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—— Abstract

We present 00PS (Optimized One-Planarity Solver), a practical heuristic for recognizing 1-planar

graphs and several important subclasses. A graph is 1-planar if it can be drawn in the plane such
that each edge is crossed at most once — a natural generalization of planar graphs that has received
increasing attention in graph drawing and beyond-planar graph theory. Although testing planarity
can be done in linear time, recognizing 1-planar graphs is NP-complete, making effective practical
algorithms especially valuable.

The core idea of our approach is to reduce the recognition of 1-planarity to a propositional
satisfiability (SAT) instance, enabling the use of modern SAT solvers to efficiently explore the search
space. Despite the inherent complexity of the problem, our method is substantially faster in practice
than naive or brute-force algorithms. In addition to demonstrating the empirical performance of
our solver on synthetic and real-world instances, we show how 00PS can be used as a discovery
tool in theoretical graph theory. Specifically, we employ 00PS to investigate two research problems
concerning 1-planarity of specific graph families. Our implementation of the algorithm is publicly
available to support further exploration in the field.
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1 Introduction

Planarity is a central concept in graph drawing; it describes graphs that can be embedded
in the plane without edge crossings. Thanks to classical results, planarity testing can be
carried out in linear time, and planar embeddings can be constructed for very large instances.
However, most graphs arising in real-world applications, such as bioinformatics and software
engineering, are non-planar. This motivates the study of beyond-planar graph classes, which
extend planarity by allowing a limited number of edge crossings.

One of the most natural such classes is that of I-planar graphs, introduced by Ringel
in 1965 in the context of vertex-face colorings of plane graphs [36]. A graph is 1-planar if
it can be drawn in the plane such that each edge is crossed at most once. This definition
generalizes planar graphs but retains many of their structural properties, such as bounded
edge density, bounded chromatic number, small separators, and low treewidth. The class of
1-planar graphs is receiving an increasing attention in the recent years: While the annotated
bibliography on 1-planarity by Kobourov, Liotta, and Montecchiani from 2017 [28] lists 143
references on the topic, a recent Google Scholar search of “1-planar graph” reveals several
thousand of related publications.

Despite their structural similarities to planar graphs, 1-planar graphs are substantially
more challenging from a computational standpoint. In contrast to the linear-time algorithms
for planarity testing, recognizing whether a given graph is 1-planar is NP-complete, even
for restricted graph families [14,24,29]. As a result, research on 1-planarity recognition has
focused on developing algorithms for restricted subclasses, such as IC-planar and outer-1-
planar graphs [1,5,25,39], or on parameterized and approximation algorithms [8,20]. While
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these results have deepened our theoretical understanding of 1-planarity, there remains a
significant gap between theory and practice: existing exact algorithms are typically not
scalable for use on general graphs arising in real-world scenarios. The design and evaluation of
practical algorithms for recognizing (subclasses of) 1-planar graphs remains an underexplored
direction [10,28].

1.1 Summary of Contributions

In this paper, we reduce the gap by designing and implementing a practical heuristic for
testing 1-planarity. Besides a naive exhaustive search to enumerate all possible crossings in a
graph, we are aware of only one attempt to implement a general algorithm for recognizing
1-planar graphs [10]. While this backtracking algorithm is carefully engineered, it is not
efficient enough to answer basic research questions like “What is the smallest bipartite non-1-
planar graph?” or “Is the 28-vertex Coxeter graph 1-planar?”. In contrast, our new algorithm,
which we call 00PS (Optimized One-Planarity Solver), provides a substantial speedup and
thus capable to answer such questions in seconds.

Our heuristic is based on converting the 1-planarity problem into a propositional sat-
isfiability (SAT) instance, which enables the use of modern SAT solvers. To this end, we
design two novel schemes for encoding the 1-planarity of a graph (which is a problem of
geometric flavor) into a discrete SAT instance. The first one is based on the Hanani-Tutte
characterization of planar graphs, which has been used earlier for designing practical algo-
rithms for upward planarity [15]. This type of encoding is rather flexible and allows to easily
extend the algorithm to other use cases, such as 1-planarity of directed graphs. Our second
encoding is tailored to 1-planar graphs and exploits a connection to book embeddings. It
results in a specifically compact encoding and much faster processing times, and thus, can
be an interesting contribution on its own.

We summarize the main contributions of the paper as follows.

In Section 2 we describe our algorithm for the recognition of 1-planar graphs. It starts

with a preprocessing step and an analysis of global properties of the input graph, such as

edge density, that can eliminate some obviously non-1-planar instances. Then we present
the two SAT encoding schemes for 1-planarity, followed by a set of more involved rules
for breaking symmetries and reducing the search space.

An implementation of the algorithm, 00PS, is open sourced in [34]. The implementation

is self-contained and requires only a C++ compiler with C++17 support.

Section 3 presents an extensive evaluation of the new approach, comparing its efficiency

on a suite of benchmark graphs with alternatives. In particular, we provide the status

of 1-planarity for named WIKIPEDIA graphs (Table 2). Furthermore, we use 00PS to
investigate two theoretical questions concerning 1-planarity regarding the smallest non-1-
planar instances for several graph families (Problem 1) and the existence of a subclass of

1-planar graphs with certain properties (Problem 2).

1.2 Other Related Work

Although the family of 1-planar graphs shares some similarities with planar graphs, there is
a fundamental difference. Planarity can be characterized by Wagner’s theorem (forbidden
minors K5 and K3 3) or by Kuratowski’s theorem (forbidden subdivisions of K5 and K3 3).
In contrast, every graph admits a 1-planar subdivision, making it impossible to characterize
1-planar graphs via a Kuratowski-type theorem. Testing 1-planarity is NP-complete. The
first proof of this result is given by Grigoriev and Bodlaender [24], via a reduction from the
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3-partition problem. An independent proof by Korzhik and Mohar [29] uses a reduction from
the 3-coloring problem for planar graphs. The recognition problem remains NP-complete
even for graphs with bounded bandwidth, pathwidth, or treewidth [8]; for graphs obtained
from planar graphs by the addition of a single edge [14], and for graphs with a fixed rotation
system [6]. However, the problem becomes fixed-parameter tractable when parameterized by
the vertex-cover number, cyclomatic number, or tree-depth [8]. Polynomial-time algorithms
are known only for restricted subfamilies of 1-planar graphs [5,13,25]. The extensive literature
on the topic reflects a strong interest in determining the boundary between tractable and
intractable cases. Nevertheless, general-purpose algorithms that are both practical and widely
applicable remain lacking.

To prove that a given graph is not 1-planar, one can attempt several approaches. One
method is to show that the graph has too many edges, as a 1-planar graph with n vertices
has at most 4n — 8 edges [11]; better bounds exist for subclasses such as bipartite 1-planar
graphs [26,27]. Another approach is to leverage the chromatic number: 1-planar graphs are
6-colorable [12], so a graph requiring more colors cannot be 1-planar. Alternatively, one may
identify a small non-1-planar subgraph (e.g., a complete multipartite graph [16]), or show
that any drawing of the graph necessarily contains too many crossings [17]. However, once a
graph passes these basic filters (consider for example a random cubic graph on 30 vertices),
determining whether a 1-planar drawing exists — or proving its nonexistence — remains a
challenging and elusive problem. A brute-force approach is practical only for small instances,
typically those with up to 16—20 vertices, depending on the level of engineering effort. For
this reason, Eppstein [46], Kobourov, Liotta, and Montecchiani [28] and Binucci, Didimo,
and Montecchiani [10] discuss a need for a more powerful technique to attack larger graphs.

2 Model

2.1 Preliminaries

We consider a simple undirected graph G = (V, E') with n vertices and m edges. A drawing T’
of G maps vertices V' to distinct points of the plane and edges E to Jordan curves connecting
corresponding endpoints; the curves may not pass through vertices except their endpoints.
Two edges cross if their Jordan curves intersect in a point different from the endpoints. For
the ease of notation we often identify a vertex v € V and its drawing I'(v) as well as an
edge e € E and its drawing I'(e). A drawing is planar if every edge is crossing-free, and a
graph is planar if it admits a planar drawing. A drawing of a graph partitions the plane into
connected regions, called faces; the unbounded region is called the outer face. The set of all
faces describes the embedding of a planar graph G.

A graph is I-planar if it admits a 1-planar drawing, that is, a drawing in which every
edge is crossed at most once. The planarization of a 1-planar drawing of G is a (planar)
graph that replaces each pair of crossing edges, (u,v) € E and (x,y) € E, by four edges
(u,d), (v,d), (x,d), (y,d), where d is a new dummy vertex. The vertices of G in the pla-
narization are referred to as original. There are several important subclasses of 1-planar
graphs; for example, optimal 1-planar graphs containing the maximum possible number of
edges, 4n — 8 [11]. A graph is IC-planar (independent crossing planar) if it has a 1-planar
embedding so that each vertex is incident to at most one crossing edge [1]. In NIC-planar
graphs (near-independent crossing planar), two pairs of crossing edges share at most one
vertex [39]. Outer I-planar graphs are another subclass of 1-planar graphs; they admit a
1-planar drawing such that all vertices are in the outer face [5,25].
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2.2 Preprocessing

We may simplify the testing of 1-planarity of an input graph G by preprocessing the graph
and eliminating some instances early. First, we split G into (edge-disjoint) biconnected
components and test each component independently, as a 1-planar drawing of G can be easily
composed from 1-planar drawings of its biconnected components. Second, we check the edge
density of G and reject instances violating the maximum possible density in a 1-planar graph.
While there are several density-related results in the area (e.g., for IC and NIC graphs [7,40]),
we apply only the 4n — 8 bound for general graphs [11] and the 3n — 8 bound for bipartite
ones [27]. Third, we test if G is planar, which can be done efficiently. Finally, we verify if G
is 1-planar with skewness 1, that is, if it admits a 1-planar drawing in which only one pair
of edges cross. This can be done by enumerating all possible pairs of edges, and testing if
replacing the pair of crossed edges with a vertex of degree four yields a planar graph.

After the preprocessing step, we may assume that the input graph is biconnected, non-
planar, and does not violate the edge density.

2.3 SAT-based Encoding of 1-Planarity

To test whether a given graph G = (V, E) admits a 1-planar drawing, we formulate a Boolean
Satisfiability Problem that has a solution if and only if G is 1-planar. We develop two
encoding schemes for the problem; both are based on the concept of a linear graph layout
(also referred to as an ordered embedding in [15]). Refer to [35] for a survey of various types
of linear layouts. Assume that G admits a 1-planar drawing; planarize it by adding a dummy
vertex for every crossing and consider a straight-line planar drawing of the planarization.
Now it is easy to perturb the vertices such that they have different z-coordinates, which yield
a total (linear) order of the vertices; see Figure 1. Observe that the drawing can be modified
so that the vertices lie on the same horizontal line (called the spine) while keeping planarity
and the vertex x-coordinates. The edges in the drawing are curves that are monotone in the
x direction; they cannot cross each other but can pass through the spine multiple times, as
the red edge (c, e) in Figure lc.

Our encoding schemes operate with two auxiliary graphs built as follows. Subdivide every
edge of G with a new division vertex to get its subdivision G’ = (V', E’) with |E'| = 2m
and |V’'| = n +m. The division vertices are D = V/\ V. From G’ we build another graph,
denoted G, by allowing to merge pairs of division vertices. Let (u,v) € E and (z,y) € E be
two edges of G that are subdivided by dy, € D and dy, € D in G'. By merging d,, and dg,,
we get a new (dummy) vertex, d, and four new edges in GJ,, namely (u,d), (v,d), (v,d), and
(y,d). The construction of G}, is similar to planarization of (a 1-planar drawing of) G, except
that G; contains extra non-merged division vertices. The importance of G; is shown below.

» Observation 1. Let G be a graph and G’ be its subdivision. Then G is 1-planar if and
only if merging some pairs of division vertices in G' results in a planar graph G;,

Proof. In one direction, if G is 1-planar, consider its planarization. Subdividing every edge
non-incident to a dummy vertex, yields a desired planar graph G;). In another direction, start
s smooth all (non-merged) degree-2 division vertices and replace
all degree-4 dummy vertices with two edges. The result is a 1-planar drawing of G. |

with a planar drawing of G

To model the merging process in G’ by a SAT formula, consider a partial order o on
V’. In this order all vertices are pairwise comparable, except for pairs of merged division
vertices that “share” a position in ¢; these exceptional pairs correspond to edge crossings in
G. Formally, we introduce variables encoding the relative order of vertices V'’ in o:
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() (d)

Figure 1 (a) A 1-planar drawing of a graph G with crossings between edges (a,e) and (d, f) and
between (b,d) and (c,e). (b) An auxiliary graph G}, with green division vertices subdividing every
edge. (c) A linear layout (a.k.a. ordered embedding) of the graph for the Hanani-Tutte-based SAT
encoding of 1-planarity. (d) A stack layout of the graph for the Stack-based encoding.

V1: two variables o(v,u) and o(u,v) for every pair of distinct vertices v,u € V’ indicating
whether v precedes v in the order.

Intuitively, o(v, u) = true means that v precedes u in the order, and symmetrically, o(v,u) =

false means that v follows u. We stress that this is a partial order, meaning that for some

pairs of division vertices, called merged, it holds that o(v,u) = o(u,v) = false.

To indicate that a pair of division vertices is merged (or equivalently, that a pair of edges
in G cross each other), we introduce variables for pairs of division vertices. Note that not
all division vertices can be merged. For example, one may assume that adjacent edges in G
do not cross in its 1-planar drawing; hence, we forbid to merge the corresponding division
vertices by introducing a set of candidate pairs: C C D x D. In the simplest scenario, C
contains pairs of division vertices corresponding to independent edges in F; Section 2.4 shows
how to further shrink the set of candidates. The introduced variables are as follows:

V2: a variable x(v,u) for every pair of distinct division vertices (v,u) € C indicating whether
v is merged with u.

To ensure the correctness of the order, o, we enforce the following constraints for the

associativity for non-candidate pairs of vertices, and order transitivity:

C1: o(v,u) ¢ —o(u,v) Y(u,v) € V! x V'\ C;

C2: —o(v,u)V —o(u,v) Y(u,v) € C;

C3: (o(v,u) Ao(u,w)) = o(v,w) V distinct u,v,w e V.

In order to link relative variables, V1, with merge variables, V2, we use:

Ca: o(v,u) Vol(u,v)Vx(v,u) Y(u,v) € C.
Finally, a division vertex can be merged with only one other division vertex:
C5: =(x(v,u) A x(v,w)) Y distinct u, v, w € D.

GD 2025
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Next we discuss how the basic scheme can be customized in two different ways to encode
1-planarity of a graph.

2.3.1 Hanani-Tutte Encoding

The encoding presented in the previous section allows to model a linear layout of a graph and
crossings between pairs of edges. However, one still needs to guarantee that the edges can be
routed in a planar way. This is achieved with a help of a Hanani-Tutte-type characterization
for monotone drawings:

» Lemma 2 ([23,33]). Let G be a graph. If G has an x-monotone drawing such that every
pair of independent edges crosses an even number of times, then there is an x-monotone
planar drawing of G with the same vertex locations.

Based on the characterization, Chimani and Zeranski [15] designed a SAT formulation for
upward planarity, where edges of a directed acyclic graph have to be drawn in a monotone
fashion. We observe that essentially the same encoding can be used for graph G;. To this
end, we need extra variables to encode (e, v)-moves that model how an edge e € E’ is routed
around a vertex v € V'. The true (resp., false) value of the variable indicates that edge e
is routed above (below) v. We refer to [23] and [15] for further details on (e, v)-moves.

V3: a variable 1(e, v) for every edge e € E' and every vertex v € V' to indicate whether we
perform an (e, v)-move.

The move variables can guarantee planarity using the following constraints. Here we consider

a pair of edges e = (s¢,te) € E’, f = (sy,ty) € E' and assume that s. precedes t. in o and

that sy precedes t; in o.

C6: (0(se,s57) No(sy,te) Nol(te,ty)) = (V(e,sp) <> (f,te)) Ve, f€E.

C7: (0(se,s7) No(sy,ty) Aoty te)) = (Ve sp) ¢ ¥(e ty)) Ve, f € E'.

Finally, we need to ensure that merged division vertices have the same move variables:

C8: x(u,v) = (Y(u,e) ¢ ¥(v,e))  V(u,v) €Cie€ E.

» Theorem 3. Let G = (V, E) be a graph and G' = (V' E') be its subdivision. Then G is
1-planar if and only if the SAT formula built for G’ and comprised of variables V1 U V2 U V3
and constraints C1 U C2 U C3 U C4 U C5 U C6 U C7 U C8 is satisfiable.

The proof of the theorem is inspired by results (for planar graphs) in [15,23] with the key
difference that G’ is non-planar and contains pairs of division vertices that can be merged.

Proof of Theorem 3. Assume that graph G = (V, E) is 1-planar and let G’ = (V' E’) be
its subdivision. Let us show that there is an assignment of variables V1 U V2 U V3 such
that C1 U C2 U C3 U C4 U C5 U C6 U C7 U C8 are satisfiable.

Consider a 1-planar drawing of G; planarize it by inserting a dummy vertex for every
crossing to get a planar graph G,. Now we subdivide every edge between original vertices
and call the result G;. This graph, G;, is planar and hence, admits a straight-line drawing.

Perturb the vertices in the drawing so that they have distinct z-coordinates; we get a (planar)
/

p’
build a partial order, o, of V' by assigning o(u,v) = true whenever z(u) < z(v). Dummy

vertices in G, correspond to two division vertices in V' and have the same coordinates; set
x(u) = x(v) for such pairs. This construction guarantees constraints C1, C2, C3, C4, and C5.
The move variables, V3, are assigned depending on whether an edge e € E’ is routed above
or below vertex v € V'. It is easy to verify (see also [15,23]) that the absence of crossings
imply C6, C7, C8.

drawing of G/, where every edge is monotone in the z direction; see Figure lc. Now we
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For the opposite direction, assume that variables V1, V2, V3 are assigned so that C1, C2,
C3, C4, C5, C6, C7, C8 are satisfied for G'. Constraints C1, C2, and C3 guarantee a partial
order of V' where all pairs of vertices are comparable except merged pairs. We position the
vertices of G’ on a spine following the order. To draw edges, we use V3 together with C6, C7,
C8 and apply Theorem 4.1 of [23]. Note that edges might cross the spine multiple times but
do not cross each other. To get a 1-planar drawing of G, simply smooth (degree-2) division
vertices; merged division vertices correspond to edge crossings. <

2.3.2 Stack-Based Encoding

While the Hanani-Tutte-based encoding already provides a practical approach for 1-planarity,
it is not utilizing all properties of 1-planar graphs. We observe that the auxiliary graph G’ is
bipartite, with one part being the original vertices, V', and another part being the division
vertices, D. Furthermore, the graph remains bipartite after merging division vertices; that
is, G; is bipartite too. To exploit the bipartiteness, we use the concept of (2-page) book
embeddings (a.k.a. stack layouts), which are special types of linear graph layouts in which
edges are represented by (z-monotone) semi-arcs that do not cross each other and the spine.

We rely on the following result by Felsner, Fusy, Noy, and Orden [21]:

» Lemma 4 ([21]). Let G = (V1 U Vo, E) be a bipartite planar graph. Then G admits a
(crossing-free) stack layout with order < in which edge (u,v) € E with u < v (resp., v < u)
is drawn as a semi-arc above (resp., below) the spine.

The lemma yields a 2-page book embedding for a maximal planar bipartite graph (a
quadrangulation) using its separating decomposition. Intuitively, a separating decomposition
for a quadrangulation with a fixed planar embedding is an orientation and a (red/blue)
coloring of the edges such that every vertex (except two special vertices on the outer face) is
incident to a non-empty interval of red edges followed by a non-empty interval of blue edges
in the cyclic order around the vertex. Such a decomposition naturally defines an equatorial
line that separates blue and red edges. The properties of the separating decomposition imply
Lemma 4, that is, the existence of a 2-page book embedding in which the equatorial line
is a spine and red/blue edges form two trees, that are called alternating in [21]. One tree
contains the edges above the spine and another one contains the edges below the spine; see
Figure 1d. We refer to Figure 2 for an illustration.

In order to apply the result, assume that G is 1-planar. Then combining Observation 1 and
Lemma 4, it follows that G;) admits a stack layout with two alternating trees. This enables
to encode 1-planarity of G as follows. Consider a pair of independent edges e = (0.,d.) € E’
with o, € V,d. € D and f = (oy,dy) € E’ with oy € V,dy € D; assume that o, precedes
oy in order o. We forbid a crossing between e and f above or below the spine using the
following constraints.

C9: —0(0c,0¢) V —0(0f,de) V =0 (de,df) Ve, f € E';
C10: =o(de,dy) V —o(df,00) V —o(0e,0f) Ve, f € E'.

» Theorem 5. Let G = (V, E) be a graph and G' = (V', E') be its subdivision. Then G is
I-planar if and only if the SAT formula built for G' and comprised of variables V1 U V2 and
constraints C1 U C2 U C3 U C4 U C5 U C9 U C10 is satisfiable.

Proof. Assume a graph G = (V, E) is 1-planar and G’ = (V' E’) be its subdivision. Consider
a l-planar drawing of G and build graph Gj, by planarizing the drawing and subdividing
non-crossed edges. Since G, is bipartite, there exists a stack layout given by Lemma 4. We

GD 2025
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(c)

Figure 2 An illustration of the stack-based encoding for the Grotzsch graph: (a) A 1l-planar
drawing; (b) Separating decomposition with equatorial line; (c) The corresponding 2-page book
embedding (stack layout) provided by Lemma 4.

use the order of vertices along the spine in the stack layout to assign variables V1 and V2,
satisfying constraints C1, C2, C3, C4, and C5. Since the edges do not cross each other,
constraints C9 and C10 are also satisfied.

For the converse, note that variables V1 and V2 together with C1, C2, C3, C4, C5 define
a linear layout of G, while C9 and C10 guarantee that there are no crossings between edges
of Gi},. To get a 1-planar drawing of G, smooth division vertices so that every edge of G is
represented by a pair of semi-arcs; merged division vertices correspond to edge crossings. <«

2.4 Optimizations

Here we describe additional tricks to reduce the search space and speed up SAT solvers
for recognizing 1-planar graphs. The first one is an improvement to relative variables, V1.
Observe that constraint C1 enforces associativity for pairs of vertices that cannot be merged,
including for example, pairs of original vertices. While modern SAT solvers are able to
simplify a formula substituting variable (v, u) with =o(u,v) (or vice versa), we found that
performing this substitution directly during formula generation reduces both memory usage
and solver runtime.

For the next optimization, we exploit a well-known property of 1-planar drawing. Consider
a pair of crossing edges e = (u,v) € E and f = (z,y) € E; then neither of the four adjacent
edges (also called the kite edges in [10]) (u, x), (x,v), (v,y), (y, u) can participate in a crossing.
This leads to a set of extra constraints that forbid such a crossing: —x(e, f)V —x(k, t), where
k € E is one of the kite edges corresponding to pair e, f and t € F is an arbitrary edge of G.
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(a) (b)

Figure 3 Possible configurations in which swapping (exchanging) = and u eliminates a crossing.

A particularly useful technique for improving the effectiveness of our approach is reducing
the size of candidate pairs of edges that can cross in a 1-planar drawing, C'. To this end,
consider a potential crossing between edges e = (u,v) € E and f = (x,y) € E. In certain
cases, it might be possible to exchange the positions of u and z (swap u and x) while
keeping the remaining vertices of G unchanged so as to eliminate the crossing. Consider the
neighborhoods (set of adjacent vertices) of w and x, that is, N(u) = {2z : (u,2) € E} and
N(z)={z:(x,2) € E}. If N(u) \ {v,z,y} coincides with N(x) \ {u,v,y} and at most one
edge out of (z,v), (u,y) is present in E, then one can swap v and = and eliminate the crossing
from the drawing; see Figure 3a. Hence, we may assume that x(e, f) = false and remove
the pair from the candidate set C. An extension of the rule can be applied for multiple
crossing pairs. For example, if there are two crossings between (u,v) € F and (a,y) € E and
between (¢,b) € E with (z,y) € E and N(u) = N(z) (see Figure 3b), then again swapping u
and z reduces the number of crossings. In our implementation, we enumerate all possible
pairs of crossings and test if swapping two vertices reduces the number of crossings; the
corresponding 2-clauses forbidding one of the crossings are then added to the formula.

Finally, we observe that when a 1-planar drawing of a graph exists, it is not unique. In
other words, there might be multiple satisfying assignments for a formula. To reduce the
search space explored by a SAT solver, we employ symmetry breaking techniques; a similar
approach has been used by Bekos, Kaufmann, and Zielke [9] in the context of finding stack
layouts of graphs. It is easy to see that one chosen vertex, say vg € V, can be assumed to
be the first in the order. This is enforced by constraints o(vg,u) = true for all u € V' \ vy.
Furthermore, we may force a relative order for twin vertices u,v € V' whose neighborhoods
are identical; that is, o(u,v) = true for pairs of twins u,v. Last but not least, we integrate
into the implementation of 00PS two generic symmetry-breaking engines, that can analyze
the entire formula and add extra constraints without changing its satisfiability.

2.5 Extensions

It is possible to extend the schemes provided in Sections 2.3.1 and 2.3.2 to several other
tasks in the area of 1-planarity. Recall that a graph is NIC-planar (resp., IC-planar) if it
admits a 1-planar drawing in which two pairs of crossing edges share at most one (resp.,
zero) vertices. This can be straightforwardly formulated using the following constraints: Let
d; € D be a division vertex adjacent to original vertices u; and v;. We consider distinct
division vertices d;, d;, di, d; and whenever |[{u;,v;, uj,v;} N {uk, v, ue, v }| > 1 (resp., > 0),
we introduce constraint —x(d;, d;) V —x(dk, d;) to forbid a crossing for one of the pairs.
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Another interesting extension is for directed acyclic graphs (DAG), whose 1-planarity has
been recently studied [3,4]. In this context, the input is a DAG and the question is whether
it admits an upward drawing with at most one crossing per edge; a drawing is upward if
for every (directed) edge (u,v), the y-coordinate of w is less than the y-coordinate of v.
Our Hanani-Tutte encoding scheme can be applied for the setting by enforcing additional
directional constraints o(u,v) = true for every edge (u,v) of the DAG.

3 Experiments

To validate the effectiveness of 00PS, we conduct an experimental evaluation focusing on
three objectives. (i) Analyze how well does the algorithm perform in terms of quality and
scalability compared to alternatives. (ii) Study how available parameters of the algorithm
contribute to its performance. (iii) Show how 00PS can be used as a discovery tool to answer
open research questions in graph drawing and topological graph theory.

The experiments presented in this section were conducted in two modes referred to as
single-core and parallel. For the former, we utilize a Linux-based laptop with a 3.6 GHz Intel
Core Ultra 5 125U processor having 16GB RAM. For the latter, we use a more powerful
server with a dual-node multi-core 3.2 GHz Intel Xeon Platinum 8488C (Sapphire) processor
having 360GB RAM. Single-core computations are based on the (sequential) MapleGlucose
SAT solver [37,41], while parallel experiments use up to 32 cores of the server machine
running Painless SAT solver [30,42]. To enhance SAT solving, one can optionally use
integrated symmetry-breaking engines, BreakID [18] and satsuma [2].

Our algorithm, 00PS, is fully open sourced [34]; the implementation is self-contained
(except for the optional parallel mode, which requires a parallel SAT solver) and can be built
with a C++ compiler having C++17 support.

3.1 Comparison with Alternatives

Here we analyze how the SAT-based 1-planarity solver compares to alternative solutions.
Arguably the simplest approach for testing 1-planarity is based on an exhaustive search, which
enumerates all possible combinations of crossing edges, inserts a dummy vertex for every
crossing, and tests whether the resulting graph is planar. We call the heuristic brute-force;
refer to [34] for the implementation. Another candidate solver is by Binucci, Didimo, and
Montecchiani [10], which we refer to as 1PlanarTester. Since the solver is not open sourced!,
we use the same datasets and report the measurements presented in the paper [10]. The
algorithms are compared with two versions of our SAT-based solver, described in Section 2.3.1
and Section 2.3.2; they are referred to as 00PS (H-T) and 00PS (Stack), respectively?.

We use the following datasets to compare the solvers:

NORTH50 graphs is a subset of the NORTH benchmark [45] containing all instances with

at most 50 vertices; all planar graphs have been removed from the collection, resulting in

a total of 297 instances;

ROMEDSQ graphs is a set of all non-planar ROME graphs [45] with at most 50 vertices; it

contains 2950 instances.

L There exists an implementation of the algorithm at https://github.com/seemanne/1PlanarTester
but a close inspection of the source code reveals substantial gaps both in performance and correctness;
thus, we do not use it in our evaluation.

2 Further heuristics are being developed independently by Fink, Miinch, Pfretzschner, and Rutter [22].
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Table 1 Comparison of various heuristics for 1-planarity on real-world and synthetic benchmarks.
The runtimes (in seconds) are represented by mean values along with 95% confidence intervals. The
best results in each category are bold.

benchmark | algorithm 1-planar non-1-planar unsolved
instances ‘ runtime, sec || instances ‘ runtime, sec || instances
NORTHH0 1PlanarTester 117 0.15 26 0.15 154
brute-force 156 8.0+ 12.8 28 0.1£0.1 113
00pPs (H-T) 190 3.9+26 29 0.1+0.1 78
00PS (Stack) 190 0.2+0.1 89 9.5+5.9 18
ROMES0 1PlanarTester 412 0.15 0 2538
brute-force 1961 12.5+£6.5 0 989
00Ps (H-T) 2815 7.8+0.7 0 135
00PS (Stack) 2887 1.340.3 0 63
3REG-GIR7 | brute-force 0 0 546
00PS (H-T) 41 105 + 15 0 505
00PS (Stack) 411 5+5 0 135
S5REG-B brute-force 0 0 100
00PS (H-T) 0 1 160 99
00PS (Stack) 0 73 90 £ 12 27

In addition to the real-world graphs, we selected two datasets of graphs containing 45 edges.
The synthetic graph data is generated with the geng tool from nauty [31,43].
3REG-GIRT are all 546 connected cubic (3-regular) graphs with n = 30, m = 45 and having
girth 7; all but five instances are known to be 1-planar;
HREG-B is a random sample of 100 connected 5-regular bipartite graphs with n = 18, m =
45; all the graphs are non-1-planar.

We report the results of the experiment in Table 1, which contain the number of identified
1-planar and non-1-planar instances, along with the mean processing times (in seconds) and
95% confidence intervals, for each of the benchmarks. To run the brute-force and 00PS
solvers on the data, we use the single-core mode (which is comparable to the configuration
reported in [10]) and set the runtime limit for each execution to 3 minutes; for comparison,
the runtime limit of 1PlanarTester in [10] is set to 3 hours.

One prominent observation from the results is that there is a large gap between SAT-
based approaches (00PS) and the naive ones (brute-force and 1PlanarTester). In most
of the cases, 00PS is able to solve substantially more instances, both in the 1-planar and
non-1-planar category. The relatively low runtime of 1PlanarTester suggests that it can
handle only “easy” instances that do not require exploring a large search space. Similarly,
the performance of brute-force on ROMES50, where it solves two thirds of the cases, implies
that the collection contains many almost-planar graphs that require two or three crossings.
The difference becomes striking for the “harder” collections, 3REG-GIR7 and 5REG-B, where
the exhaustive search is not able to solve any instance, while 00PS (Stack) solves a majority
of cases. For this reason, we do not consider existing algorithms as a viable alternative to
the new SAT-based technique.

A comparison between Hanani-Tutte and Stack SAT encodings reveals a significant
advantage of the latter on all the benchmarks. While both encodings contain ©((n + m)?)
variables and ©((n + m)3) constraints, the Stack-based encoding is more succinct, requiring
approximately half as many constraints on the data. (Note however, that Hanani-Tutte-based
encoding might be more flexible, as discussed in Section 2.5). Thus, we use the Stack-based
encoding as a default one in the following experiments.

14:11
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Figure 4 The runtime of 00PS (in seconds) on (a) 1-planar and (b) non-1-planar named WIKIPEDIA
graphs as a function of graph size, m. Observe that in (b) the runtimes is in logarithmic scale.

3.2 Named Graphs

To further validate 00PS on a real-world benchmark, we apply the algorithm for a collection
of named WIKIPEDIA graphs available at [44]. We filtered out all planar instances, and all
dense instances with m > 4n — 8 that are obviously non-1-planar, and all instances with
m > 100, which are likely too difficult for our algorithm. The remaining 47 graphs are tested
with 00PS using the Stack-based encoding in the parallel mode. The status of 1-planarity,
NIC-planarity, and IC-planarity (refer to Section 2.5) are presented in Table 2. Here we
enforce a time limit of 24 hours for the SAT solver.

To the best of our knowledge, this is the first study of 1-planarity for many of the graphs
in the dataset. OOPS is able to determine the status in the majority of the cases. Interestingly,
all the unsolved instances (marked TLE in the table) correspond to cubic (3-regular) graphs.
To understand the performance of 00PS on the data, we plot its runtime as a function of the
number of edges in the graph; see Figure 4. We look separately at satisfiable SAT instances
(that is, 1-planar graphs) and non-satisfiable ones. Observe that on the benchmark data,
every l-planar graph takes less than 20 seconds (and less than 50 seconds for NIC/IC-planar
instances). In contrast, most of the non-1-planar instances require substantially more time:
the median runtime is around 4 minutes, the mean is over 1.5 hours, while the maximum
(measured on IC-planarity of Tutte-Coxeter) is 23 hours. The memory consumption of a
SAT solver (Painless in this case) follows the same trend: it is below 4GB of RAM for
all 1-planar instances but reaches 50—80GB on the hardest non-1-planar graphs. Given
the amount of RAM required for processing non-satisfiable instances, it seems tempting to
explore alternative SAT solving strategies, such as cloud-based or incremental, which we
leave as a possible future work.

We have also evaluated the encoding optimizations presented in Section 2.4. While the
optimizations have a moderate impact on the runtime of 00PS for 1-planar graphs, they are
very helpful for large non-1-planar instances. For example, while proving non-1-planarity
of the Robertson graph requires 2300 seconds using the basic encoding (Section 2.3.2), it
needs 1750 seconds with the optimizations, a 24% speed up. For larger instances, the impact
is even more pronounced: 30% (reduction from 2 hours to 85 minutes) for the Brinkmann
graph, and 50% (from 10 to 5 hours) for Holt.
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Table 2 Non-planar named WIKIPEDIA graphs containing at most 4n — 8 edges and their
1-planarity status; taken from https://en.wikipedia.org/wiki/List_of_graphs_by_edges_and_
vertices. TLE entries correspond to runtimes exceeding the limit of 24 hours.

‘ graph name ‘ vertices ‘ edges ‘ degrees H 1-planar ‘ NIC ‘ 1C ‘
Petersen 10 15 | [3...3] yes yes yes
Franklin 12 18 | [3...3] yes yes yes
Tietze 12 18 3...3 yes yes yes
Grotzsch 11 20 3...5 yes no no
Heawood 14 21 | [3...3] yes yes yes
Chvatal 12 24 | [4...4 yes yes no
Mobius-Kantor 16 24 3...3 yes yes yes
Sousselier 16 27 | [3...5] yes yes no
Blanusa Snark (1st) 18 27 | [3...3 yes yes yes
Blanusa Snark (2nd) 18 27 | [3...3 yes yes yes
Pappus 18 27 | [3...3] yes yes no
Desargues 20 30 | [3...3] yes yes no
Flower snark (J5) 20 30 | [3...3] yes yes no
Hoffman 16 32 | [4...4] no no no
Loupekine snark (1st) 22 33 | [3...3] yes yes no
Loupekine snark (2nd) 22 33| [3...3] yes yes no
McGee 24 36 | [3...3] yes yes no
Nauru 24 36 | [3...3] yes yes no
Truncated octahedral 24 36 | [2...4] yes yes yes
Robertson 19 38 | [4...4] no no no
Paley-13 13 39 | [6...6] no no no
F26A 26 39 | [3...3] yes yes no
Clebsch 16 40 | [5...5] no no no
Folkman 20 40 | [4...4] no no no
Brinkmann 21 42 | [4...4] no no no
Flower snark (J7) 28 42 | [3...3] yes yes no
Coxeter 28 42 | [3...3] yes TLE no
Double-Star snark 30 45 | [3...3] yes yes no
Tutte-Coxeter 30 45 | [3...3] TLE TLE no
Shrikhande 16 48 | [6...6] no no no
Dyck 32 48 | [3...3] yes yes no
Holt 27 54 | [3...5] no no no
Barnette—Bosdk—Lederberg 38 57 | [2...4] yes yes yes
Tutte 46 69 | [2...4] yes yes yes
Great rhombicuboctahedral 48 72 2...4 yes yes yes
Foster cage 30 75 5...5 no no no
Meringer 30 75| [5...5] no no no
Robertson—Wegner 30 75 5...5 no no no
Wong 30 75 5...5 no no no
Szekeres snark 50 75| [3...3] yes yes yes
Watkins snark 50 75 3...3 yes yes yes
Wells 32 80 5...5 no no no
Ellingham-Horton (54) 54 81 | [3...3] yes yes TLE
Gray 54 81 3...3 TLE TLE TLE
Klein (7-regular) 24 84 | [7...7 no no no
Klein (cubic) 56 84 | [3...3] TLE TLE TLE
Sylvester 36 90 | [5...5] no no no

3.3 Applications

Arguably among the most natural applications of a tool for recognizing 1-planar graphs is
finding the smallest non-1-planar instance in a family of graphs.

» Problem 1. What is the smallest non-1-planar instance in a family of graphs?

GD 2025
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(d)

Figure 5 (a-c) The three connected non-1-planar graphs with m = 18 edges. (d) The unique
connected bipartite non-1-planar graph with m = 19; it is obtained from K4 5 by removing an edge.

This question has two flavors depending on whether one is interested in vertex-minimal
or edge-minimal instances. For planar graphs, it is well-known that smallest non-planar
graphs contain 5 vertices (K5) or 9 edges (K3,3). For 1-planar graphs, it is known that K7 is
the smallest complete non-1-planar graphs (see e.g., [16]), however, no such bound is known
for non-1-planar edge-minimal graph. To fill the gap, we computationally tested all simple
connected instances with up to m = 18 edges (generated with [43]). All graphs with up to
m = 17 are 1-planar and there are exactly 3 (out of 164,551,477 connected) non-1-planar
instances with m = 18; see Figure 5. For bipartite graphs, a graph on 9 vertices (in fact, Ky 5
as shown by Czap and Hudék [16]) is one of the two vertex-minimal bipartite non-1-planar
graphs. The second such graph, namely Ky 5 \ e, is in addition the unique edge-minimal
bipartite non-1-planar graph; see Figure 5d. This is confirmed by testing all 25,124,511
connected bipartite graphs with m = 19 and all smaller instances.

A related question (discussed in [47]) is: What is the minimum difference between edge and
vertex counts in a connected non-1-planar graph? For planar graphs, one can show (see [47])
that every connected graph with m < n + 2 is planar, while non-planar K33 has m =n+ 3.
For 1-planarity, such a condition is unknown. Existing non-1-planar graphs, such as Ky 5
and K3 7 [16], indicate that the difference can be m —n = 11. The two examples we found
(Figures 5a and 5d) reduce the bound to 10. It is intriguing to fully resolve the question.

A particularly challenging variant of Problem 1 is to find the smallest 3-regular (cubic)
graph that is not 1-planar. While it is easy to show (see e.g., [19]) that random (large) cubic
graphs are not 1-planar, the smallest such instance is unknown.

» Problem 1b ([46,48]). What is the smallest cubic non-1-planar graph?

In an attempt to answer the question, Eppstein [46] manually constructed 1-planar
drawings of several graphs and suggested that either the Coxeter graph or the Tutte-Coxeter
graph is not 1-planar. As pointed out in Table 2, the former is a 1-planar instance; see
Figure 6. The latter is very likely non-1-planar, but we were unable to fully verify it, despite
running several (parallel) SAT solvers for days. We did, however, verify 1-planarity of (i) all
cubic graphs with up to n = 24 vertices and of (ii) all cubic bipartite graphs with up to n = 30
vertices. Note that there are around 150x10° such instances and the total computation took
~1.5 machine-months (an equivalent of ~20 ms per instance).

As another application of 00PS, we investigate the following question proposed by Zhang,
Ouyang, and Huang [38] regarding claw-free 1-planar graphs; recall that a claw is graph K7 3.

» Problem 2 ([38]). Does there exist infinitely many 6-connected claw-free 1-planar graphs?
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Figure 6 The Coxeter graph with n = 28 vertices and m = 42 graph (left) and its 1-planar
drawing (right) constructed by 0OPS.

In fact, the original version of the paper [38] suggests a candidate family, namely the cube
of a cycle C,,. That is, a graph with vertex set {vg,v1,...,v,—1} in which an edge (v;, v;)
exists if min(|7 — j|,n — |i — j|) < 3. Such graphs are (i) claw-free, since the neighborhood
of any vertex is an interval on the cycle, so no vertex can have three pairwise non-adjacent
neighbors, and (ii) 6-connected (for n > 7), since to disconnect two vertices, u and v, one
needs to remove three consecutive vertices going clockwise from v to v and the same counter-
clockwise. However, the status of 1-planarity of such graphs is open. Using 00PS, we verified
that such graphs are indeed 1-planar whenever n = 8k for every k > 0.

» Theorem 6. Let C2 be a graph obtained from a cycle C, by connecting every pair of
vertices that are at most 3 edges apart in C,,. Then C? is 1-planar if n = 8k for every k > 0.

Proof. Let the vertices of C3 for n = 8k be {vg,v1,...,v,_1}. Split the vertices into
2k (consecutive) groups of size four, that is, {vo,v1,v2,v3},. .., {Vn—a,Vn—3,Vn—2,0n_1};
observe that all the edges of C3 are either within the same group or between vertices of
two consecutive groups (modulo 2k). A 1-planar drawing is built by placing the vertices
on a horizontal line (spine), following the order given by the groups. Within i-th group,
{Vs, Vag1,Vat2, Vats}, Place the four vertices in the order v, vy4a, Vpt1, vpys if @ is even,
and in the order vyy1,vz42, Vs, Va3 if ¢ is odd; see Figure 7. Because of the symmetry, we
only need to specify the drawing of the edges between groups 7 and ¢ + 1, and between groups
i+ 1 and i + 2. Refer to Figure 7c for the construction; note that most edges are represented
as semi-arcs (either above or below the spine) except for one inter-group edge for every pair
of groups, which is a bi-arc, e.g., edges (2,4), (6,9), and (10, 12) in the figure. <

According to 00PS (for small values of n), graph C? is 1-planar only if n = 8k, k > 0 but
proving that direction might be challenging.

4 Conclusion

We presented 00PS, a new SAT-based algorithm for testing 1-planarity and provided its
implementation [34] to facilitate further research in the field. While the algorithm is shown to
be useful for resolving various problems concerning 1-planarity of specific graph families, many
questions remain unanswered. One particularly challenging task, discussed in Section 3.3, is
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Figure 7 An illustration for Theorem 6: (a) C3s and (b) its 1-planar drawing. (c) The edge
pattern is generalized for arbitrary n = 8k, k > 0.

finding the smallest cubic graph that is not 1-planar. We conjecture that the Tutte-Coxeter
graph is such an instance, along with 4 other 30-vertex graphs of girth 7, for which none of
the tested (parallel) SAT solvers was able to find a solution even after a week of processing.
We stress that proving the minimality would also require finding a 1-planar drawing for more
than forty billion 28-vertex cubic graphs.

Another intriguing direction to explore is 1-planarity of DAGs; see Section 2.5 for an
adaptation of 00PS for the case. Among many possible questions to study (refer for example
to [3,32]), we highlight one discussed by Angelini et al. [3,4]:

» Problem 3 ([3,4]). Is there a directed acyclic outerpath that is not upward 1-planar?

Finally, extending our formulations or designing new ones for other classes of beyond-planar
graphs, such as k-planar graphs for k£ > 1, is of interest. While there is a straightforward
adaptation of our scheme to 2-planarity (by inserting more division vertices per edge and
enforcing appropriate merging rules), it might not be effective in practice due to the explosion
of the search space. Hence, designing further techniques for simplifying or restricting the
resulting SAT formulas, in addition to the ones discussed in Section 2.4, is an avenue for
future research.
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