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—— Abstract

A witness drawing of a graph is a visualization that clearly shows a given property of a graph.
We study and implement various drawing paradigms for witness drawings to clearly show that
graphs have bounded pathwidth or treewidth. Our approach draws the tree decomposition or path
decomposition as a tree of bags, with induced subgraphs shown in each bag, and with “tracks” for
each graph vertex connecting its copies in multiple bags. Within bags, we optimize the vertex
layout to avoid crossings of edges and tracks. We implement a visualization prototype for crossing
minimization using dynamic programming for graphs of small width and heuristic approaches for
graphs of larger width. We introduce a taxonomy of drawing styles, which render the subgraph for
each bag as an arc diagram with one or two pages or as a circular layout with straight-line edges,
and we render tracks either with straight lines or with orbital-radial paths.
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1 Introduction

Work in graph drawing can be often viewed as studying paradigms for visualizing a graph, G,
to clearly illustrate one or more properties of G while also optimizing one or more quality
criteria, such as area or number of edge crossings; see, e.g., [19,21,26,35,53]. This viewpoint
is related to the concept of a visual proof, which is a proof given as a visual representation
called a witness (or visual certificate); see, e.g., [31,46-48]. Ideally, a visual proof should
be clear and concise: the property being proven should be immediately discernible simply
by examining the witness. A prominent example is a crossing-free drawing as a witness for
planarity. In this paper, we are interested in visualizing treewidth.
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A tree decomposition of a graph, G = (V, FE), is a tree, T, with nodes, V1,Va,..., Vg,
which are called bags, where
1. Each V; is a subset of V and Ule V,i=V.

2. If v € V; and v € V}, then v is in each bag in the (unique) path in T from V; to V.

3. For each edge (v, w) € FE there is a bag that contains both v and w.

The width of a tree decomposition is one less than the size of its largest bag, and the treewidth
of a graph is the smallest width of a tree decomposition. The pathwidth of a graph is the width
of a smallest-width tree decomposition whose tree is a path. See, e.g., [13,23,24,27,37,43]
for more details regarding these topics, including applications in graph drawing and results
that many NP-hard optimization problems can be solved in polynomial time for graphs with
bounded treewidth or pathwidth.

We are interested in paradigms for witness drawings of graphs to certify their bounded
pathwidth or treewidth. Our approaches are inspired by an example visual proof from
Wikipedia that a graph has treewidth 3; see Figure 1. In this illustration, each bag is drawn
as a disk with its member vertices drawn as points inside the disk. In addition, for each
vertex, v € V, in this drawing, there is a set of curves, each of which we call a track, that
connect the different copies of v in the bags of the tree decomposition, i.e., the support of v
in T. The set of tracks in T for a vertex v € V in such a drawing will form a subtree in T,
which will always be a path if T is itself a path. Note, however, that even if the support for
every vertex is a path, this does not imply that T is a path, e.g., as shown in Figure 1.

To provide a witness drawing for the pathwidth or treewidth of a graph, G = (V, E), we
add one more requirement to our visualization, which is missing from the visualization shown
in Figure 1, namely information faithfulness, i.e., that the drawing represents the (entire)
graph G and its decomposition T'. In particular, we require that for each edge, (v,w) € E,
we must draw (v,w) as a curve inside each bag V; such that v,w € V; in the given tree
decomposition, T', of G. Still, we are interested in such witness drawings that minimize edge
and track crossings, as in Figure 1.

To see why this requirement is important, consider a graph G with pathwidth at most w.
Its interval-width is bounded by w + 1, i.e., G is a subgraph of an interval graph G’ whose
largest clique has size at most w + 1 [18]. Since interval graphs can be represented as closed
intervals on the real line, such a representation of G’ can be seen as a certificate that G
has bounded pathwidth. However, we argue that this is not an information faithful witness
drawing as it shows G’ rather than G and, in particular, does not allow a reconstruction
of G from the (interval) drawing of G.

Related Work. Mehlhorn et al. [48] and McConnell et al. [46] introduce the paradigm of
certifying algorithms, which output their result as well as a concise proof, called a “witness”,
that shows that the algorithm produced this output correctly. Subsequent to this work, there
has been considerable work on certifying algorithms, including their inclusion in the LEDA
and CGAL systems [34]. For example, additional work for witness drawings in graph drawing
include work on visualizing proximity properties, such as for Delaunay graphs, Gabriel graphs,
and rectangle graphs; see, e.g., [2-5,39-42].

In GD 2024, the GraphTrials framework was introduced, which involves a visual proof
for a graph property that can be used in an interactive proof modeled after a bench trial
before a judge where a prover establishes that a graph has a given property based on its
visualization [31]. Although the authors did not include pathwidth or treewidth in their
GraphTrials framework, we feel that our approach to producing witness drawings for graphs
with bounded pathwidth or treewidth nevertheless fits into their GraphTrials framework. In
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Figure 1 A witness drawing of a graph with treewidth 3. Tracks are shown color coded to
illustrate the support for each vertex in the graph. Note that this visualization does not draw graph
edges inside the bags of the tree decomposition. Public domain images by David Eppstein [28].

particular, in addition to faithfully representing the provided information, we argue that our
created witness drawings contain all the necessary information to efficiently certify that the
graph at hand has bounded pathwidth or treewidth. Moreover, such drawings can facilitate
the formation of a mental model for potential judges. Thus, we believe that the drawings
satisfy the required properties for visual certificates as defined in the framework [31].

We are interested in the natural optimization criterion of minimizing edge crossings
in a witness drawing for a graph with bounded pathwidth or treewidth, including track-
track crossings, edge-edge crossings, and track-edge crossings. In particular, few track-track
crossings can aid in verifying that our decomposition satisfies Property 2, i.e., that the bags
containing the vertex v induce a connected subgraph of T, for all v € V. Furthermore,
minimizing edge-edge and track-edge crossings improves the visual quality of the witness
drawing and can thus support the verification of the (remaining) properties. Although we are
not aware of any prior work on this criterion, minimizing track-track crossings is related to
minimizing crossings in storyline drawings [22,33,38,54,55] and metro maps [1,6,10,11,30,50—
52]. Minimization of edge-edge crossings within the bags is related to crossing minimization
in linear and circular graph layouts [7,9,25,32, 36,44, 56].

Multiple past works include individual visualizations of tree decompositions. These
include drawings of a tree with each bag shown as a set of vertices within each tree node,
separate from any drawing of the graph [13,43], and drawings of a graph overlaid by bags
drawn as regions that surround or connect the vertices [29]. Separately from their applications
in treewidth and structural graph theory, tree decompositions with bags of non-constant size
have also been used in other ways: for instance, SPQR decompositions are, essentially, tree
decompositions of adhesion 2, whose bags induce 3-connected subgraphs, and these have
often been visualized as a tree of 3-connected components [20,49]. However, we are unaware
of past works studying visualizations of tree decompositions in any systematic way.

Our Results. In this paper, we systematize and implement witness drawings for graphs
with bounded treewidth or pathwidth. Given a graph, G = (V, E), our approach is to draw
the vertices in each bag of a tree decomposition, 7', of G as points in a disk, either in a
circular layout or a linear layout. For each vertex, v € V', we connect each pair of copies of v
in adjacent bags in T with a curve we call a track, ideally with all the tracks color coded with
the same color (the color for v). For each bag, V;, in T, we draw the edges of the subgraph
of G induced by V;. In the case of a linear layout of vertices, we draw this subgraph as an
arc diagram [56] (either as one-page or two-page book drawing) and in the case of a circular
layout of vertices, we draw this subgraph as a circular layout with straight-line edges [9]. Our
optimization goal is to minimize the total number of edge crossings, including track-track
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crossings, edge-edge crossings, and track-edge crossings. See Figure 2 for three different
witness drawing styles. We design and implement fixed-parameter-tractable linear-time
crossing minimization algorithms for graphs with bounded pathwidth or treewidth.

Missing details for statements marked by % can be found in the full version [16].

2 Preliminaries

For an integer p > 1, we use [p] as a shorthand for the set {1,2,...,p}. Let G = (V, E)
be a graph with vertex set V and edge set E. All considered graphs are simple and
undirected. Throughout this paper, we use n := |V| and m := |E| to refer to the number
of vertices and edges of G, respectively. For a tree (or path) decomposition T' of G with
bags Vi, Va, ..., Vi, we let wr, or simply w if T is clear from the context, denote its width.
Recall wr = max;cp |Vi| — 1. We use @ = w + 1 as a shorthand for the maximum number
of vertices in a bag. Without loss of generality, we root the tree T at an arbitrary bag.
We use decomposition as a synonym for path and tree decompositions. Furthermore, we
assume that the decomposition T' consists of k& = O(n) bags and that each bag of T' has
degree at most three. It is well-known that every graph of treewidth w admits a certifying
tree decomposition with & = O(n) fulfilling this property [14,45]. In particular, in nice
tree decompositions, which have found attention in the design of parameterized (dynamic
programming) algorithms [18], every bag has degree at most three. With slight abuse of
notation, we write V; € T to indicate that V; is a bag of T. Furthermore, for a bag V; € T,
we let G; = G[V;] and E; := E(G;) denote the subgraph of G induced by V; and its edge set,
respectively.

3 A Taxonomy of Width-Witness Drawing Styles

Before we describe how to compute a witness drawing for a decomposition T of G, we
examine the different witness drawing styles illustrated in Figure 2. In all of them, each bag
V; € T is represented as a disk D; of uniform radius. We consider three different drawing
styles that differ in how they arrange vertices inside each bag and how they draw the tracks
of the support for each vertex. We use parenthesized letters to refer to each style.

Linear Drawings (L). In a linear drawing, as in Figure 2b, we arrange the vertices along
a vertical line inside a disk and draw the edges as arcs to the left or right of the vertices.
This drawing style is inspired by one- and two-page book drawings [36,56]. The tracks for
each support are straight-line edges connecting the respective vertices. We use L1 and L2 to
differentiate between one- and two-page book drawings where needed. In an L1-drawing, all
arcs, must be either to the right or to the left of the vertices, but this can change between
different disks. In an L2-drawing, the arcs can be on both sides of the vertices.

Circular Drawings (C). Figure 2c shows a circular drawing of T. There, we arrange the
vertices V; along a circle inside the disk D; and draw the edges E; as straight-line chords of
said circle. Combinatorially speaking, this is equivalent to a one-page book drawing of G; [12].
As for linear drawings, we draw tracks as straight-line edges.

Orbital Drawings (0). Our last drawing style, of orbital drawings, is inspired by the edge
routing in previous drawings with circular vertex placements [8,15]. It is illustrated in
Figure 2d and uses again a circular arrangement of the vertices. However, we now subdivide
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Figure 2 Witness drawings for a graph, G, with treewidth 3. A standard drawing of GG is shown
in (a). We show in (b) a witness drawing of a tree decomposition, in which the subgraph for each
bag is drawn as an arc diagram. The two lower witness drawings show the subgraph for each bag in
a circular layout with straight-line edges. In (c), the tracks connecting instances of the same vertex
are drawn as straight segments, while in (d) the track edges are routed in orbits surrounding the
bag vertices. The track edges are colored to match the vertices they represent. The drawing in (b)
has 6 track-track crossings, no edge-edge crossings, and 6 track-edge crossings. The drawing in (c)
has 4 track-track crossings, 1 edge-edge crossing, and 13 track-edge crossings. The drawing in (d)
has 12 track-track crossings, 1 edge-edge crossing, and no track-edge crossings.

the disk D; along the vertices V; into an inner and outer part: In the inside, we draw the
edges F; as straight-line chords of the respective circle. The outside, however, the so-called
track-routing area, is reserved for tracks. These are aligned as orbits and are not allowed
to leave the track-routing area. We allow them to be routed clockwise or counterclockwise
around D;. This drawing style has no track-edge crossings and all track-track crossings occur
inside the track-routing area. While this can result in a cleaner visualization, forcing tracks
to stay inside the track-routing area may clutter drawings of decompositions of larger width.

In each drawing style, we evenly distribute the vertices within each disk. For linear
drawings the vertex permutation uniquely defines each vertex’s position inside the disk, but
for the other two drawing styles this still leaves a free rotation angle. To that end, we let
0 < a < 27 /w denote the starting angle of the first vertex inside each disk, where o = 0
corresponds to a placement at twelve o’clock (Figure 3a). We choose a single « across all
disks and we select it so that no interior of a track crosses a vertex independent of the order
of the vertices inside each disk. For each bag of a tree decomposition, we evenly distribute
its children, if there are any, to the right of its disk (Figure 3b).

A witness drawing I" of a given decomposition T of G consists of a drawing of (i) the
tree (or path) T, (ii) each of its bags in one of the above-described drawing styles, and (iii)
the support for each vertex of G. Depending on the drawing style, we call I an L-, C-, or
O-drawing of T', or simply drawing, if the style is clear from the context. The drawing T'
might contain crossings, and we differentiate between the following three crossing types: If
two tracks cross, we call it a track-track crossing (or simply t/t-crossing), if a track and an
edge in a disk cross, it is a track-edge (t/e) crossing, and if two edges of G cross inside a
disk, we call it an edge-edge (e/e) crossing; recall Figure 2. If neither of these crossings exist,
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o

(a) (b)

Figure 3 (a) The same circular arrangement of V; can result in different vertex placements in
the disk D; depending on the angle a: left: o = 0, right: o = 20°. (b) Left-to-right drawing of the
tree T with four bags. We omit visualizing edges and tracks to maintain readability.

we call I’ planar. Note that we do not count crossings with edges of T. We treat t/t-, t/e-,
and e/e-crossings equally throughout the remainder of the paper. However, our algorithms
can be readily adapted to weight different types of crossings differently.

4 Linear Drawings

We start our study by considering linear drawings, which visualize each G; as a book drawing
with one or two pages and draw the tracks as straight lines. Observe that the drawing of G;
is uniquely defined by the linear order <; of V; and the function o;: E; — {¢,r}, also called
page assignment, that assigns each edge to the left or right page, respectively. In this section,
we present two algorithms that compute, for a given decomposition T of constant width w,
a crossing-minimal L-drawing in linear time. Minimizing the crossings of an L-drawing is
tightly interwoven with minimizing the e/e-crossings in the book drawing of each G;, i € [k].
The known hardness of the latter problem [44] allows us to show also hardness for the former
problem, which justifies our focus on constant-width decompositions.

» Theorem 4.1 (). Deciding if a path decomposition T has an LI1-drawing with at most ¢
crossings is NP-hard. The same holds true for L2-, C-, and O-drawings.

Since a path decomposition is a restricted form of a tree decomposition, Theorem 4.1 also
extends to the latter type of decompositions.

4.1 Linear Drawings for Path Decompositions

We now focus on the more restrictive setting, where we want to compute a witness drawing
of a path decomposition T" of G of width w. Throughout this section, we let the bags of T'
be ordered as they appear on the path 7" and assume V; to be the leftmost bag.

All of our algorithms, including those for C- and O-drawings, are based on the insight that,
for each bag V; € T, the number of crossings involving edges and/or tracks incident to V; is
determined by the drawings of G; in the disk D; and the drawings of the induced subgraphs of
neighboring bags. This enables us to employ a dynamic programming (DP) algorithm which
processes the path decomposition from left to right and computes a crossing-minimal drawing
for the first ¢ bags, for every i € [k]. Since the framework of our algorithms is identical across
all drawing styles (and decomposition types), we first describe its general structure and later
discuss how it can be adapted to specific drawing styles and tree decompositions.
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A General DP Algorithm. We let k£ denote the number of bags in T and recall w = w + 1.

Let T'; be a drawing of the graph G; in the disk D; for each i € [k]. Let G; denote the set
of all possible drawings I'; of G;. All drawing styles admit a combinatorial representation
of T';, which implies that G; is finite for each i € [k]. Let A(T;) denote a drawing of the
tracks inside the disk D;, given a drawing I'; of G;, and let D(T';) be the set of all such
drawings. L- and C-drawings represent the tracks as straight lines. Therefore, A(T;) is only
relevant for O-drawings and we leave it undefined for the other two drawing styles. For this

drawing style, we can again represent A(T";) combinatorially, ensuring that D(T';) is finite.

We define Giax = max;ep |Gi| and Diyax = maxr,eg, ik |P(I':)| as the maximum number
of drawings of G, ..., Gj and their corresponding track drawings, respectively.

In our algorithm, we maintain an O(k - Gimax - Dmax)-size table C, where C[i,T';; A(T;)]
stores the minimum number of crossings of a drawing for the bags Vi, Va, ..., V;, where I'; is
the drawing of G; in D; and A(T';) the drawing of its incident tracks. We call S; = (4, T';, A(T;))
a state of our DP. To compute C[S;], we need to count all e/e-crossings in T'; involving edges
from F;, and all t/e-, and t/t-crossings involving also edges or tracks incident to vertices from
Vi_1 for a given state S;_1, if the bag V;_; exists. Let cree(-), crese(s, <), and cry (-, -) denote
these number of crossings, respectively. Note that the exact definition of cr, /e(-)7 cryse(s ),
and cry(-,-) depends on the desired drawing style. For i > 1, the number of crossings
cr(S;, Si—1) for two states S; = (i,T';, A(T;)) and S;—1 = (i — 1,T;_1, A(T';—1)) equals the
sum of cre/e(S;), cri/e(Ss, Si—1), and cry (S, Si—1). We can now relate the different states
in C to each other as follows, where S; = (i,T;, A(T;)), ¢ € [k], T; € G;, and A(T;) € D(T;):

cre/e(Si) ifi=1

ClSi] = min C[Si_1] +cr(S;, S;—1) otherwise (1)
Si—1 = (i—1,I_1,A(l—1)),
Ti—1€Gi—1, A(T;-1)€D(Ti-1)

Using induction, we can show that Equation (1) captures the minimum number of crossings.

» Lemma 4.2 (k). Let T be a path decomposition of G with k bags. For each i € [k],
drawings T'; € G; and A(T;) € D(I;), the table entry C[i,T';, A(T;)] equals the minimum
number of crossings of a witness drawing for the bags V1, ..., V; with the drawings I'; and
A(T;) for G; and its incident tracks, respectively.

With Lemma 4.2 at hand, we now have all key ingredients for our DP. It remains to define
for each drawing style the representations of I'; and A(T;), if needed, and to implement the
crossing counting functions crese(-), cre/e(-, <), and crys(:, ). This will be the main task for
the remainder of this and the upcoming sections.

Two-Page Linear Drawings. We now aim to compute a crossing-minimal L2-drawing of a
path decomposition T'. Recall that a two-page book drawing I'; of G; = (V;, E;) is uniquely
defined by the linear order <; on V; and the page assignment o;: E; — {¢,r}. Thus, we
set I'; = (<;,0;). As the tracks are drawn using straight lines between the vertices in the
respective disks, it is sufficient to store only the drawing for each G;, i € [k], in our DP
table C. AS Gmax = O(@! - 2°°) holds, the size of the table C is in O(k - @! - 29°) and it only
remains to implement the crossing counting functions.

For e/e-crossings, we observe that cr /e(-) equals the number of edges with alternating
endpoints in <; but assigned in o; to the same page; see Figure 4a and Equation (2).

Cre/e(si) = |{(U,U), (a7b) EE; | 0((u,v)) = U((avb))vu =i =3V = b}| (2)

17:7

GD 2025



17:8

Visualizing Treewidth

To determine the number of t/e-crossings, it is sufficient to observe that an edge (u,v) € E;_q
with u <;_1 v crosses with a track for the vertex w € V;_1NV; if and only if u <;_1 w <;_1 v
and o;_1((u,v)) = r as visualized in Figure 4b. A symmetric observation can be made for
edges (u,v) € E; with o;((u,v)) = ¢, yielding the following function:

Crt/e(Siysi—l) = Z |{UJ eVioinV; | U <j—1 W <i—1 ’U}‘ (3)

(u,v)EE; 1
oi—1((u,v))=r

Y HweVianVilu<iw <o)
(u,v)EE;
oi((u,v))=¢
This leaves us with counting the t/t-crossings, for which it is sufficient to count the number
of inversions between <;_; and <;; see Figure 4c and Equation (4).

cree(Si, Sic1) = [{u,v € Viea N Vi | u <io1 v,v < ul] (4)
Combining this with the recurrence relation from Equation (1), we obtain the following:

» Theorem 4.3. Let T be a path decomposition of G of width w. We can compute a
crossing-minimal L2-drawing of T in O(n - (@) - 4% -wt) time.

Proof. We employ our DP algorithm storing the above-described states to compute a crossing-
minimal L2-drawing of 7. Recall that the table C has size O(k - @! - 2°), where k = O(n)
denotes the number of bags in 7. To compute a single state for some ¢ € [k], we have to access
up to O(@! - 2°°) states for i — 1. A closer analysis of Equations (2)—(4) reveals that we can
evaluate the function cr(-,-) in O(@*) time. Thus, we can compute the minimum number of
crossings for a given state in O(@!-2% -w*) time. Overall, this amounts to O(k- (@!)2-4%" - %)
time to fill the entire table C'. The minimum number of crossings can be obtained by taking
the minimum over all C[k, -,-]. We can use standard backtracking techniques to compute the
crossing-minimal L2-drawing of T'. The correctness of our algorithm follows directly from
the correctness of our recurrence relation, i.e., Equation (1), established in Lemma 4.2. <«

With the use of weights, we can prioritize some types of crossings over others. Furthermore,
by restricting the DP table C' and relation from Equation (1), we can generalize the above-
presented DP. For example, to compute an L1-drawing, we can remove the page assignment

u
b
(a) (b) (c) (d) .

Figure 4 Illustration of different types of crossing: (a) The e/e-crossing between the two edges
(u,v) and (a,b) is enforced by the relative order of their endpoints. (b) The edge (u,b) crosses the
blue and green tracks because the respective vertices lie between u and b. (c) The blue and green
tracks cause a t/t-crossing because the relative order among the respective endpoints is inversed.
(d) A “criss-cross” t/t-crossing between blue and green that can occur in tree decompositions.
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from our definition of a drawing I'; of G;. Furthermore, it could be desired to enforce a
consistent linear order across different bags, i.e., forbid t/t-crossings. To that end, we can
consider in Equation (1) only those linear orders <’ that are consistent with <, i.e., where
=<

vi_, = <'|v;. Below, we summarize the effects on the running time.

» Corollary 4.4. Let T be a path decomposition of G of width w. We can compute a
crossing-minimal

L1-drawing of T in O(n - (@!)? - wt) time.

L2-drawing of T without t/t-crossings in O(n - (w!)? - 4= @) time.

4.2 Linear Drawings for Tree Decompositions

Similarly, for graphs of bounded treewidth, we can obtain the minimum number of total
crossings for L-drawings via DP. Given a tree decomposition 7" of G, we orient T' “left-to-
right”, where the root bag is leftmost and children are to the right of the parent. We then
obtain a right-to-left ordering of the tree’s bags, Vi, Vi_1, ..., V1, where Vj is the root bag.

DP for Treewidth. Our DP formulation in this problem uses the same table as for path
decompositions, but a given bag may now have more than one previous bag that can affect
its crossings. We assume that the tree decomposition 7" only has bags of degree up to three.
As such, any bag has at most one parent (due to the “left-to-right” orientation) and at most
two children. We consider three cases to calculate C[S;] for a bag V;, based on its in-degree
deg™ (V;) € {0,1,2}. The cases where deg™ (V;) equal zero or one are similar to the two cases
presented in the DP for pathwidth, but when deg™ (V;) = 2 the crossing function cr(, -, -)
depends on the current state and its two child states. In this case, the current bag has two
children belonging to its in-degree neighboring set N~ (V;) whose embedding (which child is
above the other) is decided by the DP. Our DP table has the following recurrence relation:

ool ifdeg™ (Vi) =0
. x iy P if (Vi) =1
_ )5S = (%?,A(FI))O[S ]+ cx (53, 5z) ifdeg™ (V;)
N )
(é]gnig) C[S.]) + C[Sy] + cx(Si, Sy, Sy)  ifdeg™(V;) =2

Vi, VyeNT (Vi) zy

Two-Page Linear Drawings. The number of e/e-crossings does not change within the parent
bag, so that remains the same as in Equation (2). The number of t/e-crossings can be treated
independently for both children V,,,V, € N7 (V;), as there are no such crossings between the
children. So Equation (6) is similar to Equation (3) except that we sum over both children.

cre/e(Si S, Sy) = ( > KweVenVilu=iw =y v}

i'ef{z,y} (u,v)EE
o ((u,v))=~L
+ Z |{w€Vi/ﬂViu~<iw~<iv}|> (6)
(u,’U)EEi

oi((uw))=r

For t/t-crossings, we must handle t/t-crossings between children. Without loss of generality,
let the child V, that comes first in the input be above child V;,. Then such t/t-crossings will
occur when two tracks from the children “criss-cross”, where a track from the top child goes
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below the track from the bottom child as in Figure 4d, captured by Equation (7). Then we
add the t/t-crossings between parent and child as in Equation (4), but for both children now:

cre(Si, Sz, Sy) = {(u,v) € (Ve Vi) x (VN Vi) [ v < u} (7)
+ Z |{’LL,’U€V;‘/H‘/Z“U‘<Z‘/ v,V < U}| (8)
i'e{z,y}

A similar analysis to Theorem 4.3 and Corollary 4.4 yields the following results for L-drawings:

» Theorem 4.5. Let T be a tree decomposition of G of width w. We can compute a
crossing-minimal L2-drawing of T in O(n - (@) - 8% -wt) time.

Proof. The table C has the same size O(k - @! - 252), with k = O(n), and computing cr(-, -, -)
still takes O(@?) time as in the pathwidth case. However, computing a single state must now
check all possible pairings of its two child states, yielding O((@! - 252)2) states in the worst
case. So, altogether, the running time will be in O(n - (@!)? - 8= -wh). <

» Corollary 4.6. Let T be a tree decomposition of G of width w. We can compute a crossing-
minimal L1-drawing of T in O(n - (@!)® - @*).

Finally, we note that our DP algorithm can be extended to decompositions T" with bags
of arbitrary degree by generalizing Equations (5)—(7). In particular, for Equation (7), we
must account for t/t-crossings between every pair of children of V;. As stated in Equation (5),
we consider all possible combinations of states for V;’s children, and the number of such
combinations grows with their number. Moreover, observe that the embedding of these
children affects the number of t/t-crossings, and the number of potential embeddings is itself
exponential in the degree d of V;. Therefore, allowing bags with non-constant degree in T'
introduces an exponential factor in terms of d in the running time of our DP algorithm.

5 Drawing Styles with Circular Vertex Placements

In this section, we discuss how to adapt our DP algorithm presented in Section 4 to compute
crossing-minimal C- and O-drawings.

Circular Drawings. Circular drawings arrange the vertices in every disk D;, i € [k], on a
circle and draw the edges F; as straight lines. Thus, the drawing I'; of G; is uniquely defined
by the placement of the vertices V; in D;. Since they are evenly distributed on a circle, it
suffices to store in I'; for each bag V; € T, the counterclockwise order <; of the vertices V; as
they appear in D;, starting at the twelve o’clock position. Recall that the angle parameter «
specifies the starting angle of the first vertex in the order <; in the disk D;. As the tracks
are again straight lines, we do not need to store A(T;), reducing the size of C to O(k - @!).

When filling the table C, we recall that the recurrence relations from Equations (1) and (5)
include the number of e/e-, t/e-, and t/t-crossings involving the vertices of a bag V;, i € [k],
and those of its adjacent bags (if they exist). The number of e/e-crossings corresponds, due
to the equivalence with one-page book drawings, to the number of edge pairs with alternating
endpoints in <; and is, therefore, purely combinatorial in this setting. In contrast, the t/e-,
and t/t-crossings are geometric in nature and depend on the concrete positions of the vertices
within the disks. Observe that these positions depend on « and we remark that the choice
of « influences the number of observed crossings; see also Figure 5. Consequently, we equip
the crossing counting functions cry/e(:, -, -) and cryz (-, -, -) with the parameter a. Altogether,
this is sufficient to compute crossing-minimal C-drawings.
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Figure 5 The observed crossings not only depend on the order of the vertices in the disks but
also on the choice of « (also indicated with the dashed arrows): The t/e-crossing with the yellow
track in (@) is not present in (b) although we use the same linear orders in both visualizations.

Orbital Drawings. Orbital drawings extend circular drawings by routing the tracks as orbits
around the vertices; recall Figure 2d. Since tracks must remain within the track-routing
area, every O-drawing is free of t/e-crossings. However, unlike in the other two drawing
styles, the drawing of tracks within a disk is no longer uniquely determined by the placement
of the vertices. In particular, tracks can be assigned to different orbits and may orbit the
drawing I'; of G; either clockwise or counterclockwise. Thus, while it still suffices to store a
linear order <; of V; for I';, representing A(T";) now requires additional care.

We model A(T;) with two parts. First, to model the assignment of tracks to orbits, we
introduce an orbit assignment function \;: V; — [@], where \;(v) specifies the orbit used
for the tracks of vertex v, numbered from the center of the disk D; outward; see Figure 6.
Two tracks for different vertices u,v € V; may share the same orbit if they do not intersect.
Otherwise, we require A;(u) # A;(v) to guarantee that no two tracks for different vertices
share the same orbit simultaneously. Second, to model the direction in which the tracks
orbit, i.e., clockwise or counterclockwise, we consider the (up to two) children V, and V,,
and the parent V, of the bag V; in the tree decomposition T, if they exist. We define a
direction function 6;: V; x {z,y,q} — {cw,ccw} which, for each vertex v € V;, captures the
direction (clockwise (cw) or counterclockwise (ccw)) of the track from V; to each adjacent
bag. Figure 6 illustrates the semantic of §; and underlines the importance of storing this
information separately for each adjacent bag. Thus, for a given drawing I'; of G;, we set
A(T;) = (A, §;). This increases the size of the DP table C to O(k - @! - (8@)).

1l
C\')M)—‘

Figure 6 Visualization of a (partial) O-drawing and the information that we store in the table C.
The track routing area is indicated in gray. Black vertices represent arbitrary other vertices. In this
drawing, we have \;(u) = 1, Ai(w) = 2, \i(v) = 3, di(v,y) = cw, and d;(v, ¢) = d;(v, z) = ccw. Note
that these orientations are required to minimize the t/t-crossings involving the tracks for vertex v.

17:11

GD 2025



17:12

Visualizing Treewidth

Regarding the computation of the number of crossings, we observe that the function
cre/e(+) from C-drawings can be reused, and that t/e-crossings do not occur in this drawing
style. t/t-crossings involving a track for a vertex v € V; occur in the following two cases. First,
if v also appears in an adjacent bag, and a track for some vertex u € V; with A;(u) < A;(v)
passes by the position of v in I';, then these two tracks cross: The track for v must cross the
one of u to reach its orbit; see Figure 7a. Second, for each adjacent bag V; with v € Vj, we
count the number of vertices u € V; such that a track for u blocks the path from D; to Dj,
see Figure 7b. In both cases, the crossings can be determined from the starting angle «,
the order of the children, and the stored information, i.e., I'; and A(T;), for the disk D;
of V; and the disks of its adjacent bags. Hence, the function cry (-, -, -) still only depends on
the states for V; and its child bags. Finally, since tracks to occurrences of the same vertex
v € V; in different bags can overlap, we must avoid double-counting in such cases; see again
Figure 7a. We summarize below the findings of this section. Recall that & = O(n) holds.

» Theorem 5.1 (%). Let T be a decomposition of G of width w. We can compute a
crossing-minimal

C-drawing of T in O(n - (@")? - w*) time if T is a path decomposition.

C-drawing of T in O(n - (@!)? - w*)

O-drawing of T in O( )

O-drawing of T in O( )

time if T is a tree decomposition.
n- - (4w)* - @) time if T is a path decomposition.

(
n- 3. (8w)* - @) time if T is a tree decomposition.

6 Heuristic Approaches to Compute Linear Witness Drawings

A proof-of-concept implementation of our DP from Section 4.2 for L2-drawings of tree
decompositions required over 8 minutes to terminate even for small decompositions of width
w = 3 with four bags. This is no surprise given the running time bounds established in
Theorem 4.5. For tree decompositions of larger width, this became too large in practice with
a single state needing to check up to (5! - 25°)2 &~ 10! possible configurations for w = 4.

Consequently, we do not want to restrict our attention to exact, but slow, algorithms,
but also explore heuristics to efficiently compute drawings with a small number of crossings,
but without any formal guarantee on optimality. In this section, we describe three heuristics
for L2-drawings. We evaluate their performance in Section 7 and provide in Figures 8 and 9
sample drawings computed by them.

Figure 7 The two cases how t/t-crossings in O-drawings can arise: In (a), the blue tracks orbit
inside the green ones, thus causing a crossing when they pass the green vertex. t/t-crossings are
highlighted with the red circles. The crossing in (b) occurs because the green track blocks the
visibility to the lower-right disk for the blue track. Observe that there is only one t/t-crossing in (a),
although there is technically one blue track from the upper- and one from the lower-right disk.
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Global Book Drawing Heuristic. Since we visualize in an L2-drawing each graph G;, i € k,
as a two-page book drawing of G;, our first heuristic computes such a drawing (<, o) for the
entire graph G. After that, we set for each disk D; <; = <]y, and o;(e) = o(e) for every edge
e € F;, i.e., we project the drawing (<, o) down into each bag. If T is a tree decomposition,

we additionally perform a bottom-up traversal of T, choosing for each internal bag V; the
embedding of its children that yields the fewer t/e- and t/t-crossings locally.

Since computing a crossing-minimal one-page book drawing for a graph is an NP-hard
problem [44], we already employ a heuristic for this step. Klawitter, Mchedlidze, and

Nollenburg [36] performed an extensive experimentally evaluation on book drawing heuristics.

In their conclusion, they recommended the heuristic conGreedy+, which places one vertex
after the other on the spine, selecting the next vertex based on the number of already
placed neighbors, and extends the spine order and page assignment greedily. While for
two-page book drawings of k-trees, which are maximal graphs of treewidth k, it was slightly
outperformed by other heuristics, it performed best overall and in particular for graphs with
a sub-quadratic number of edges. The heuristic has a running time of O(m?n) [36] and we
call it Global conGreedy+.

Local Book Drawing Heuristic. Computing a book drawing for the whole graph G and
then applying it to each disk D;, i € k, has two main disadvantages. On the one hand, we
usually do not visualize the entire graph G in a single bag, but several induced subgraphs G;
separately. Therefore, the drawing (<;, 0;) for G; might contain unnecessary crossings. On
the other hand, the above-described heuristic is, apart from the embedding step, unaware
of t/e- and t/t-crossings. This, in particular, leads to situations where swapping the page
assignment of one edge e € E; or the entire edge set E; can dramatically reduce the number
of t/e-crossings. The latter occurs especially at the root and leave bags of T'.

Therefore, we now employ the algorithm conGreedy+ in each bag V; separately during a
top-down traversal of T', thus computing for each G; a book drawing from scratch. Since the
drawing for the parent of a bag V; has been determined, we can take the potential t/t- and
t/e-crossings into account. More precisely, when selecting the spine position of a vertex v € V;
and the page assignment for its incident edges in G; we also compute the number of t/e- and
t/t-crossings that this causes based on the drawing of the parent, similar to Equations (6)
and (7). Furthermore, we forward this information to its children when considering their two
possible embeddings if necessary. We call this heuristic Local conGreedy+ and, since the
size of each G; is bounded, its running time is O(n - @°).

Local Search. In addition to the two above-mentioned heuristics, we also perform a local
search to reduce the number of crossings. Given an L2-drawing of T', we traverse T" bottom
up. For each bag V; € T, we perform one or several of the following movements.
Vertex-Swap: Take two vertices u,v € V; and swap their position on the spine <;.

Edge-Swap: Take two edges e1, e € E; with 0;(e1) # o;(e2) and swap their page assignment.

Edge-Flip: Take an edge e € E; and assign it to the other page.

Embedding-Flip: Flip the embedding of the subtree V;, i.e., the order of its children.

For a given bag V; € T, we perform a hill-climbing approach and exhaustively apply above
movements until no further improvement can be made in the drawing (<;, ;). Then, we
proceed to the next bag V; € T. Note that when evaluating the number of crossings, we
keep the drawings in the remaining bags fixed. Thus, after a bottom-up traversal of T', we
perform a second traversal, this time top-down. Afterwards, or after a predetermined period
of time, we return the best solution found so far.
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7 Experimental Evaluation

We implemented the dynamic program for L2-crossings as described in Section 4.2 as well as
all of the heuristics presented in Section 6 in Python 3.6.9. All algorithms run on a system
with Intel Xeon E5-2640 v4 10-core processors at 2.40 GHz. We set hard limits for memory
and time of 96 GB and fifteen minutes, respectively, but memory was not a limitation for
our algorithms. If we improve a solution from a heuristic using local search, we indicate this
using “& LS”. Also the local search has a maximum running time of fifteen minutes. The
computed drawings are visualized using d3. js on an independent system and this final step
is not considered here. The instances are based on a public repository containing graphs
extracted from “Sage” together with a tree decomposition of them.! Out of the 150 graphs,
55 of them were equipped with a (tree or path) decomposition 7" where each bag, i.e., node
of the decomposition T', has degree at most three in 7" and we used these in our experiments.
We have no information on how these decompositions were computed or if they are optimal.
The width of the decompositions ranges between one and 53 and they have between one and
143 bags. For 60% of the instances, both parameters were simultaneously below ten. The
graphs have between four and 143 vertices and between six and 1,008 edges, with a mean
density, i.e., 2m/(n(n — 1)), of 0.37.

Computed Drawings. We provide in Figures 8 and 9 sample drawings of two graphs together
with the witness drawings computed by our different algorithms. Generally, we can see that
the DP and Global conGreedy+ produce drawings with a more consistent arrangement of
the vertices on the individual spines. Comparing Figures 8b and f, we can observe that
the obtained drawing from Global conGreedy+ & LS is nearly identical to the one of the
DP, confirming the observed low crossing numbers. The consistency across different spines
yields also a visually more pleasing drawing, as we can see in Figure 9. We provide in the
full version [16] more sample drawings computed by our algorithms and analyze below their
running time and the quality of the produced drawings.

Running Times, Tradeoffs, and the Influence of the Width. All heuristics terminated on
every instance within fifteen minutes. The DP could solve only thirteen instances within
the time limit. To evaluate the crossing minimization performance of the heuristics on a
larger set of instances, we ran the DP with a time limit of six hours, after which 21 of the 55
instances, all of width at most four, could be solved optimally. For the remaining 34 instances,
Global conGreedy+ obtained four, Local conGreedy+ three, Global conGreedy+ & LS 18,
and Local conGreedy+ & LS 20 times a solution with the fewest crossings.

Figure 10 shows the relative number of crossings, compared to the best-performing
algorithm, i.e., the DP where available and one of the heuristics otherwise, and running
time for each algorithm and instance. We group instances by width and sort them within
each group based on the number of bags. In the full version [16], we provide a filtered
version of Figure 10, focusing on instances for which the DP terminated within six hours.
Regarding the running time, we can observe in Figure 10a that all heuristics without the
local search step terminated within a second on every instance except the largest ones. As

The original dataset is available at https://github.com/freetdi/named-graphs. The filtered dataset,
source code, and evaluation code can be found on OSF [17]. The application can also be accessed online
at https://www.ac.tuwien.ac.at/projects/visualizing-treewidth/.

2 A drawing of the graph can be found online: https://en.wikipedia.org/wiki/Brinkmann_graph.
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https://doi.org/10.17605/OSF.IO/QFZ5V
https://www.ac.tuwien.ac.at/projects/visualizing-treewidth/
https://en.wikipedia.org/wiki/Brinkmann_graph
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Figure 8 Comparison of the drawings computed by our algorithms for the decomposition of the
Wagner graph; we indicate the number of crossings in the parenthesis. (@) Force-based drawing of the
graph, (b) DP (3), (c) Global conGreedy+ (8), (d) Local conGreedy+ (9), (e) Local conGreedy+
& LS (5), and (f) Global conGreedy+ & LS (4).

Figure 9 Comparison of the drawings computed by our heuristics for the Brinkmann graph?;
we indicate the number of crossings in the parenthesis. (a) Global conGreedy+ (113), (b) Local
conGreedy+ (105), (c) Global conGreedy+ & LS (64), and (d) Local conGreedy+ & LS (72).
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Figure 10 (a) Wall-clock running time (log,,-scale) of the heuristics and (b) their optimality-ratio
compared to the best found solution for different values of w and number of bags k. We group
instances based on w, sort each group by k, and indicate on the z-axis the value of w and k in the
first and second row, respectively. Vertical lines connect data points for one instance.

expected, Global conGreedy+ is the fasted heuristic, since it has to compute only one book
drawing for the entire graph. Regarding the optimality-ratio, Figure 10b shows that for
instances with larger width, Global conGreedy+ seems to work slightly better than Local
conGreedy+. We believe that computing a book drawing for each G; individually could yield
situations where the obtained spine orders yield many t/t-crossings. In particular, we suspect
that spine orders that “locally” admit few crossings could “globally” introduce, for example,
unexpected “criss-cross” t/t-crossings (recall Figure 4d). We see the strength of our DP for
decompositions of width two or three. For larger width, the high running time becomes
impractical. However, small-width instances are often simple enough that all heuristics can
solve them to optimality in a few milliseconds. Interestingly, for instances with very large
treewidth, the benefit of local search drastically decreases: Despite performing movement
operations for the entire fifteen minutes, the obtained solution is, if at all, only negligibly
better then the corresponding heuristic without the local search. However, for instances of
moderate width, local search considerably improved the initial solution.

8 Concluding Remarks and Future Directions

In this paper, we have initiated the study of visualizing tree and path decompositions of
graphs to visually certify their treewidth and pathwidth, respectively. Our experimental study
shows that for decompositions of width at most three, we can compute exact crossing-minimal
drawings in a few seconds. For decompositions of medium to larger width, the heuristics
combined with a local search step seem to be the preferred method. We see the computation
of a crossing-minimal drawing where we do not restrict the placement of the child bags or the
starting angle inside the disk as a challenging open algorithmic problem. Furthermore, the
taxonomy presented Section 3 can be seen as a first step towards exploring the design space
for witness drawings of graphs with bounded pathwidth or treewidth. In particular, future
work should explore further drawing styles for (i) the graph G; inside each bag V;, (ii) tracks
between the bags, (iii) the underlying tree (or path) T', and possibilities (iv) to distinguish
different vertices other than color. On top of that, a comprehensive design study can also
consider (v) the option to not visualize an edge uv in every bag V; with u,v € V; but only
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in one such bag, (vi) the algorithmic and visual impact of the structure of the underlying
tree/path T, e.g., its number of bags, their maximum degree, or the “niceness” of T, and
(vii) further optimization criteria other than the (unweighted) number of crossings.

Additionally, we believe that the exploration of the design space should go hand in hand

with the development of further exact and heuristic algorithms and an empirical evaluation
of the drawing styles proposed in this article or extracted from the (extended) taxonomy,
e.g., with a user study. Finally, designing and computing suitable witness drawings for other
width parameters of graphs is an interesting, independent direction for future work.
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