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Abstract
The concept of k-planarity is extensively studied in the context of Beyond Planarity. A graph is
k-planar if it admits a drawing in the plane in which each edge is crossed at most k times. The
local crossing number of a graph is the minimum integer k such that it is k-planar. The problem of
determining whether an input graph is 1-planar is known to be NP-complete even for near-planar
graphs [Cabello and Mohar, SIAM J. Comput. 2013], that is, the graphs obtained from planar graphs
by adding a single edge. Moreover, the local crossing number is hard to approximate within a factor
2 − ε for any ε > 0 [Urschel and Wellens, IPL 2021]. To address this computational intractability,
Bannister, Cabello, and Eppstein [JGAA 2018] investigated the parameterized complexity of the case
of k = 1, particularly focusing on structural parameterizations on input graphs, such as treedepth,
vertex cover number, and feedback edge number. In this paper, we extend their approach by
considering the general case k ≥ 1 and give (tight) parameterized upper and lower bound results. In
particular, we strengthen the aforementioned lower bound results to subclasses of constant-treewidth
graphs: we show that testing 1-planarity is NP-complete even for near-planar graphs with feedback
vertex set number at most 3 and pathwidth at most 4, and the local crossing number is hard to
approximate within any constant factor for graphs with feedback vertex set number at most 2.
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1 Introduction

Graph drawing is recognized as an important area in the research of graph theory and
algorithms due to various real-world applications. In particular, efficient algorithms for
drawing graphs on the plane without edge crossings have received considerable attention from
various perspectives. However, to visualize real-world networks, it is necessary to consider
drawing non-planar graphs in many cases. This research direction is positioned as Beyond
Planarity [8, 11, 21], and a significant amount of effort has been dedicated to analyzing
their graph-theoretic properties and designing algorithms for drawing these graphs. In this
context, the problem of drawing an input graph on the plane with the minimum number
of crossings is one of the most well-studied problems. In other words, the problem asks for
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16:2 Structural Parameterizations of k-Planarity

Table 1 The table summarizes our and known results. The columns “unbounded”, “parameter”,
and “k = 1” indicate the results when k is taken as input, as parameter, and k = 1, respectively.

k: unbounded k: parameter k = 1

feedback edge set number FPT (Thm. 14) FPT [2]

feedback vertex set number NP-complete when fvs = 2 (Thm. 5)

treedepth W[1]-hard
(Thm. 6)

FPT (Thm. 16)
(non-uniform FPT [34]) FPT [2]

longest induced path W[1]-hard
(Thm. 13) FPT (Cor. 18)

twin cover number

distance to path forest W[1]-hard (Thm. 9)

domination number NP-complete when dn = 2 (Cor. 10)

the crossing number of an input graph, which is known to be NP-hard [15]. Among various
studies on this problem, the (recent) progress on the parameterized complexity of Crossing
Number, where the goal is to determine whether an input graph G can be drawn in the
plane with at most k crossings, is remarkable [7, 18, 23, 27]. In particular, this problem is
fixed-parameter tractable (FPT) when parameterized by k, that is, it admits an algorithm
with running time f(k)nO(1), where n is the number of vertices in the input graph and f is
a computable function.

The local crossing number is one of the well-studied variations of the standard crossing
number [1, 2, 4, 17, 20, 26, 31, 33], as witnessed by the fact that it is selected as the topic
for the live challenge1 held in conjunction with GD 2025. Let k be an integer. We say that
a graph G is k-planar if it can be drawn in the plane so that each edge involves at most
k crossings. The minimum integer k such that G admits a k-planar drawing is called the
local crossing number of G, denoted by lcr(G). The problem of deciding if lcr(G) ≤ k for a
given graph G is called k-Planarity Testing. Unlike Crossing Number, it is already
NP-complete to decide whether lcr(G) ≤ 1 [2, 4, 17, 26]. More strongly, this problem is
NP-complete even when the input is restricted to planar graphs with an extra edge [4] or
graphs with constant bandwidth [2]. Urschel and Wellens [33] later extended the NP-hardness
by showing that k-Planarity Testing is NP-complete for any fixed k ≥ 1, even if the
input is restricted to graphs with local crossing number at most k or at least 2k. This implies
that, unless P = NP, there is no polynomial-time (2 − ε)-approximation for local crossing
number for any ε > 0.

To overcome such an intractability, Bannister, Cabello, and Eppstein [2] pursued the
parameterized complexity of the case of k = 1, namely 1-Planarity Testing, by focusing on
structural parameterizations. They showed that 1-Planarity Testing is FPT parameterized
by treedepth and by feedback edge number (see Section 2 for definitions). As mentioned
above, 1-Planarity Testing is NP-complete even on the classes of graphs with bounded
bandwidth. This intractability is indeed inherited by wider classes of graphs, such as those
with bounded cliquewidth, treewidth, and pathwidth. In this direction, Münch, Pfister, and
Rutter [28] recently considered k-Planarity Testing on special cases of pathwidth-bounded
graphs and gave exact and approximation algorithms.

1 https://mozart.diei.unipg.it/gdcontest/2025/live/

https://mozart.diei.unipg.it/gdcontest/2025/live/
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fes bw∗ dpf td cvn nd

mln vi tcn
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fvs pw∗ sd mw
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(a)
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(b)

Figure 1 A visualization of Table 1 of the cases where k is (a) unbounded and (b) parameter.
No borderline, dotted borderline, normal borderline, bold borderline mean that the complexity
parameterized by the parameter is FPT, unknown, W[1]-hard, paraNP-complete, respectively. The
complexities for parameters with (∗) are already known results and the others are our results. An
arrow indicates that the upper parameter is bounded from above by a function of the lower parameter.
See the footnote2 for the abbreviations of parameter names.

In this paper, we extend results of [2] by considering the general case k ≥ 1 and show a
fine parameterized complexity landscape with respect to graph width parameters (see Table 1
and Figure 1 for a summary of our results2). We extend algorithms of [2] by showing that
k-Planarity Testing is FPT parameterized by feedback edge set number (Theorem 14)
and by treedepth plus k (Theorem 16). More generally, we show that k-Planarity Testing
is FPT on Pt-free graphs when parameterized by t+k (Corollary 18). We also give polynomial
kernelizations for k-Planarity Testing with respect to vertex cover number (Theorem 23)
and neighborhood diversity (Corollary 25). On the negative side, we show that k-Planarity
Testing is W[1]-hard when parameterized solely by treedepth (Theorem 6), which indicates
that Theorem 16 is tight in a certain sense, and by twin cover number (Theorem 13). We
also show that 1-Planarity Testing is W[1]-hard parameterized by distance to path forest
(Theorem 9). Similar to [4], the last result also proves that 1-Planarity Testing remains
NP-complete even on planar graphs with a single additional edge. Our reduction shows that
1-Planarity Testing is NP-complete even when further adding restrictions that the input
graph has feedback vertex set number at most 3. Using a completely different reduction, we
show that 1-Planarity Testing is NP-complete even if the input is restricted to graphs
with feedback vertex set number 2 (Theorem 5). This reduction also shows that there is no
constant factor approximation for k-Planarity Testing unless P = NP, which significantly
strengthens the (2 − ε)-inapproximability result of Urschel and Wellens [33].

Several proofs (marked with ⋆) are omitted and available in the full version.

2 In Figure 1, the names are abbreviated as follows: cw is clique width, diam is diameter, tw is treewidth,
lip is longest induced path, dn is domination number, fvs is feedback vertex set, pw is pathwidth, sd is
shrub-depth, mw is modular-width, fes is feedback edge set, bw is bandwidth, dpf is distance to path
forest, td is treedepth, cvn is cluster vertex deletion number, nd is neighborhood diversity, mln is max
leaf number, vi is vertex integrity, tcn is twin cover number, and vc is vertex cover number.

GD 2025



16:4 Structural Parameterizations of k-Planarity

2 Preliminaries

Let G be a graph. The vertex set and edge set of G are denoted by V (G) and E(G),
respectively. For a vertex set X ⊆ V (G) (resp. edge set X ⊆ E(G)), G−X denotes the graph
obtained from G by deleting all elements in X. The subgraph of G induced by X ⊆ V (G) is
denoted by G[X]. For v ∈ V (G), NG(v) denotes the set of neighbors of v.

A (topological) drawing Γ of G is a representation in the plane that maps the vertices
of G to distinct points in the plane and each edge of G to a non-self-intersecting (Jordan)
curve connecting the points corresponding to the endpoints. In the rest of this paper, we
may simply refer to these points as vertices and these curves as edges when no confusion is
possible. A crossing in Γ is an intersection of distinct edges that is not a common endpoint.
We assume that, in any drawing, an edge does not pass through any vertex other than its
endpoints, and no three (or more) edges cross at a common point. The crossing number of
G, denoted by cr(G), is the minimum number of crossings over all possible drawings of G.
For an integer k, a drawing Γ is said to be k-planar if each edge is crossed at most k times.
A graph is said to be k-planar if it admits a k-planar drawing. The local crossing number of
G, denoted by lcr(G), is the minimum integer k such that G is k-planar. Throughout this
paper, we use the following property of local crossing number.

▶ Lemma 1 (⋆). Let G be a graph and k be a positive integer. Let Gk be the graph obtained
from G by subdividing each edge k − 1 times. Then, lcr(G) ≤ k if and only if lcr(Gk) ≤ 1.

In this paper, we present parameterized algorithms and hardness results with respect to
several graph width parameters. However, some of them may not need to be defined precisely.
Hence, we only provide the definitions that are directly needed to present our results. For
basic concepts in parameterized complexity, we refer the reader to [5].

Let G be a graph. A vertex cover of G is a set of vertices S such that G − S is edge-less,
and the vertex cover number of G is the minimum size of a vertex cover of G, which is
denoted by vc(G). The feedback vertex set number (resp. feedback edge set number) of G,
denoted by fvs(G) (resp. fes(G)), is the minimum cardinality of a vertex set (resp. edge set)
X such that G − X is acyclic. An elimination forest of G is a rooted forest F (i.e., a set of
rooted trees) such that V (F ) = V (G) and for every edge in G, one of the endpoints is an
ancestor of the other in F . The treedepth of G, denoted by td(G), is the minimum integer k

such that G has an elimination forest of height k. Two vertices u and v are called true twins
if they are adjacent and NG(u) = NG(v); they are called false twins if they are non-adjacent
and NG(u) = NG(v). The neighborhood diversity of G is at most k if the vertex set of G

can be partitioned into k sets V1, . . . , Vk such that either all the pairs in Vi are true twins
or they are false twins. Each set Vi is called a twin class. Note that each true twin class
induces a clique and each false twin class induces an independent set in G. The neighborhood
diversity of G is denoted by nd(G). A vertex set S ⊆ V (G) is called a twin cover of G if
each connected component of G − S consists of true twins in G. The twin cover number of
G is the minimum size of a twin cover of G. The max leaf number of G is the maximum
number of leaves of a spanning tree of G.

3 Hardness

In this section, we give several intractability results for k-Planarity Testing and 1-
Planarity Testing. In particular, we show that k-Planarity Testing is hard to
approximate within any constant factor in polynomial time, even on graphs with feedback
vertex set number at most 2, and 1-Planarity Testing is NP-complete even on near-planar
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graphs with feedback vertex set number 3, where a graph is near-planar if it can be obtained
from a planar graph by adding a single edge. These two results improve the previous results
of [33] and [4]. To this end, we design two completely different reductions, one is given from
Two-Sided k-Planarity and the other is given from Unary Bin Packing, which also
yield several consequences other than these two results.

3.1 Inapproximability for Graphs with Feedback Vertex Set Number 2
In this subsection, we show that it is NP-hard to approximate the local crossing number of a
given graph within any constant factor, even if the graph has feedback vertex set number 2.

Before describing our reductions, we start with a technical lemma, showing that by adding
some vertices and edges to a graph, one can impose a certain form on its k-planar drawings.

Let G be a graph with m edges and let k be a positive integer. Let X ⊆ V (G) be a
nonempty vertex subset. We define a new graph G′ by adding a vertex r and km + 1 paths
of length 2 between r and v for each v ∈ X to G.3 We refer to these paths of length 2 as
spokes.

▶ Lemma 2 (⋆). Suppose that G′ has a k-planar drawing Γ. Then, there is a k-planar
drawing Γ′ of G′ such that each spoke has no crossings and the subdrawings of Γ and Γ′

induced by G are identical.

Proof (sketch). Since the edges in G can cross other edges km times in total, for each u ∈ X,
there is a spoke between r and u that does not cross any edges of G. Let Pu be such a spoke
for each u ∈ X and P := {Pu | u ∈ X}. Although spokes in P may cross, we can untangle
them, preserving the subdrawing for G. Then we redraw the other spokes along P. ◀

We will use this lemma in the following form.

▶ Corollary 3. Let S ⊆ V (G). Let G′ be a graph obtained from G by adding a vertex s and
k|E(G)| + 1 spokes between s and each u ∈ S. Moreover, let S′ ⊆ V (G′) and let G′′ be a
graph obtained from G′ by adding a vertex s′ and k|E(G′)| + 1 spokes between s′ and each
u ∈ S′. Suppose that G′′ has a k-planar drawing. Then, there is a k-planar drawing of G′′

such that all spokes have no crossings.

Proof. By Lemma 2, G′′ has a k-planar drawing Γ′ in which all the spokes incident to s′

have no crossings. Let Γ be the subdrawing of Γ′ induced by G′. As shown in the proof
of Lemma 2, for each u ∈ S, there is a spoke Pu between s and u that has no crossing
with any edge of G in Γ. Since this spoke Pu does not cross any spoke incident to s′, the
uncrossing operation and redrawing spokes between s and u used in Lemma 2 never create a
new crossing with spokes incident to s′. Thus, by applying Lemma 2 to G′ and Γ, we have a
k-planar drawing of G′′ being claimed. ◀

We now turn to our reduction from Two-Sided k-Planarity, in which we are given a
bipartite graph G = (X ∪ Y, E) with two independent sets X and Y , and an integer k. The
goal is to determine whether G has a 2-layer k-planar drawing, which is a special case of a
k-planar drawing in which the vertices in X are drawn on a line, the vertices in Y are drawn
on another line parallel to the first line, and each edge is drawn as a straight line.

3 The length of a path is defined as the number of edges in it.

GD 2025



16:6 Structural Parameterizations of k-Planarity

X

Y

uX

uY

Figure 2 An illustration of the graph G′ constructed from an instance ⟨G, k⟩ of Two-Sided
k-Planarity. Note that the numbers of spokes are different from that of the actual construction.

The idea of our reduction is the same as that of Garey and Johnson [15] from Bipartite
Crossing Number to Crossing Number. We remark that, however, the proof is more
involved due to the difficulty of k-planarity.

Let ⟨G = (X, Y, E), k⟩ be an instance of Two-Sided k-Planarity, where nX = |X|,
nY = |Y |, and m = |E|. We construct a graph G′ from G as follows (see Figure 2):
1. we introduce two vertices uX , uY ;
2. for each x ∈ X, add ℓ1 := km + 1 spokes between uX and x;
3. for each y ∈ Y ∪ {uX}, add ℓ2 := k(ℓ1nX + m) + 1 spokes between uY and y.

Then, ⟨G′, k⟩ is the instance we construct for k-Planarity Testing. It is easy to verify
that the above construction can be done in polynomial time.

▶ Lemma 4. The graph G admits a 2-layer k-planar drawing if and only if the graph G′

admits a k-planar drawing.

Proof. It is clear that we can obtain a k-planar drawing of G′ from a 2-layer k-planar drawing
of G by drawing uX , uY , and spokes as Figure 2. Hence, we only show the other direction.

Suppose that the graph G′ admits a k-planar drawing Γ′. By Corollary 3, we can assume
that all the spokes in G′ have no crossings in Γ′. We then replace the set of spokes connecting
two vertices with a single edge between them and contract the edge between uX and uY by
identifying them into a new vertex u in Γ′. We let G∗ denote the graph obtained in this way.
As all spokes have no crossings, the obtained drawing of G∗, denoted by Γ∗, is still k-planar.
Let us note that G∗ is isomorphic to the graph obtained from G by adding a universal vertex
u (which is a vertex adjacent to all the vertices in G). We claim that we can draw a closed
curve C passing through all the vertices in V (G∗) \ {u} such that
1. no edge of G∗ intersects C (i.e., C is a noose in Γ∗);
2. all the edges incident to u are contained in one of the two regions R with boundary C;
3. all the edges in E(G) are contained in the other region with boundary C;
4. all the vertices in X appear consecutively on C;
5. all the vertices in Y appear consecutively on C.
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u

x1 x2 x3 x4 y1 y2 y3 y4 y5

(a)

u

x4
x3 x2 x1

y1 y2 y3 y4 y5

(b)

Figure 3 Two topologically equivalent drawings of G∗, where the subdrawing induced by G is
(a) an arc diagram, and (b) a 2-layer drawing.

To this end, we draw a curve C while keeping track of the cyclic ordering of the edges incident
to u (and hence the neighbors of u) in Γ∗. As these incident edges have no crossings, we can
draw such a curve satisfying (1), (2), and (3). To see the properties (4) and (5), suppose for
contradiction that there are x, x′ ∈ X and y, y′ ∈ Y such that x, y, x′, y′ appear in this order
on C. Due to the property (2), C can be seen as a closed curve on Γ′ such that the region
corresponding to R contains all spokes of G′. Let Px be a path in G′ between x and x′ via
uX consisting only of spokes. We define Py similarly. In Γ′ those paths are contained in R

and C. However, since the vertices x, x′, y, y′ are all placed on C, such a drawing must yield
a crossing, which contradicts the fact that spokes in G′ have no crossings in Γ′.

Let X = {x1, . . . , xnX
} and let Y = {y1, . . . , ynY

} such that x1, . . . , xnX
, y1, . . . , ynY

appear on C in this order. We now convert the drawing Γ∗ into a drawing Γ̂ such that
all the vertices in V (G∗) \ {u} are placed on a line ℓ in the order x1, . . . , xnX

, y1, . . . , ynY
;

all the edges incident to u are drawn as straight segments in a half plane separated by ℓ;
all the other edges are drawn in the other half plane in such a way that the curve
corresponding to an edge forms a semicircular arc between the endpoints.

See Figure 3a for an illustration. Observe that this drawing Γ̂ is also k-planar as two edges
of G∗ cross in Γ̂ only if they cross in Γ∗ as well. Moreover, Γ̂ is simple, meaning that no pair
of edges crosses more than once and no two edges incident to a common vertex cross. This
in turn can be converted into a k-planar drawing Γ as in Figure 3b. The subdrawing of Γ
induced by G∗ − {u} is a 2-layer k-planar drawing such that two edges in G∗ − {u} cross if
and only if they cross in Γ̂. Hence, G (= G∗ − {u}) admits a 2-layer k-planar drawing. ◀

This reduction immediately gives us the following consequence. Note that Theorem 5 is
optimal in the sense that every graph with feedback vertex set number 1 is planar.

▶ Theorem 5. 1-Planarity Testing is NP-complete even if the given graph has feedback
vertex set number 2.

Proof. The NP-membership of 1-Planarity Testing is shown in [26]. It is known that
Two-Sided k-Planarity is NP-complete even on trees [25, Theorem 11]. Thus, the graph
G′ constructed in the proof of Lemma 4 has feedback vertex set number at most 2. This in
turn implies the claim by Lemma 1. ◀

The above reduction leads to further consequences. To see this, we first sketch the
reduction used in [25, Theorem 11]. They performed a polynomial-time reduction from
Bandwidth to Two-Sided k-Planarity. Let T be a tree, b be a positive integer, and ℓ be
an arbitrary even number with ℓ ≥ 2b2. For each edge in T , each edge e ∈ E(T ) is subdivided

GD 2025



16:8 Structural Parameterizations of k-Planarity

once by introducing a new vertex we, and we add ℓ leaves adjacent to each original vertex in
T . They showed that there is an ordering v1, . . . , v|V (T )| of V (T ) such that |i − j| ≤ b for
any edge {vi, vj} ∈ E(T ) if and only if the obtained graph T ′ has a 2-layer k-planar drawing
with k = (ℓ + 4)(b − 1)/2.

▶ Theorem 6. k-Planarity Testing is W[1]-hard with respect to treedepth, even on graphs
with feedback vertex set number 2.

Proof. It is known that the problem Bandwidth is W[1]-hard with respect to treedepth,
even on trees [16]. The above reduction we sketched [25, Theorem 11] also preserves the
boundedness of treedepth. To see this, we convert an elimination forest F ∗ of T to that of T ′

as follows. Starting from F ∗, we add the ℓ leaves attached to each vertex as leaf children of
it. For each edge e ∈ E(T ), one of the end vertices, say v, is a descendant of the other in F ∗.
We then add we as a leaf child of v in F ∗. It is easy to verify that the rooted forest obtained
in this way is an elimination forest of T ′ and its height increases by at most 1 compared to
the original elimination forest of T , yielding that td(T ′) ≤ td(T ) + 1. Hence, Two-Sided
k-Planarity is also W[1]-hard with respect to treedepth, even on trees. Moreover, the
reduction used in Lemma 4 increases the treedepth by at most 3, which implies the claim. ◀

▶ Lemma 7. Unless P = NP, for any constant c ≥ 1, there is no polynomial-time c-
approximation algorithm for Two-Sided k-Planarity on trees.

Proof. For any constant c ≥ 1, it is NP-hard to distinguish the following cases: the bandwidth
of T is at most b or more than cb for a given tree T and an integer b [10]. We set ℓ = 2t − 4
for sufficiently large t and construct a tree T ′ according to the above reduction from T .
If the bandwidth of T is at most b, then we have lcr(T ′) ≤ t(b − 1). Otherwise, we have
lcr(T ′) ≥ tcb. This implies that a polynomial-time c-approximation algorithm for Two-Sided
k-Planarity on trees distinguishes the above two cases. ◀

Combining Lemma 4 and Lemma 7, we obtain the following.

▶ Theorem 8. Unless P = NP, for any constant c ≥ 1, there is no polynomial-time c-
approximation algorithm for k-Planarity Testing, even if the given graph has feedback
vertex set number 2.

3.2 Distance to Path Forest
In this subsection, we show that 1-Planarity Testing is W[1]-hard parameterized by
distance to path forest, i.e., the minimum number of vertices required to make the graph
into a disjoint union of paths. The underlying idea of the proof is similar to the one in
[17]. We perform a reduction from Unary Bin Packing. An instance I of Unary Bin
Packing consists of a (multi)set of positive integers S and positive integers B and b such
that

∑
x∈S x = bB and B = O(poly(|S|)). Then the goal is to determine if it is possible to

partition S into b sets so that the sum of each set is exactly B. Unary Bin Packing is
NP-complete when b is given as input [15] and W[1]-hard when parameterized by b [22].

▶ Theorem 9. 1-Planarity Testing is W[1]-hard with respect to distance to path forest.

Proof. Let ⟨S = {x1, . . . , x|S|}, B, b⟩ be an instance of Unary Bin Packing. In the
following, we assume that b ≥ 3. We construct an instance ⟨G = (V, E)⟩ of 1-Planarity
Testing as follows. Let G be a graph consisting of vertices u1, u2, v1, . . . , vb, and paths
P1, . . . , P|S| with |V (Pi)| = xi for 1 ≤ i ≤ |S|. Let P = {P1, . . . , P|S|}. We add a path of
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u1

u2

v1 v2 vb︸ ︷︷ ︸
B

P1 P2 . . .
P|S|

. . .

Figure 4 An illustration of the reduction for Theorem 9. Note that the number of depicted
spokes between ui and vj is not accurate for aesthetic purposes.

length B between vi and vi+1 for each 1 ≤ i ≤ b, where vb+1 := v1. These paths form a cycle
C of bB vertices, passing through vi for all i. Next, we add an edge between ui and each
vertex in Pj for 1 ≤ i ≤ 2 and 1 ≤ j ≤ |S|. Let m be the number of edges in the graph
constructed so far (namely, m = 4bB − |S|). Finally, for 1 ≤ i ≤ b, we add ℓ1 := m + 1 spokes
between u1 and vi and add ℓ2 := (ℓ1b + m) + 1 spokes between u2 and vi. See Figure 4
for an illustration of the constructed graph G. Observe that, by construction, removing
b + 2 vertices, say u1, u2, v1, . . . , vb, yields a path forest. The construction can be done in
polynomial time.

From a solution of Unary Bin Packing, we can obtain a 1-planar drawing of G easily, as
in Figure 5. To be more precise, let {S1, . . . , Sb} be a solution for Unary Bin Packing. We
first draw the cycle C as a circle in such a way that the spokes between u1 and vi partition
the interior of the circle into b regions R1, . . . , Rb, where Ri is enclosed by a spoke between
u1 and vi, a spoke between u1 and vi+1, and a path between vi and vi+1 on C. For each
region Ri, we draw a path Pj ∈ P inside Ri if xj ∈ Si. Since the sum of the numbers of
vertices of the paths drawn in Rj is exactly B, we can draw those paths so that each edge in
the path between vi and vi+1 is crossed exactly once. Hence, we can draw G so that each
edge is crossed at most once.

For the other direction, suppose that G has a 1-planar drawing. By Corollary 3, there
exists a 1-planar drawing Γ of the graph G such that all the spokes in G have no crossings.
Since the spokes have no crossings in Γ, the subdrawing induced by them is planar, and hence
there are two vertices vi and vj that belong to the outer cycle of this subdrawing. As b ≥ 3,
all the other vℓ’s are drawn inside the region bounded by this outer cycle. Moreover, since
two consecutive vℓ and vℓ+1 are connected by a path in C, the two distinguished vertices vi

and vj must be consecutive, namely j = (i + 1) mod b. By appropriately renaming those
vertices, we can assume that G−

⋃
1≤i≤|S| V (Pi) are drawn as in Figure 6a. Then, there are b

internally vertex-disjoint paths Q1, . . . , Qb between u1 and u2 such that Qi is a concatenation
of spokes between u1 and vi and between vi and u2 for each i. These paths separate the plane
into b regions, R1, . . . , Rb as Figure 6b. As each path Pi cannot lie in two different regions,
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u1 u2

v2

v1

v3

Figure 5 A 1-planar drawing of the graph constructed from an instance ⟨S = {1, 2, 2, 3, 4}, B =
4, b = 3⟩ of Unary Bin Packing. Each thick edge represents the spokes between its endpoints.

· · ·

u1

u2

v1 v2 v3 vb−1 vb

(a)

· · ·

u1

u2

R1 R2 Rb−1 Rb

Q1 Q2 Qb−1 QbQ3

(b)

Figure 6 The subgraphs induced by (a) cycle C and spokes (boldlines) and (b) the paths
Q1, . . . , Qb, which defines b regions R1, . . . , Rb.
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P can be partitioned into {P1, . . . , Pb}, where Pi ⊆ P is the collection of paths drawn inside
Ri. Observe that, for each path Pj ∈ Pi, there are xi = |V (Pi)| edge-disjoint paths between
u1 and u2 that are drawn inside Ri. Each of them must cross the path between vi and vi+1
on C, implying that there are at most B such paths inside Ri as Γ is 1-planar. Since there
are exactly b regions, each Pi must satisfy

∑
P ∈Pi

|V (P )| = B. Therefore, we can partition
S into b sets such that the sum of each set is exactly B. ◀

Observe that the above reduction still works even if we add an edge between u1 and each
vertex in C, in which case the vertex set {u1, u2} forms a dominating set.

▶ Corollary 10. 1-Planarity Testing is NP-complete even if the domination number is 2.

As mentioned in Section 1, Cabello and Mohar [4] showed that 1-Planarity Testing
is NP-hard even on near-planar graphs. Theorem 9 strengthens their hardness result as the
graph G constructed in the reduction is a near-planar graph with the following properties.

▶ Corollary 11. 1-Planarity Testing is NP-complete on near-planar graphs with feedback
vertex set number at most 3 and pathwidth at most 4.

3.3 Twin Cover Number

In this subsection, we show that k-Planarity Testing is W[1]-hard with respect to twin
cover number, which complements the positive result of the “+k setting” to be presented in
the subsequent section.

We give a similar reduction from Unary Bin Packing as in Section 3.2. However, in
order to substitute cliques for paths, we first show the W[1]-hardness of a restricted version
of Unary Bin Packing, where integers in S are sufficiently small that the constructed
graph admits a B-planar drawing.

▶ Lemma 12 (⋆). Unary Bin Packing is W[1]-hard parameterized by the number b of
bins, even if each integer x ∈ S satisfies x ≤

√
B − 1.

Proof (sketch). We add 2bB copies of B + 1 to S of an instance of Unary Bin Packing
and increase the capacity of a bin by 2B(B + 1) to obtain an instance with the claimed
condition. We can show that there is no other solution than to distribute those B + 1’s
evenly to b bins, making it equivalent to the original instance. ◀

▶ Theorem 13. k-Planarity Testing is W[1]-hard parameterized by twin cover number.

Proof. The reduction is almost analogous to the one used in Theorem 9. Let I = ⟨S, B, b⟩
be an instance of Unary Bin Packing. We can assume that b ≥ 3 and x ≤

√
B − 1 for

all x ∈ S due to Lemma 12. While the basic construction of the graph G is the same as in
Theorem 9, it differs in the following points:

the cycle C contains exactly b vertices v1, . . . , vb;
for each xi ∈ S, G contains a clique Ci with xi vertices, instead of a path Pi, such that
each vertex in the clique is adjacent to both u1 and u2;
for each vi, we add ℓ1 := Bm + 1 spokes between u1 and vi and add ℓ2 := B(bℓ1 + m) + 1
spokes between u2 and v2, where m is the number of edges in G that are not contained
in the spokes.
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When we draw G as in Figure 5, edges incident to a vertex in clique Ci may have crossings.
Each edge e in Ci may cross other edges in Ci and all the edges between uj and a vertex in
Ci for 1 ≤ j ≤ 2. This implies that the number of crossings that e involves is at most

|E(Ci)| − 1 + 2|V (Ci)| ≤ (
√

B − 1)(
√

B − 2)/2 − 1 + 2(
√

B − 1) < B.

Similarly, we can conclude that each edge between uj and a vertex in Ci has at most B − 1
crossings. Since we can assume that all the spokes in G have no crossings due to Corollary 3,
these spokes define exactly b regions, each of which contains exactly B vertices of cliques.
Thus, we can show that I is a yes-instance if and only if G is B-planar as well.

As each connected component in G − (V (C) ∪ {u1, u2}) consists of true twins, G has a
twin cover of size at most b + 2. This completes the proof. ◀

4 FPT Algorithms

In contrast to the previous section, we mainly focus on the algorithmic aspects of k-
Planarity Testing in this section and show that k-Planarity Testing is FPT when
several well-known graph parameters (and k) are given as parameters.

4.1 Reducing to 1-Planarity Testing
There are several consequences from Lemma 1, combining known FPT algorithms of 1-
Planarity Testing of [2].

Let G be a graph and let k be an integer. Let Gk be the graph obtained from G by
subdividing each edge k − 1 times. Clearly, we have fes(G) = fes(Gk). By Lemma 1, G is
k-planar if and only if Gk is 1-planar. Since 1-Planarity Testing is FPT parameterized
by feedback edge set number [2], the following theorem holds.

▶ Theorem 14. k-Planarity Testing is FPT parameterized by feedback edge set number.

We next observe that the treedepth of Gk is not much larger than the treedepth of G.

▶ Lemma 15 (⋆). For an integer k ≥ 0, it holds that td(Gk) ≤ td(G) + ⌈log2 k⌉.

Similarly to the above, we have the following theorem.

▶ Theorem 16. k-Planarity Testing is FPT parameterized by treedepth + k.

We would like to note that a similar result is already mentioned in [34]. Since k-planarity
is closed under vertex and edge deletions, it is known that the class of k-planar graphs with
bounded treedepth is well-quasi-ordered by the induced-subgraph relation [30]. This implies
a non-uniform version of Theorem 16: k-Planarity Testing can be solved by just checking
whether G has an induced subgraph that belongs to a finite set Fk,td of graphs, where the
size of Fk,td depends only on k and td(G).

Theorem 16 leads to FPT results for other parameters. To explain this, we introduce
the notion of degeneracy. For an integer d ≥ 0, a graph G is said to be d-degenerate if each
nonempty subgraph of G contains a vertex of degree at most d. A graph class C is degenerate
if there exists d such that every graph in C is d-degenerate.

▶ Proposition 17 ([29, Proposition 6.4]). A hereditary class of graphs C has bounded treedepth
if and only if C is degenerate and does not contain a path Pt for some t as an induced
subgraph.
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It is known that each k-planar graph with n vertices has at most 3.81
√

kn edges [1]. Since
k-planarity is closed under taking a subgraph, the class of k-planar graphs is degenerate for
every fixed k. Hence, combining with Proposition 17, k-Planarity Testing on Pt-free
graphs parameterized by k + t can be reduced to the one parameterized by treedepth + k. It
is known that a graph class C does not contain a path Pt for some t as an induced subgraph
if C has bounded shrub-depth [14] or bounded modular-width [24].

▶ Corollary 18. Let C be a hereditary class of graphs that excludes some path Pt as an induced
subgraph. Then, k-Planarity Testing over C is FPT parameterized by k + t. In particular,
k-Planarity Testing is FPT parameterized by shrub-depth + k, and modular-width + k.

4.2 Polynomial Kernels
In this subsection, we describe a kernelization algorithm for k-Planarity Testing parame-
terized by vertex cover number + k. The high-level ideas follow the polynomial kernel for
1-Planarity Testing due to Bannister, Cabello, and Eppstein [2].

Let G be a graph and let S be a vertex cover of G. We can find such a vertex cover S

of size at most twice the optimum in linear time. First, we observe that the “diversity” of
vertices outside of a vertex cover S is sufficiently small when G is k-planar. For a function f ,
let #f (X) denote |{f(x) | x ∈ X}|, the number of possible images of X through f .

▶ Lemma 19. Let I≥2 ⊆ V (G)\S be the set of vertices with degree at least 2 in V (G)\S. Let
π be a function that maps each vertex v ∈ I≥2 to an unordered pair of its distinct neighbors
(that is, π : I≥2 →

(
NG(v)

2
)
). If #π(I≥2) > |S| · 3.81

√
2k, then G is not k-planar.

Proof. Let GS be a graph with V (GS) = S and E(GS) = π(I≥2). Let G′ be the graph
obtained from GS by subdividing each edge once. Then G′ is a subgraph of G, and hence G′

is k-planar. This implies that by Lemma 1, GS is 2k-planar. Hence, #π(I≥2) = |E(GS)| ≤
|S| · 3.81

√
2k, where the last inequality is shown in [1]. ◀

It is known that, for a positive integer k, if G contains K7k+1,3 as a subgraph then G is
not k-planar [6, 32]. Hence, the following also immediately holds.

▶ Corollary 20. Let u ∈ V (G) \ S be a vertex of degree at least 3. If there are at least 7k + 1
false twins of u (including u itself), then the graph G is not k-planar.

Next, we consider vertices of degree 2. The following lemma is a key ingredient of our
kernelization. It is worth mentioning that, although a similar reduction rule is used in the
case k = 1 [2], the proof for the general case k ≥ 1 is considerably more involved.

▶ Lemma 21. Let u ∈ V (G) \ S be a vertex of degree 2 with NG(u) = {s1, s2} ⊆ S. If there
are more than 16k2|S| vertices in V (G) \ S with the same neighborhood {s1, s2}, then G is
k-planar if and only if G − {u} is k-planar.

Proof. The (⇒) direction is clear. Suppose that G′ := G − {u} is k-planar and let Γ be a
k-planar drawing of G′. We can assume that G′ has no vertex of degree 1.

Let Tu = {v ∈ V (G′) \ S | NG′(v) = {s1, s2}}. Then, we have tu = |Tu| ≥ 16k2|S|. Let
P be the set of paths between s1 and s2 via a vertex in Tu. Let us align the paths in P
according to the cyclic order in Γ around s1, as P0, P1, . . . , Ptu−1. For two paths Pi, Pj , the
cyclic difference of Pi and Pj is defined as min{j − i, i − j + tu}. We then claim the following.

▷ Claim 22. Two paths Pi, Pj ∈ P with the cyclic difference at least 4k do not cross in Γ.
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s1 c

≥ 4k − 1

C

≥ 4k − 1

Figure 7 The Jordan curve C, the crossing point c, and the vertex s1 with edges going out to
each of the interior and exterior of C due to the cyclic difference condition.

Figure 8 Let P be a path whose internal vertices have degree exactly 2. A “self-crossing” on the
path can be removed by suppressing the “loop” formed by the edges in P .

Proof. Suppose that Pi and Pj do cross in Γ. Let c be a crossing point between Pi and Pj ,
and let C be a Jordan curve consisting of two arcs: the arc of Pi from s1 to c and the arc of
Pj from c to s1. Such a crossing point c can be chosen so that C forms a closed curve. In
both cases where s2 is in the interior or in the exterior of regions bounded by C, from the
condition that the cyclic difference of Pi and Pj is at least 4k, there are at least 4k − 1 edges
that must cross C as shown in Figure 7. As Pi, Pj can have at most 2k − 1 crossings other
than c each, and hence 4k − 2 crossings in total, this leads to a contradiction. ◁

Let P ′ = {P4ki | 0 ≤ i < 4k|S|}. As the cyclic difference of any pair of two paths in P ′ is
at least 4k, by Claim 22, no two paths in P ′ cross. We can also assume that each path in P ′

does not cross itself, as it can be resolved as shown in Figure 8. Hence, they separate the
plane into 4k|S| regions similarly to Figure 6b. For each 0 ≤ i ≤ 4k|S|, let Ri be the region
that is bounded by two paths P4ki and P4k(i+1), where P4k·4k|S| := P0. Observe that, for
each vertex v ∈ S \ {s1, s2}, the number of paths in P ′ crossed by an edge incident to NG′(v)
is at most 4k: when v belongs to region Ri, each edge incident to a vertex in NG′(v) can only
be in regions at most 2k apart from Ri, namely, {Rj mod 4k|S| | i − 2k ≤ j ≤ i + 2k}. Since S

is a vertex cover of G′, for every edge e ∈ E(G′), e = {s1, s2} (if it exists); e is contained
in a path in P; or e is incident to some vertex in S \ {s1, s2} due to the assumption that
there is no degree-1 vertex. Since at most k paths in P ′ can be crossed by e = {s1, s2} (if it
exists) and at most 4k(|S| − 2) paths in P ′ can be crossed by an edge incident to a vertex in
S \ {s1, s2}, there are at least 4k|S| − (4k(|S| − 2)) − k = 7k paths in P ′ that are crossed
only by the paths in P or not crossed at all.

Let P ∈ P ′ be such a path. We remove all the paths in P but P from Γ. Observe that
now P has no crossings at all. Hence, we can redraw all the removed paths along P without
making a crossing. We can also add the path (s1, u, s2) to Γ along P in the same way and
obtain a k-planar drawing of G. ◀

By summarizing the above lemmas, we can obtain a kernelization algorithm.
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▶ Theorem 23 (⋆). k-Planarity Testing has a kernel with O(vc(G)2k2
√

k) vertices.
Moreover, such a kernel can be computed in linear time.

We can obtain a similar result for the case of neighborhood diversity.

▶ Lemma 24 (⋆). The vertex cover number of a k-planar graph G is at most O(nd(G)
√

k).

By plugging Lemma 24 to Theorem 23, we have the following.

▶ Corollary 25. k-Planarity Testing has a kernel with O(nd(G)2k3
√

k) vertices.

Finally, we remark that the results of Theorem 23 and Corollary 25 cannot be generalized
to vertex integrity and modular-width parameterizations (see [13, 16] for their definitions)
unless NP ⊆ coNP/poly, respectively. Let G1, . . . , Gt be graphs and G be the disjoint union
of G1, . . . , Gt. Let vi(G) be the vertex integrity of G and let mw(G) be the modular-width of
G. Then, it holds that (1) G is 1-planar if and only if Gi is 1-planar for all 1 ≤ i ≤ t and (2)
vi(G) ≤ maxi |V (Gi)| and mw(G) ≤ maxi |V (Gi)|. This implies that 1-Planarity Testing
parameterized by vertex integrity and by modular-width is AND-cross-compositional [3, 9, 12],
implying that unless NP ⊆ coNP/poly, there is no polynomial kernelization for 1-Planarity
Testing of size poly(vi(G)) or poly(mw(G)). As td(G) ≤ vi(G), this kernelization lower
bound also holds for treedepth parameterization.

5 Conclusion

In this paper, we study the parameterized complexity of k-Planarity Testing from the
perspective of graph structural parameterizations and show several (tight) upper and lower
bound results. We leave several interesting open problems relevant to our results.

When k is considered as input, we have only shown that k-Planarity Testing is FPT
parameterized by feedback edge set number. It would be interesting to seek similar results
using other graph parameters. In this direction, a highly related problem Crossing Number
is known to be FPT parameterized by vertex cover number [19]. However, it seems that
their approach cannot be directly applied to k-Planarity Testing, requiring new insights
for this problem. Towards this, showing intractability with a general parameter of vertex
cover number, such as vertex integrity or neighborhood diversity (see Figure 1a), would also
be a nice open problem.
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