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Abstract
We study 3-plane drawings, that is, drawings of graphs in which every edge has at most three
crossings. We show how the recently developed Density Formula for topological drawings of graphs [9]
can be used to count the crossings in terms of the number n of vertices. As a main result, we show
that every 3-plane drawing has at most 5.5(n − 2) crossings, which is tight. In particular, it follows
that every 3-planar graph on n vertices has crossing number at most 5.5n, which improves upon a
recent bound [3] of 6.6n. To apply the Density Formula, we carefully analyze the interplay between
certain configurations of cells in a 3-plane drawing. As a by-product, we also obtain an alternative
proof for the known statement that every 3-planar graph has at most 5.5(n − 2) edges.
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1 Introduction

One of the most basic combinatorial questions one can ask for a class of graphs is: How
many edges can a graph from this class have as a function of the number n of vertices?
Prominent examples include upper bounds of

(
n
2
)

for the class of all graphs and n2

4 for
bipartite graphs. These bounds are immediate consequences of the definition of these graph
classes, and they are tight, that is, there exist graphs in the class with exactly this many
edges. But for several other graph classes good upper bounds on the number of edges are
much more challenging to obtain. Notably this holds for classes that relate to the existence of
certain geometric representations. One the most fundamental questions one can ask about a
class of geometrically represented graphs is: What is the minimum number of edge crossings
required in such a representation, as a function of the number n of vertices? We study both
of these fundamental questions in combination, for the class of 3-planar graphs. A graph
is k-planar if it can be drawn in the plane such that every edge has at most k crossings.
The study of k-planar graphs goes back to Ringel [16] and has been a major focus in graph
drawing over the past two decades [8], as a natural generalization of planar graphs (k = 0).

© Miriam Goetze, Michael Hoffmann, Ignaz Rutter, and Torsten Ueckerdt;
licensed under Creative Commons License CC-BY 4.0

33rd International Symposium on Graph Drawing and Network Visualization (GD 2025).
Editors: Vida Dujmović and Fabrizio Montecchiani; Article No. 15; pp. 15:1–15:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:miriam.goetze@kit.edu
https://orcid.org/0000-0001-8746-522X
mailto:hoffmann@inf.ethz.ch
https://people.inf.ethz.ch/hoffmann/
https://orcid.org/0000-0001-5307-7106
mailto:rutter@fim.uni-passau.de
https://orcid.org/0000-0002-3794-4406
mailto:torsten.ueckerdt@kit.edu
https://orcid.org/0000-0002-0645-9715
https://doi.org/10.4230/LIPIcs.GD.2025.15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de


15:2 Crossing Number of Simple 3-Plane Drawings

The maximum number of edges in a simple k-planar graph on n vertices is known to
be at most ck(n− 2), where c0 = 3, c1 = 4 [5], c2 = 5 [14, 15], c3 = 5.5 [10, 11], c4 = 6 [1],
and ck ≤ 3.81

√
k, for general k ≥ 5 [1]. The bounds for k ≤ 2 are tight and those for k ≤ 4

are tight up to an additive constant [1, 4]. The bounds for k ≤ 4 also generalize to non-
homotopic drawings of multigraphs [12, 13], that is, where every continuous transformation
that transforms one copy of an edge to another passes over a vertex. Interestingly, the upper
bound for 3-planar graphs is tight in this more general setting only [4, 6].

The crossing number of a drawing Γ is the number of edge crossings in Γ. The crossing
number cr(G) of a graph G is the minimum crossing number over all drawings of G. By
definition every k-planar graph G admits a k-plane drawing and thus

cr(G) ≤ km

2 , (S)

where m denotes the number of edges in G. For a k-planar graph, this simple inequality
connects upper bounds on the number of edges with lower bounds on the crossing number.
Both of these come together in the well-known Crossing Lemma [2, Chapter 45], as the best
constants in the Crossing Lemma are obtained by analyzing k-plane drawings [1, 6, 10, 11].
Conversely, combining the lower bound on cr(G) from the Crossing Lemma with an upper
bound on cr(G) we obtain an upper bound on the number of edges in G. While (S) would
work here, it is probably not an ideal choice because the graphs for which (S) is tight might
be very different from those graphs that have a maximum number of edges, for any fixed n.
For instance, for a 1-planar graph G we have cr(G) ≤ n− 2 [17, Proposition 4.4], which beats
the bound we get by plugging m ≤ 4n− 8 into (S) by a factor of two. Can we obtain similar
improvements by bounding cr(G) in terms of n, rather than m, for k ≥ 2?

Indeed, very recently it has been shown that cr(G) ≤ cr2(G) ≤ 3.3n if G is 2-planar [3,
Theorem 3] and cr(G) ≤ cr3(G) ≤ 6.6n if G is 3-planar [3, Theorem 4]. (The k-planar
crossing number crk(G) is similar to the crossing number, except that the minimum is taken
over all k-plane drawings of G.) There is some indication that the bound for 2-planar graphs
could be tight up to an additive constant, as it is achieved by the standard drawings of
optimal 2-planar graphs (Figure 1). But the crossing number of these graphs is not known.

Figure 1 Construction by Pach and Tóth [15, Figure 3]. Left: A plane drawing with pentagonal
faces. Right: To each pentagonal face all diagonals are added.

In contrast, there exists a family of simple 3-planar graphs with 5.5n− 15 edges whose
standard drawings have 5.5n− 21 crossings (Figure 2). Thus, there is a gap of 1.1n between
the lower and the upper bound for the crossing number of 3-plane drawings.

Results. We close the gap and present an upper bound on the crossing number of 3-plane
drawings that is tight up to an additive constant. Using the same approach we also obtain
an alternative proof to show that a 3-planar n-vertex graph has at most 5.5(n− 2) edges.
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Figure 2 Construction from [11, Figure 8]. Left: A cylinder with two layers, each consisting
of three hexagonal faces. Right: To each face of a layer all but one diagonal is added. To the top
and bottom face six diagonals can be added without creating parallel edges. Missing diagonals are
represented by dashed lines.

▶ Theorem 1. Every non-homotopic 3-plane drawing of a graph on n vertices, n ≥ 3,
contains at most 5.5(n− 2) edges and at most 5.5(n− 2) crossings.

Our proof relies on the recently developed Density Formula (cf. Theorem 4 below) for
topological drawings of graphs [9]. It relates the number of vertices, edges, and cells of
various sizes in a drawing, in a way similar to the Euler Formula in the case of plane graphs.
Previously, the Density Formula has been used to derive upper bounds on the number of
edges in k-plane drawings, for k ≤ 2 [9]. In order to apply it to 3-plane drawings, to bound
the number of crossings, and to obtain tight bounds, we study cells not only in isolation but
also as part of what we call configurations, which consist of several connected cells. We then
develop a number of new constraints that relate the number of cells and/or configurations of
a certain type in any 3-plane drawing. The combination of all these constraints with the
Density Formula yields a linear program that we can solve in two different ways – maximizing
either the number of edges or the number of crossings – to prove Theorem 1.

As with other proofs involving the Density Formula [9], our technique can be seen as a
variant of the discharging method. But we streamline the arguments so that we prove each
constraint ad hoc by rather simple means, usually requiring only an easy double counting.

Using Theorem 1 we can derive better upper bounds on the number of edges in k-planar
graphs without short cycles. Plugging our bound of at most 5.5n crossings into the proofs
from [3] we obtain the following.

▶ Corollary 2. For every integer n, each of the following holds.
Every C3-free 3-planar graph on n vertices has at most 3

√
891/8 n < 4.812n edges (down

from ≈ 5.113n [3, Theorem 18]).
Every C4-free 3-planar graph on n vertices has at most 3

√
1 254 825/12 544 n < 4.643n

edges (down from ≈ 4.933n [3, Theorem 20]).
Every 3-planar graph of girth 5 on n vertices has at most 3

√
122 793/1600 n < 4.25n edges

(down from ≈ 4.516n [3, Theorem 21]).

2 Preliminaries

We consider drawings of graphs on the sphere with vertices as points, edges as Jordan arcs,
and the usual assumption that any two edges share only finitely many points, each being a
common endpoint or a proper crossing, and that no three edges cross in the same point. As
is customary, we do not distinguish between the points and curves in Γ and the vertices and
edges of G they represent, respectively. We also assume the drawings to be simple1, that is,

1 Our definition is slightly more general than what is usually meant in the literature, namely that “any
two edges have at most one point in common”. Our simple drawings allow non-crossing parallel edges.

GD 2025



15:4 Crossing Number of Simple 3-Plane Drawings

no edge crosses itself, no two adjacent edges cross, and any two edges cross at most once.
We explicitly allow our graphs to contain parallel edges, but no loops. Hence, our graphs are
not necessarily simple, while our drawings are simple. In order to avoid an arbitrary number
of parallel edges within a small corridor, a drawing Γ is called non-homotopic if every region
that is bounded by two parallel edges, called a lens, contains a crossing or a vertex in its
interior; see Figure 3.

Figure 3 Left: A lens (blue) with two crossings in its interior and two vertices on its boundary.
Such a lens can be part of a non-homotopic drawing. Right: An empty lens (blue), i.e., a lens that
contains neither a vertex nor a crossing. Such a lens cannot be part of a non-homotopic drawing.

Let Γ be a drawing of a graph G = (V, E). If every edge is crossed at most three times,
we say that Γ is 3-plane. We denote the set of crossings by X. For i ∈ {0, 1, 2, 3}, let Ei ⊆ E

be the set of all edges with exactly i crossings, and let E× = E1 ∪ E2 ∪ E3.
We easily observe the following.

▶ Observation 3. If Γ is a 3-plane drawing, we have

|E| = |E×|+ |E0| (9.A)
|E×| = |E1|+ |E2|+ |E3| (8.A)
2|X| = |E1|+ 2|E2|+ 3|E3| (8.B)

Edge-Segments and Cells. An edge with i crossings is split into i + 1 parts, called edge-
segments. An edge-segment is inner if both its endpoints are crossings, uncrossed if both its
endpoints are vertices and outer, otherwise. The planarization of Γ is the graph obtained by
replacing every crossing x with a vertex of degree 4 that is incident to the four edge-segments
of x. We say that the drawing Γ is connected, if its planarization is a connected graph,
and shall henceforth only consider connected drawings. Removing all edges and vertices
of Γ splits the sphere into several components, called cells. We denote the set of all cells
by C. Since Γ is connected, the boundary ∂c of a cell c corresponds to a cyclic sequence
alternating between edge-segments and elements in V ∪X (i.e., vertices and crossings). If
a crossing or a vertex appears multiple times on the boundary of the same cell c, then c is
degenerate. The size of a cell c, denoted by ∥c∥, is the number of vertex incidences plus the
number of edge-segment incidences of c. Note that incidences with crossings are not taken
into account. Figure 4 shows all types of cells of size at most 5. Note that, as we forbid two
adjacent crossing edges and two edges crossing more than once, all cells of size at most 5 in
our drawings are non-degenerate. For a ∈ N, we denote by Ca = {c ∈ C : ∥c∥ = a} the set of
all cells of size a.

▶ Theorem 4 (Density Formula [9]). If Γ is a connected drawing with at least one edge and t

is a real number, then

|E| = t(|V | − 2)−
∑
c∈C

(
t− 1

4 ∥c∥ − t

)
− |X|.

To apply the Density Formula, we count the cells of different sizes. We distinguish several
types of cells based on their size and boundary and denote these by small pictograms, such
as 4 or 5 . We call a cell large if it has size at least 6 and write for this type of cells. By
abuse of notation, we denote the number of cells of a certain type by their pictogram.
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Figure 4 Taken from [9, Figure 2]. All types of cells c of size ∥c∥ ≤ 5 in a non-homotopic
connected drawing on at least three vertices. The bottom row shows the degenerate cells. Since we
consider only simple drawings in this paper, degenerate cells do not appear.

Figure 5 Left: A -configuration (light blue) and a -configuration (dark blue). Right: A
5 - -trail (dark blue) and its bounding edges (thick).

Configurations and Trails. Configurations are arrangements of several cells and edge-
segments in a drawing Γ of a graph G. Formally, a configuration is a connected labeled
embedded subgraph H of the planarization Λ of Γ. The label of a vertex v ∈ V (H) indicates
whether v arises from a vertex of G or a crossing. Two configurations are of the same type if
they are isomorphic as labeled embedded graphs (up to reflection). We also denote the types
by small pictograms such as and , see Figure 5 (left) for an example.

A cell c is interior to a configuration C if all of its boundary ∂c is part of C. We color
interior cells gray in the pictograms. An edge-segment is interior to C if both its incident
cells are interior to C. For example, a -configuration C has an interior 5 -cell and an
interior 4 -cell, whose shared outer edge-segment is the only interior edge-segment of C.

Now, trails are specific configurations. Consider a sequence (A1, . . . , Aℓ) of ℓ ≥ 2 cells.
The configuration T that is the union of A1, . . . , Aℓ is a trail if

neither A1 nor Aℓ is a 4 -cell,
for each i ∈ [ℓ− 1] cells Ai and Ai+1 share exactly one inner edge-segment (This edge-
segment is then interior to T .), and
if ℓ ≥ 3, then each of A2, . . . , Aℓ−1 is a 4 -cell c whose two interior edge-segments in T

are opposite on the boundary ∂c of c.
See Figure 5 (right) for an example. Note that only two of the four inner edge-segments of
each 4 -cell of T are interior to T (as no edge self-intersects). Every trail T has two bounding
edges e1 and e2, which are those crossing all interior edge-segments of T . An A-B-trail is a
trail whose endpoints are cells of type A and B respectively. We denote by (A↔ B) the
number of A-B-trails in Γ. Note in particular that (A↔ B) = (B ↔ A).

▶ Observation 5. Every inner edge-segment of a drawing is interior to exactly one trail.

3-Saturated Drawings. Considering a 3-plane drawing, it is convenient to assume that
any two vertices are connected by an uncrossed edge whenever this is obviously possible,
i.e., whenever both vertices appear on a common cell. A drawing is filled if for every cell c

GD 2025



15:6 Crossing Number of Simple 3-Plane Drawings

and every pair of vertices u ̸= v on the boundary ∂c of c, there exists an uncrossed edge uv

in ∂c. In other words, a drawing Γ is filled if adding any uncrossed edge to Γ results in a lens
bounded by two parallel uncrossed edges. For brevity, we define a 3-saturated drawing to
be a 3-plane, non-homotopic, connected, filled drawing of a graph on at least three vertices.
Note that a 3-saturated drawing may contain parallel edges, but also recall that all our
drawings are simple.

In every 3-saturated drawing, all cells of size at most five are of one of the following types:
3 , 4 , 4 , 5 , 5 , and 5 ; cf. Figure 4.

▶ Lemma 6. Every 3-plane drawing Γ of a connected graph G on at least three vertices can
be completed to a 3-saturated drawing by only adding edges.

Proof. Note that the drawing Γ is connected as G is connected. We therefore only need to
enforce the filled property, while preserving all other properties. Suppose there is a cell c with
vertices u and v on its boundary, but no edge uv lies on ∂c. We can insert an edge uv within
the cell c, without creating new crossings. The edge might be a parallel edge. Yet, as no edge
connecting u and v lies on the boundary ∂c, we did not create an empty lens. Therefore, the
drawing is still non-homotopic. Neither does this create self-crossings or crossings between
adjacent edges. Inductively, the claim follows. ◀

By Lemma 6, it suffices to consider only 3-saturated drawings in order to obtain upper
bounds on the number of crossings and edges in any 3-plane drawing.

3 Bounds on Edge-Density and Crossing-Number of 1-, 2- and
3-Plane Drawings

To obtain our upper bounds we prove a number of (in)equalities, each relating the number of
certain cells, configurations, edges and crossings. The Density Formula is one such equality.
In total, we obtain a system of linear inequalities where each quantity (such as |E|, (|V | − 2),
|X|, |C2|, |E1|, 3 , , etc.) can be considered as a non-negative variable. Setting the
“variable” (|V | − 2) to 1, we can maximize the value of |X| by solving the obtained linear
program (LP). The resulting maximum represents the number of crossings per vertex; more
precisely, per (|V | − 2).

Suppose we want to prove that the number of crossings in any drawing of a certain type
(here we consider 1-, 2-, and 3-plane drawings) on n vertices does not exceed k(n− 2) for
some fixed k. For this, it suffices to show under the constraints of the LP (where we have
normalized (|V | − 2) = (n− 2) to 1) that the maximum value of the “variable” |X| is at most
k. In fact, from what is known as the dual of the LP, we obtain a coefficient for each of the
LP’s inequalities such that multiplying each inequality with the corresponding coefficient
and summing the inequalities up yields the desired bound |X| ≤ k(|V | − 2).

Since we believe that this technique, which may be applicable to other types of drawings,
is of independent interest, we first illustrate it on two known examples, namely bounding the
crossing number in 1-plane and in 2-plane drawings, and only then turn to 3-plane drawings.

Crossing Number of 1-Plane Drawings. We first illustrate the method on the following
known bound for 1-plane drawings.

▶ Observation 7 ([17, Proposition 4.4]). Every 1-plane drawing Γ of a graph G on n vertices
with n ≥ 3 contains at most n− 2 crossings.
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In order to prove Observation 7, we first derive two inequalities relating the number of
crossings, edges and vertices in 1-plane drawings. Let Γ be a 1-plane drawing on at least three
vertices. Removing uncrossed edges and considering the resulting components separately, we
may assume that Γ is connected and only contains crossed edges. We may further assume
that Γ contains at least three vertices as this holds as soon as we have one crossing. The
characterization of cells of small size [9] (cf. Figure 4) implies that Γ contains only cells of
size at least 6. Thus, the Density Formula for t = 3, (cf. Theorem 4) simplifies to

|X| = 3(|V | − 2)−
∑

c∈C,∥c∥≥6

(
1
2∥c∥ − 3

)
− |E| ≤ 3(|V | − 2)− |E|. (0.A)

Moreover, using the fact that every edge in Γ has at most one crossing (in fact, exactly one
crossing), a simple double counting argument yields

2|X| ≤ |E|. (0.B)

Observe that (0.A) and (0.B) can be considered as homogeneous linear inequalities in
the variables |X|, |E|, |V | − 2 and thus any set of values for these variables that satisfy the
inequalities can be scaled arbitrarily. Hence, by normalizing |V | − 2 to 1, we transform the
set of inequalities (left) into an LP with non-negative variables represented by the matrix M1
(right).

{
|X|+ |E| ≤ 3(|V | − 2), (0.A)
2|X| − |E| ≤ 0, (0.B)

←→ M1 =
(|X|

1

|E|

1

|V | − 2

3 (0.A)
2 −1 0 (0.B)

)
We want to determine an upper bound on |X| in terms of |V | − 2 solely by multiplying the
inequalities (0.A) and (0.B) with constant coefficients and summing up. This corresponds to
maximizing |X| in the LP. It turns out that in the LP represented by M1, the maximum
value of the “variable” |X| is 1. Computing an optimal solution of the dual LP, we obtain
a vector c1 such that all entries of the vector s1 = c1 ·M1 are non-negative and the entry
corresponding to the “variable” |X| is 1, i.e., the maximum possible value of |X| under the
given constraints. Here, we obtain for c1 =

( 1
3

1
3
)

the following.

s1 = c1 ·M1 =
( 1

3
1
3
) (|X|

1

|E|

1

|V | − 2

3
2 −1 0

)
=

(|X|
1

|E|

0

|V | − 2

1
)

.

The resulting vector s1 =
(
1 0 1

)
can now be reinterpreted as the inequality |X| ≤ |V |−2.

In fact, the entries of the vector c1 correspond to the coefficients with which we need to
multiply the inequalities (0.A) and (0.B) such that summing up yields |X| ≤ |V | − 2. This
concludes the proof of Observation 7.

Crossing Number of 2-Plane Drawings. In [9], the Density Formula is used to show that
every 2-plane drawing of a graph on n vertices contains at most 5n−10 edges. The statement
follows from a lower bound on the number of crossings (cf. Lemma 9 (1.A)). From the upper
bound on the number of edges, the authors of [3] derive an upper bound on the number of
crossings in 2-plane drawings.

▶ Theorem 8 ([3, Theorem 3]). Every 2-plane drawing Γ of a graph G on n vertices with
n ≥ 3 contains at most 3.3(n− 2) crossings.

GD 2025



15:8 Crossing Number of Simple 3-Plane Drawings

They prove that at most two thirds of the edges of a filled 2-plane drawing are crossed
(cf. Lemma 9 (1.B)). We reformulate the proof based on our method. To this end, we first
collect several observations about local interactions of cells, crossings, and edges.

▶ Lemma 9 ([9, Lemma 8.2, Lemma 3.1], [3, Theorem 3]). For every connected, non-homotopic
2-plane drawing Γ on n ≥ 3 vertices, we have

3 3 + 2 4 + 4 ≤ |X|, (1.A)
|E×| ≤ 0.6|E|, (1.B)
|E| ≤ 5(|V | − 2) + 2 3 + 4 + 4 − |X|, (1.C)

2|X| ≤ 2|E×|. (1.D)

Proof. For a proof of (1.A), we refer to [9, Lemma 8.2], a proof of (1.B) is given in [3,
Theorem 3]. The constraint (1.C) follows from the Density Formula for t = 5 (cf. Theorem 4).
To prove (1.D), observe that every edge is crossed at most twice and every crossing is incident
to two distinct edges in any 2-plane drawing. A simple double-counting argument now
yields (1.D). ◀

Normalizing the variable corresponding to |V | − 2 in the inequalities (1.A),(1.B),(1.C)
and (1.D) yields an LP with non-negative variables that can be represented by the matrix M2
with

M2 =


|X|

− 1

|E|

0

|E×|

0

3

3

4

2

4

1

|V | − 2

0 (1.A)
0 −2 3 0 0 0 0 (1.B)
1 1 0 −2 −1 −1 5 (1.C)
2 0 −2 0 0 0 0 (1.D).


Under the given constraints, the maximum value of the “variable” |X| is 10

3 . In fact,
solving the dual LP, we obtain the vector c2 =

( 2
3

1
3

2
3

1
2
)

that satisfies both c2 ≥ 0 and
c2 ·M2 = s2 for s2 =

(
1 0 0 2

3
2
3 0 10

3
)T. The vector s2 can now be reinterpreted

as the inequality

|X|+ 2
3

3 + 2
3

4 ≤ 10
3 (|V | − 2). (1.E)

As the quantities 3 and 4 are non-negative, we obtain |X| ≤ 3.3(|V | − 2), which concludes
the proof of Theorem 8. Again, note that summing up (1.A)–(1.D) with the coefficients
from c2 yields precisely (1.E). Interpreting a set of inequalities as an LP enables us to easily
compute a best-possible bound and the dual coefficients to witness it.

Crossing Number of 3-Plane Drawings. We derive the inequalities for 3-plane drawings
in Section 4. Our LP comprises 21 constraints, which are summarized in Figure 13 in the
appendix, and whose validity is proven in Section 4. Summing up all constraints using the
coefficients shown in Figure 13, we obtain |X| ≤ 5.5(|V | − 2).

If we maximize |E| instead of |X| in the LP, we obtain |E| ≤ 5.5(|V | − 2) from the same
constraints (witnessed by different coefficients; also in Figure 13). Hence, by verifying that
all 21 constraints hold for every 3-saturated drawing, we obtain our result by Lemma 6.

As in the case of 1-plane drawings, the LP for 3-plane drawings can be modeled as a
matrix M where each column corresponds to a non-negative variable vi and each row to an
inequality of the form

∑
i aivi ≤ b(|V | − 2) with constant, integer factors ai and b. Solving
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the dual LP, we obtain a vector c× such that s× = c× ·M is a vector where each entry
is non-negative and the entry corresponding to the number of crossings |X| is 1, the one
corresponding to |V | − 2 is 5.5. This witnesses |X| ≤ 5.5(|V | − 2). Similarly, there exists a
vector cE such that cE ·M yields |E| ≤ 5.5(|V | − 2). The explicit definition of M , c× and cE

is given in Appendix A.

4 Relating Crossing, Edge, Cell, Trail, and Configuration Counts

In this section, we present a number of (in)equalities, each relating the number of certain
cells, configurations, edges, or crossings. Our proof relies on the Density Formula for t = 5.
For this value of t, -cells contribute negatively in the formula. Intuitively, large cells
account for many crossings: If many trails end in large cells, we obtain a lower bound on the
sum

∑
a≥6 a|Ca| of sizes of large cells. This yields a lower bound on the sum

∑
c∈C≥6

(∥c∥− 5)
in the Density Formula, where C≥6 denotes the set of large cells. If there are few such trails,
we obtain configurations that contain many crossed edges.

4.1 Lower Bounds on the Number of Cells and Configurations
▶ Lemma 10. If Γ is a 3-saturated drawing, then

4 =
(

4 ↔ 5

)
+

(
4 ↔ 5

)
+ ( 4 ↔ ) (2.A)

2 5 =
(

4 ↔ 5

)
+ 2

(
5 ↔ 5

)
+

(
5 ↔ 3

)
+

(
5 ↔ 5

)
+

(
5 ↔

)
(2.B)

3 3 =
(

3 ↔ 5

)
+

(
3 ↔ 5

)
+

(
3 ↔

)
(2.C)

5 5 =
(

3 ↔ 5

)
+

(
5 ↔ 4

)
+

(
5 ↔ 5

)
+ 2

(
5 ↔ 5

)
+

(
5 ↔

)
(2.D)

Proof. We only prove the first equality. The remaining equations can be shown in a similar
way. Consider a 4 -cell c. By Observation 5, the inner edge-segment on the boundary of c

is interior to a trail starting in c. Let c′ be the cell corresponding to the other end of the
trail. As parallel edges do not form an empty lens, c′ cannot be a 4 -cell. Further, no two
adjacent edges cross. Thus, c′ cannot be a 3 -cell. Recall that no end of a trail corresponds
to a 4 -cell, yet the cell c′ has to be incident to an inner edge-segment. Thus, c′ is a 5 -, a
5 - or a -cell (i.e., a cell of size at least 6). As every 4 -cell is only incident to one inner

edge-segment, we obtain one trail for each such cell. Double-counting yields (2.A). ◀

▶ Lemma 11. If Γ is a 3-saturated drawing, then(
3 ↔ 5

)
≤ . (3.A)

Proof. Consider a 3 - 5 -trail T , see Figure 6. We use the same notation as in Figure 6.
Note that T contains no 4 -cell as each of its bounding edges u′u and v′v is already crossed
three times. For the same reason, one of the endpoints of uu′ and vv′ lies on the boundary
of c and c′, respectively, i.e., u ∈ ∂c and v ∈ ∂c′. As the edge e is crossed at least twice,
an endpoint w of e is incident to c or c′. We may assume without loss of generality that w

lies on ∂c′. Observe that w and v are both incident to c′. Since the drawing is 3-saturated,
vw ∈ E(G) and c′ is a 6 -cell. Similarly, we see that uv ∈ E(G) and the cell c′′ is a 5 -cell.
Thus, the cells c′ and c′′ form a -configuration C.

We now observe that no other 3 - 5 -trail is adjacent to C. The two outer segments
of the 5 -cell in C are part of the two bounding edges of the 3 - 5 -trail T , see Figure 6
(right). As no two 3 - 5 -trails have the same bounding edges, each is adjacent to a different

-configuration and the inequality above follows. ◀
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e

c′

c
c′′ e

c′

c
c′′

w v

u

Figure 6 A 3 - 5 -trail (light blue) and its boundary (thick) is represented on the left. Such a
trail is always adjacent to a (dark blue). The adjacency is represented on the right.

v

e

c
c

v

u

Figure 7 A 5 - 5 -trail (light blue). The bounding edge e (thick) is crossed three times. Such a
trail forms a with an adjacent cell. The (dark blue) is represented on the right.

▶ Lemma 12. If Γ is a 3-saturated drawing, then(
5 ↔ 5

)
≤ . (3.B)

Proof. Consider a 5 - 5 -trail. As the drawing is 3-plane, the trail contains no 4 -cell, and
we are in the situation represented in Figure 7. The edge e (represented by a thick line) is
crossed three times. Thus, one of its endpoints lies on the boundary of the cell c. Let u

denote this vertex. Note that the vertex v, which is the only vertex on the 5 -cell, is also
incident to c. As the drawing is 3-saturated, uv is an edge and c is a 5 -cell. The 5 - 5 -trail
together with c forms a . For every 5 - 5 -trail, we obtain a distinct (which may
share a 5 -cell with another such configuration) and the inequality follows. ◀

▶ Lemma 13. If Γ is a 3-saturated drawing, then(
3 ↔ 5

)
≤ . (3.C)

Proof. Consider a 3 - 5 -trail. As every edge is crossed at most three times, the trail contains
no 4 -cell and we are in the situation represented in Figure 8. The vertices u and v lie on the
boundary of a cell c. As the drawing is 3-saturated, the edge uv is contained in G and the
cell c is a 5 -cell. The trail together with c forms a -configuration. As every 3 - 5 -trail
is only part of one such configuration, the lower bound on the number of -configurations
follows. ◀

▶ Lemma 14. If Γ is a 3-saturated drawing, then

4 ≤ + . (3.D)

u

c

u

c
vv

Figure 8 A 3 - 5 -trail (light blue). Such a trail forms a -configuration (dark blue) with an
adjacent cell.
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c′ c c′′

e

c′ c c′′

e

u

v

u

v

Figure 9 A 4 -cell c (light blue). At least one of the two cells sharing an outer edge-segment
with c is a 5 -cell (dark blue).

e

Figure 10 A 4 - 5 -trail with no 4 -cell is depicted on the left, and with one 4 -cell on the right.

Proof. We show that each 4 -cell is contained in a - or a -configuration. Consider
the inner edge-segment of a 4 -cell c and let e be the corresponding edge. We denote the two
cells sharing an outer edge-segment with c by c′ and c′′. As the edge e is crossed at most
three times, an endpoint v of e lies on the boundary of c′ or c′′. Without loss of generality,
we are therefore in the situation represented in Figure 9. The two vertices u and v lie on the
boundary of the cell c′′. As Γ is 3-saturated, uv is an edge of G and c′′ is a 5 -cell.

If e is crossed three times, the three cells c′, c and c′′ are in a -configuration. Otherwise,
e is crossed twice and the same argument as above shows that c′ is also a 5 -cell. In particular,
the cells c′, c and c′′ are in a -configuration.

As every 4 -cell is only contained in one such configuration, the upper bound on the
number of 4 -cells follows. ◀

Recall that E1 denotes the set of edges that have exactly one crossing in the drawing.

▶ Lemma 15. If Γ is a 3-saturated drawing, then(
4 ↔ 5

)
≤ 1

2 |E1|+ . (3.E)

Proof. Note that it suffices to show that every 4 - 5 -trail forms a -configuration or
has a bounding edge that is crossed at most once. The claim then follows as every edge is a
bounding edge of at most two trails.

Consider a 4 - 5 -trail. As every edge is crossed at most three times, the trail contains at
most one 4 -cell.

If the trail contains no such cell, we are in the situation depicted on the left of Figure 10.
Note that the bounding edge e of the trail is crossed only once.

If the trail contains a 4 -cell, we are in the situation represented on the right of Figure 10.
The trail forms a -configuration.

Thus, the number of 4 - 5 -trails yields a lower bound on the sum of half the number of
edges that are crossed only once, and the number of -configurations. ◀

▶ Lemma 16. If Γ is a 3-saturated drawing, then

2
(

5 ↔ 5

)
+

(
4 ↔ 5

)
+

(
3 ↔ 5

)
− 4 5 ≤ . (4.A)

Proof. Let T be a trail ending in a 5 -cell and let e1 and e2 be the two edges on its boundary.
If the other end of T corresponds to a 4 -, 5 - or 3 -cell, the edges e1 and e2 have the same
number of crossings within the trail. We therefore call these cells crossing-even and use the
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A B

C

D

E

w

v

u

c

c′

c′′

Figure 11 Left: A full 5 -cell with its incident trails is represented. One of the trails is crossed.
The corresponding boundary edges are represented with thick lines. Right: A full 5 -cell with three
consecutive uncrossed trails.

same term for trails where one endpoint corresponds to a 5 -cell, the other to a crossing-even
cell. A 5 -cell where every incident trail ends in a crossing-even cell is called full. We denote
the number of full 5 -cells by ℓ.

An upper bound on the number ℓ of full 5 -cells. We first show that every full 5 -cell is

part of at least one -configuration. As no such configuration contains two 5 -cells, we
then obtain

ℓ ≤ . (⋆)

Consider a full 5 -cell c. We say that a trail incident to c is uncrossed if its boundary
contains no crossing that is not incident to c. Otherwise, we say that it is crossed. In fact,
all such uncrossed trails end in a 4 -cell and contain no 4 -cell. Every trail T incident to c

contains an inner edge-segment s(T ) on the boundary of c in its interior. Two such trails T

and T ′ are called consecutive if the edge-segments s(C) and s(C ′) share a crossing.
We first show that there are at least three consecutive uncrossed trails incident to the

full cell c. If none of the incident trails of c is crossed, the claim clearly holds. Otherwise,
some trail A is crossed, see Figure 11 (left). Recall that A is crossing-even. Thus, the two
edges on its boundary are crossed three times. Therefore, the trails C and D are uncrossed.
The same argument shows that only one of the two remaining trails B and E is crossed. We
therefore obtain three consecutive uncrossed trails.

As every uncrossed trail ends in a 4 -cell and contains no 4 -cell, we are in the situation
depicted in Figure 11 (right). Note that the vertices u and v lie on the boundary of a cell c′.
Thus, uv ∈ E(G) and c′ is a 5 -cell as Γ is 3-saturated. Similarly, we see that vw ∈ E(G)

and c′′ is a 5 -cell. The cells c, c′ and c′′ form a -configuration. It follows that every full

5 -cell is part of a -configuration.

A lower bound on the number ℓ of full 5 -cells. We define

k := 2
(

5 ↔ 5

)
+

(
4 ↔ 5

)
+

(
3 ↔ 5

)
,

i.e., k corresponds to the number of incidences between crossing-even trails and 5 -cells. It
remains to show that

k − 4 5 ≤ ℓ. (⋆⋆)

The claim then follows by combining (⋆) and (⋆⋆).
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Every 5 -cell that is not full is incident to at most four crossing-even trails while every
full 5 -cell is incident to five such trails. As there are k incidences between crossing-even
trails and 5 -cells, we obtain k ≤ 4( 5 − ℓ) + 5ℓ = 4 5 + ℓ. Thus, (⋆⋆) holds. ◀

▶ Lemma 17. If Γ is a 3-saturated drawing, then

≥ . (4.B)

Proof. Each -configuration contains a . As no two -configurations share a ,
the claim follows. ◀

▶ Lemma 18. For every drawing Γ, we have

2 5 ≥ + + + + 2 . (9.C)

Proof. We give a lower bound on the number of 5 -cells by double-counting the number of
outer edge-segments incident to a 5 -cell.

Every 5 -cell is incident to two outer edge-segments.
Recall that an edge-segment is interior to a configuration C if both its incident cells

are interior to C. In each of the configurations , , , and , exactly
one outer edge-segment sc of each interior 5 -cell c is interior to the configuration. Note
in particular that we did not count any such edge-segment twice due to the choice of the
configurations we consider. Indeed, any two configurations may share a 5 -cell c, but the
corresponding outer edge-segments sc do not coincide. As each , , and
contains one outer edge-segment that is incident to a 5 -cell in its interior, and contains
two such segments, the lower bound on the number of 5 -cells follows. ◀

4.2 Lower Bounds on the Number of Edges
Recall that E× denotes the set of edges with at least one crossing.

▶ Lemma 19. For every drawing Γ, we have

4|E×| ≥ 2 4 + 2 5 + 2 5 + 2 6 . (6)

Proof. We double count the number ℓ of incidences between outer edge-segments and cells.
Every crossed edge has exactly two outer edge-segments. Each of them has two incidences

to cells. Thus, 4|E×| = ℓ.
Every 4 -cell, every 5 -cell, every 5 -cell and every 6 -cell is incident to exactly two outer

edge-segments. We therefore have, ℓ ≥ 2 4 + 2 5 + 2 5 + 2 6 which yields the claim. ◀

Recall that for an integer i ≥ 0, we denote by Ei the set of edges with exactly i crossings.

▶ Lemma 20. For every drawing Γ, we have

2|E2|+ 4|E3| ≥ 3 3 + 4 + 4 4 + 2 5 + 5 5

+ ( 4 ↔ ) +
(

5 ↔
)

+
(

3 ↔
)

+
(

5 ↔
)

. (7)

Proof. We double count the number ℓ of incidences between inner edge-segments and cells.
An edge that is crossed k times is split into k + 1 edge-segments, k − 1 of which are

inner edge-segments. Each inner edge-segment is incident to two cells. We therefore have
2|E2|+ 4|E3| ≥ ℓ.
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On the other hand, every 3 -cell, every 4 -cell, every 4 -cell, every 5 -cell and every
5 -cell is incident to 3, 1, 4, 2 and 5 inner edge-segments respectively. In order to obtain a

lower bound for the number of inner edge-segment incidences with large cells, it suffices to
count the number of trails ending in large cells. Indeed, each such trail enters a large cell
through an inner edge-segment. This yields the right hand side of the inequality above. ◀

▶ Lemma 21. For every drawing Γ, we have

|E2| ≥
1
2 + (8.C)

Proof. Every -configuration contains an edge that is crossed exactly twice. This edge

may be contained in at most two such configurations. Similarly, every -configuration
contains an edge that is crossed twice. Note that this edge cannot be contained in any other

- or -configuration.

Thus, the sum of 1
2 and provides a lower bound on the number |E2| of edges

that are crossed exactly twice. ◀

Double-counting the number of incidences of uncrossed edges with cells yields the following.

▶ Lemma 22. For every drawing Γ, we have

2|E0| ≥ 5 + 6 . (9.B)

4.3 Relating the Number of Cells, Crossings and Edges
Let us start with a convenient consequence of the Density Formula with parameter t = 5.
We write C for the set of all cells. For a ∈ N, we denote by Ca the set of all cells of size a.

▶ Corollary 23. If Γ is a 3-saturated drawing on at least three vertices, then

|X| ≤ 5|V |+ 2 3 + 4 + 4 −
1
6

∑
a≥6

a|Ca| − |E|. (5.B)

Proof. Recall that every 3-saturated drawing is in particular connected. As the graph
contains at least three vertices, every cell has size at least 3. Considering t = 5 in the Density
Formula (Theorem 4) yields

|E| ≤ 5|V | −
∑
c∈C

(∥c∥ − 5)− |X|. (⋆)

Thus, only cells of size at most 4 have a positive contribution to the right side. Recall that
there is only one cell-type of size 3, namely 3 , and only two types of size 4: 4 and 4 .
Cells of size 5 have no contribution. For a ≥ 6, we have a− 5 ≥ 1

6 a. We therefore obtain∑
c∈C,∥c∥≥6

(∥c∥ − 5) =
∑
a≥6
|Ca|(a− 5) ≥ 1

6
∑
a≥6

a|Ca|.

Together with (⋆), we get

|E| ≤ 5|V |+ 2 3 + 4 + 4 −
1
6

∑
a≥6

a|Ca| − |X|. ◀
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▶ Lemma 24. If Γ is a 3-saturated drawing, then∑
a≥6

a|Ca| ≥ ( 4 ↔ ) +
(

5 ↔
)

+
(

3 ↔
)

+
(

5 ↔
)

+ 5 6 . (5.A)

Proof. As we want to obtain a lower bound on the sum
∑

a≥6 a|Ca|, it suffices to count
the number of vertex and edge-segment incidences of large cells. Each trail that ends in a
large cell enters this cell via an inner edge-segment. As no two trails share such an inner
edge-segment, we obtain one edge-segment incidence for each such trail.

A 6 -cell is in particular large. As it is incident to only one inner-segment, it is the
endpoint of only one trail. We have not counted the remaining three edge-segment incidences
and the two vertex incidences when considering trails. Therefore, each 6 -cell yields at least
five more edge-segment and vertex incidences. ◀

5 Discussion

Optimal k-planar graphs are k-planar graphs with maximum number of edges. For k = 2, 3,
they turn out to admit k-plane drawings with maximum number of crossings among all
k-plane drawings of n-vertex graphs. For k = 4, there exists a family of simple 4-plane
drawings with 6n− 18 edges and 7.5n− 33 crossings (Figure 12).

Figure 12 Construction from [1, Figure 35]. Left: A cylinder with two layers, each consisting
of three hexagonal faces. Right: To each face of a layer all diagonals are added. To the top and
bottom face six diagonals are added. Missing diagonals are represented by dashed lines.

The number of edges 6n− 18 is optimal for 4-planar graphs up to the additive constant
[1, Theorem 4].

▶ Question 25. Is there a constant c such that every simple 4-plane n-vertex drawing
contains at most 7.5n + c crossings?

The k-planar crossing number crk(G) is similar to the crossing number, except that
the minimum is taken over all k-plane drawings of G. Clearly, cr(G) ≤ crk(G) for all k

and G. But there are k-planar n-vertex graphs G with cr(G) ∈ O(k) and crk(G) ∈ Ω(kn)
[7, Theorem 2]. By Theorem 1, every 3-plane drawing of an n-vertex graph G has |X| ≤
5.5(n− 2) crossings, and hence cr(G) ≤ cr3(G) ≤ 5.5(n− 2). Although Theorem 1 is tight,
we could have cr(G), cr3(G) < 5.5(n− 2), and a similar question arises for 2-planar graphs.
In fact, optimal 3-planar graphs G satisfy cr3(G) = 5.5(n−2) [6, Corollary 4] and for optimal
2-planar graphs G we have cr2(G) = 3.3(n− 2) [6, Corollary 2], matching the upper bound
in Theorem 8. Yet, cr(G) might be much smaller.

▶ Question 26.
Are there 3-planar n-vertex graphs G with cr(G) = 5.5(n− 2)?
Are there 2-planar n-vertex graphs G with cr(G) = 3.3(n− 2)?
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A Certificates

The LP for 3-plane drawings (see Figure 13 for an overview) corresponds to a coefficient
matrix M . Each column of M corresponds to a variable vi and each row to an inequality
of the form

∑
i aivi ≤ b(|V | − 2) with constant, integer coefficients ai and b. The columns

of M correspond (in that order) to
|X|, |E|, |E0|, |E1|, |E2|, |E3|, |E×|,

the cells 3 , 4 , 4 , 5 , 5 , 5 , 6 ,

the trails
(

3 ↔ 5

)
,

(
3 ↔ 5

)
,

(
3 ↔

)
,

(
4 ↔ 5

)
,

(
4 ↔ 5

)
, ( 4 ↔ ),(

5 ↔ 5

)
,

(
5 ↔ 5

)
,

(
5 ↔

)
,

(
5 ↔ 5

)
,

(
5 ↔

)
,

the configurations , , , , , , ,

and the terms
∑

a≥6 a|Ca|, |V | − 2.
The rows of M correspond (in that order) to the inequalities (2.A), (2.B), (2.C), (2.D), (3.A),
(3.B), (3.C), (3.D), (3.E), (4.A), (4.B), (5.A), (5.B), (6), (7), (8.A), (8.B), (8.C), (9.A),
(9.B), (9.C). There is a vector c× such that s× = c× ·M is a vector where each entry is
non-negative, the entry corresponding to the number of crossings |X| is 1, and the entry
corresponding to the number of vertices |V | − 2 is 5.5. That is, |X| ≤ 5.5(|V | − 2). Similarly,
there exists a vector cE such that cE ·M yields |E| ≤ 5.5(|V |−2). The computation of c× ·M
and cE ·M can be verified with the code given in Listing 1.
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Inequality |E| |X|

(2.A)
(

4 ↔ 5

)
+

(
4 ↔ 5

)
+ ( 4 ↔ )− 4 = 0 −5

16
−7
16

(2.B)
(

4 ↔ 5

)
+ 2

(
5 ↔ 5

)
+

(
5 ↔ 3

)
+

(
5 ↔ 5

)
+

(
5 ↔

)
− 2 5 = 0 5

16
5
16

(2.C)
(

3 ↔ 5

)
+

(
3 ↔ 5

)
+

(
3 ↔

)
− 3 3 = 0 −11

24
−11
24

(2.D)
(

3 ↔ 5

)
+

(
5 ↔ 4

)
+

(
5 ↔ 5

)
+ 2

(
5 ↔ 5

)
+

(
5 ↔

)
− 5 5 = 0 1

8
−3
8

(3.A)
(

3 ↔ 5

)
− ≤ 0 7

48
1
48

(3.B)
(

5 ↔ 5

)
− ≤ 0 0 1

16
(3.C)

(
3 ↔ 5

)
− ≤ 0 3

16
7
48

(3.D) 4 − − ≤ 0 3
16

5
16

(3.E) 2
(

4 ↔ 5

)
− |E1| − 2 ≤ 0 0 1

16

(4.A) 2
(

5 ↔ 5

)
+

(
4 ↔ 5

)
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5
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)

+
(
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)
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(
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)
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∑
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(5.B)
∑
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60

11
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(6) 2 4 + 2 5 + 2 5 + 2 6 − 4|E×| ≤ 0 13
80

3
80

(7) ( 4 ↔ ) +
(
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)
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(

3 ↔
)

+
(

5 ↔
)
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40

11
40

(8.A) |E1|+ |E2|+ |E3| − |E×| = 0 −11
20

19
20

(8.B) |E1|+ 2|E2|+ 3|E3| − 2|X| = 0 11
20

1
20

(8.C) + 2 − 2|E2| ≤ 0 0 1
4

(9.A) E× + E0 − |E| = 0 1
10

11
10

(9.B) 5 + 6 − 2|E0| ≤ 0 1
20

11
20

(9.C) + + + + 2 − 2 5 ≤ 0 3
16

5
16

Figure 13 Certificates for the upper bound on the number of edges and crossings in 3-saturated
drawings in terms of the number of vertices. Each row corresponds to one inequality. In order to
obtain the upper bound on the number of edges, we multiply each inequality with the third entry in
the corresponding row and sum up all the inequalities. To obtain the upper bound on the number of
crossings we proceed likewise using the fourth entry of each row as a coefficient.
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Listing 1 Python code for verifying the matrix multiplication of c× · M and ce · M .

import numpy as np
from fractions import Fraction as fr

ce = [fr(-5,16),fr(5,16),fr(-11,24),fr(1,8),fr(7,48),0,fr(3,16),
fr(3,16),0,fr(3,16),fr(3,16),fr(11,60),fr(11,60),fr(13,80),
fr(11,40),fr(-11,20),fr(11,20),0,fr(1,10),fr(1,20),fr(3,16)]

cx = [fr(-7,16),fr(5,16),fr(-11,24),fr(-3,8),fr(1,48),fr(1,16),fr(7,48),
fr(5,16),fr(1,16),fr(13,16),fr(5,16),fr(11,60),fr(11,60),fr(3,80),
fr(11,40),fr(19,20),fr(1,20),fr(1,4),fr(11,10),fr(11,20),fr(5,16)]

M =
[[0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

[0,0,0,0,0,0,0,0,0,0,0,-2,0,0,0,1,0,0,1,0,0,1,0,2,1,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,-3,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,-5,0,0,0,1,0,0,1,0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0],
[0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,-2,0,0,0],
[0,0,0,0,0,0,0,0,0,0,-4,0,0,0,1,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,-1,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,1,0,0,1,0,0,1,0,1,0,0,0,0,0,0,0,-1,0],
[6,6,0,0,0,0,0,-12,-6,-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,30],
[0,0,0,0,0,0,-4,0,0,2,0,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,-2,-4,0,3,4,1,5,2,0,0,0,0,1,0,0,1,0,0,1,0,1,0,0,0,0,0,0,0,0,0],
[0,0,0,1,1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[-2,0,0,1,2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0],
[0,-1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,-2,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,0,0,0,0]]

se = np.matmul(ce,M)
sx = np.matmul(cx,M)

print()
print(f’cx = [’,’ ’.join([format(item,’’) for item in cx]),’]’)
print(f’ce = [’,’ ’.join([format(item,’’) for item in ce]),’]’)
print(f’M = ’)
print(’\n’.join([’’.join([’{:4}’.format(item) for item in row])

for row in M]))
print(f’cx * M = [’,’ ’.join([format(item,’’) for item in sx]),’]’)
print(f’ce * M = [’,’ ’.join([format(item,’’) for item in se]),’]’)
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