawings, then it also admits convexly separable ones. This holds,
for example, for outerplanar graphs (see Theorem 8). However, two natural questions arise:
(i) If a graph admits a convexly separable witness Gabriel drawing, does it always admit
a linearly separable one? (ii) Are there graphs that are witness Gabriel drawable, but for
which all such drawings must be convexly separable?

In this section, we answer the first question negatively and the second affirmatively by
constructing witness Gabriel drawable graphs that require convex separability in any witness
Gabriel drawing, but for which linear separability is not possible.

▶ Lemma 11. Every Km,n such that m ≥ 2 and n ≥ 2 admits a witness Gabriel drawing.
Also, if n > 2 any such drawing must be convexly separable but cannot be linearly separable.

Proof. Every Km,n is witness Gabriel drawable by Theorem 5 of [2]. Also, for any n > 2
Km,n contains K2,3 as a subgraph and hence, by Theorem 10, it does not admit a linearly
separable witness Gabriel drawing. It remains to show that every witness Gabriel drawing of
Km,n is convexly separable. We color red every vertex of one partition set and blue every
vertex of the other partition set of Km,n.

Let Γ be a witness Gabriel drawing of Km,n and assume that there is a witness w in the
interior of the convex hull and let uv be an edge of Km,n such that u is a red vertex and
v is a blue vertex. Consider the line L1 passing through u and w and the line L2 passing
through v and w. Lines L1 and L2 divide the plane into four wedges each having w as their
apex. We call these wedges the top wedge, bottom wedge, left wedge, and right wedge of w,
respectively. The top (left) wedge of w is opposite to its bottom (right) wedge. We assume
without loss of generality that edge uv is in the right wedge of w. See also Figure 6.

Observe that no vertex z of Γ can be in the left wedge of w. Namely, depending on its
color, vertex z would be adjacent to either u or v and we would have that w is a point of the
triangle whose corners are u, v, and z, violating Corollary 2. Also, no edge zt of the convex
hull of Γ can cross the left wedge of w: If z and t have the same color, let s be whichever
of u and v has the other color. Now △[z, t, s] contains w, violating Corollary 2. If z and t

have different colors, they form an edge of Γ and △[z, t, u] contains w, which again violates
Corollary 2.
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Figure 7 A witness Gabriel drawing of K3,3.

Since no vertex and no edge of the convex hull of Γ can intersect the left wedge of w, it
follows that w is not in the interior of the convex hull of Γ. ◀

Figure 7 shows a convexly separable witness Gabriel drawing of K3,3.
The graphs of Lemma 11 are triangle-free and dense. We now prove a similar result for a

planar triangulation consisting of just nine vertices.
Let C = {r, g, b} and I = {1, 2, 3}. Then we define the graph G9 to have vertex set

V = {ci : c ∈ C, i ∈ I} and edge set E = {{ri, rj}, {bi, bj}, {gi, gj}, {bi, rj}, {bi, gj} : 1 ≤
i, j ≤ 3, i ̸= j}. Note that G9 can also be described as the complete graph on V minus all
edges {ri, gj}, i, j ∈ I and {ci, c′

i}, c, c′ ∈ C, i ∈ I; see Figure 8a. One can also obtain the
graph G9 by taking two octahedra and gluing them together at a triangular face. The vertex
v = ci ∈ V , c ∈ C, i ∈ I, is said to have color c(v) = c and index i(v) = i; the index set of
V ′ ⊆ V is given by I(V ′) = {i(v) : v ∈ V ′}. We will refer to vertices having color r as red
vertices, color b as blue vertices, and color g as green vertices.

g1

g2 g3

b3 b2

b1

r1

r3r2

(a)

g1

g2

g3

b1
b2

b3

r1

r2

r3
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Figure 8 Graph G9 and a convexly separable witness Gabriel drawing of G9.

By means of Lemma 9, Corollary 2 and Corollary 3, we can now prove the following.

▶ Lemma 12. Graph G9 admits a witness Gabriel drawing. Also any such drawing must
be convexly separable but cannot be linearly separable. Any proper subgraph of G9 admits a
linearly separable witness Gabriel drawing.

Proof. It is possible to construct a convexly separable witness Gabriel drawing of G9. See
Figure 8b for such an example.

We now show that no witness Gabriel drawing of G9 can be linearly separable. Assume
that there existed a linearly separable witness Gabriel Drawing Γ of G9. By Lemma 9,
Corollary 3, and Corollary 2, Γ must be such that: (1) Any V ′ ⊂ V having |I(V ′)| < |I| = 3
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Figure 9 Illustration for the proof of Lemma 12: A witness Gabriel drawing Γ of G9 must be
convexly separable.

induces a plane subgraph of Γ. Note that since V ′ does not contain vertices of all three indices,
the subgraph induced by V ′ contains no triangles. Thus, by Lemma 9, no two of its edges
can cross. (2) Any induced 4-cycle of Γ must form a convex quadrilateral: By (1), the 4-cycle
forms a plane subgraph of Γ. If it were not convex, one of the four vertices would be contained
in the wedge formed by the other three and so, by Corollary 2, a diagonal would exist. (3)
For any {i, j} ⊂ I, the subgraph Gi,j of G9 induced by all vertices having indices in {i, j} is
a plane subgraph of Γ consisting of the two convex quadrilaterals Ri,j = {bi, bj , ri, rj} and
Gi,j = {bi, bj , gi, gj}. Further, these two quadrilaterals lie on opposite sides of the line Li,j

determined by {bi, bj}. Both Ri,j and Gi,j , which we will call the red and green quadrilaterals,
respectively, are induced 4-cycles of G9, and so by (2), each forms a convex quadrilateral in
Γ. If both were on the same side of Li,j , then either some edge of Ri,j intersects some edge
of Gi,j , which is forbidden by (1), or one of the two quadrilaterals is contained in the other.
Suppose that Ri,j contains Gi,j ; in particular Ri,j contains the vertex gi. Now bk (k ̸= i, j)
is adjacent to all of {bi, bj , ri, rj} and the triangles △(bk, bi, bj), △(bk, bj , ri), △(bk, ri, rj),
and △(bk, rj , bi) completely cover Ri,j . This means, however, that one of the four triangles
contains gi, violating Corollary 3, thus Ri,j and Gi,j must lie on opposite sides of Li,j .

Now consider the triangle △ = △(b1, b2, b3) and the three lines L1,2, L2,3, L3,1 determined
by it’s edges. We will refer to the half-plane of Li,j not containing △ as the outer half-plane
of Li,j . Since each outer half-plane Li,j contains one of Ri,j and Gi,j , then by the pigeon-hole
principle, there are either at least two red quadrilaterals or two green quadrilaterals contained
in their respective outer half-planes. So assume that, w.l.o.g., Ri,j and Ri,k are contained in
the outer half-planes of Li,j and Li,k, respectively. Then, in particular, ri is contained in
the intersection of these two outer half-planes. But this implies that bi is contained in the
triangle △(ri, bj , bk), violating Corollary 3. It follows that no witness Gabriel drawing of G9
can be linearly separable.

With a similar reasoning as in the proof of Lemma 11, we now show that every witness
Gabriel drawing Γ of G9 must be convexly separable. Suppose that there existed a witness
w in the interior of the convex hull of Γ. Consider the smallest infinite wedge with apex w

containing the blue vertices of Γ and extend the rays of the wedge to two lines that intersect
at w. These two lines define four wedges each of them having w as an apex. We call these
wedges the top wedge, bottom wedge, left wedge, and right wedge of w, respectively. The
top (left) wedge of w is opposite to its bottom (right) wedge. We assume without loss of
generality that the three blue vertices lie in the right wedge of w and denote as bi and bj the
two blue vertices along the boundary of this wedge; see Figure 9 for an illustration.

We show that no edge of the convex hull of Γ can intersect the left wedge of w. First
observe that there cannot be a vertex z in the left wedge of w: If vertex z existed it would
be adjacent to one of {bi, bj} and therefore w would a point in the interior of the triangle
whose corners are bi, bj , and z, which contradicts Corollary 2. Furthermore, no edge zt of
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Vertex g1 g2 g3 b1 b3 r1 r2 r3 w1 w2 w3

x 116 93 98 71 8 33 44 51 18 60 95
y 29 15 7 12 74 6 14 3 −1 −8 −2

Figure 10 Coordinates of the vertices and witnesses in a linearly separable witness Gabriel
drawing of G9 minus a blue vertex.

the convex hull of Γ can cross the left wedge of w: Neither z nor t is a blue vertex; also
I({z, t}) has size at most 2, so there is some blue vertex b adjacent to both z and t. The
wedge formed by these three vertices contains w, violating Corollary 2.

Since no edge of the convex hull of Γ can intersect the left wedge of w, it follows that w

is not in the interior of the convex hull of Γ.
To conclude the proof, we need to show that every proper subgraph of G9 has a linearly

separable Gabriel drawing. It is sufficient to show that deleting any vertex of G9 results in
a graph that has a linearly separable witness Gabriel drawing. Figures 10 and 11 depict
linearly separable witness Gabriel drawings (and exact coordinates) of G9 minus a green
vertex and of G9 minus a blue vertex, respectively. ◀

Figure 8b depicts a convexly separable witness Gabriel drawing of G9, while Figures 10
and 11 depict linearly separable witness Gabriel drawings and exact coordinate of G9 minus a
green vertex and of G9 minus a blue vertex, respectively. Lemma 12 complements Lemma 11
by providing an example which is a triangulated planar graph.

If we denote as CSWGD the set of those witness Gabriel drawable graphs whose witness
Gabriel drawings must be convexly separable, and as LSWGD the set of those witness
Gabriel drawable graphs that admit a linearly separable witness Gabriel drawing, then the
results of this section can be summarized as follows.

▶ Theorem 13. LSWGD ⊊ CSWGD. Also, CSWGD \ LSWGD contains both bipartite
graphs and planar triangulations.

6 Concluding Remarks and Open Problems

In this paper we have studied witness Gabriel drawings where the sets of vertices and the
set of witnesses are either linearly or convexly separable. We showed that every outerplanar
graph admits a linearly separable witness Gabriel drawing. We remark that the witness
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Vertex g1 g2 b1 b2 b3 r1 r2 r3 w1 w2 w3 w4

x 0 126 116 9 123 37 87 58 8 17 106 119
y 38 24 113 18 44 4 4 1 −1 −13 −17 −3

Figure 11 Drawing and exact coordinates of the vertices and witnesses in a linearly separable
witness Gabriel drawing of G9 minus a green vertex.

Gabriel drawability of outerplanar graphs was known only for trees and, in addition, the
known construction was not giving rise to separable realizations. We then characterized the
triangle-free graphs that admit a linearly separable witness Gabriel drawing. Finally we
proved that the family of linearly separable witness Gabriel drawable graphs is a proper
subset of the convexly separable ones.

Several open problems naturally arise from our results. We conclude the paper by listing
some of those that, in our opinion, are among the most interesting.

Further investigate the relationship between border parabola graphs and linearly separable
witness Gabriel drawable graphs. Specifically, are there graphs that admit a linearly
separable Gabriel drawing but do not have a border parabola drawing?

Extend the characterization of Theorem 10 to graphs that have 3-cycles.

Characterize the convexly separable witness Gabriel drawings.

Finally, an immediate consequence of Lemma 12 is that there are two planar triangulations
(namely two copies of G9) which do not admit a mutual witness Gabriel drawing. A
mutual witness Gabriel drawing consists of a pair of witness Gabriel drawings where the
vertex set of one drawing acts as the witness set for the other and vice versa. Clearly, if
every witness Gabriel drawing of G9 is convexly separable, any mutual witness Gabriel
drawing of two copies of G9 should be linearly separable, which is however impossible by
Lemma 12. It would be interesting to further study pairs of planar graphs that admit or
do not admit a mutual witness Gabriel drawing. Results in this direction are known for
pairs of isomorphic trees and for bipartite graphs [9, 13,14].
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