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Abstract
A well-known result by Kant [Algorithmica, 1996] implies that n-vertex outerplane graphs admit
embedding-preserving planar straight-line grid drawings where the internal faces are convex polygons
in O(n2) area. In this paper, we present an algorithm to compute such drawings in O(n1.5) area.
We also consider outerplanar drawings in which the internal faces are required to be strictly-convex
polygons. In this setting, we consider outerplanar graphs whose weak dual is a path and give a
drawing algorithm that achieves Θ(nk2) area, where k is the maximum size of an internal facial cycle.
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1 Introduction

Drawing outerplanar graphs in small area is a core topic in Graph Drawing which has
been the subject of intense work. The first one we are aware of dates back to 1980, when
Leiserson provided an algorithm for the construction of linear-area VLSI layouts of bounded-
degree outerplanar graphs [19]. In the early 90’s, de Fraysseix, Pach, and Pollack [10] and
Schnyder [20] proved that n-vertex planar graphs, and thus n-vertex outerplanar graphs,
admit O(n2)-area planar straight-line grid drawings. This bound is the best possible for
planar graphs, however whether a subquadratic area upper bound can be achieved for
outerplanar graphs has been an intriguing question asked repeatedly (see, e.g., [5, 7, 14, 17]).
A positive answer was first provided by Di Battista and Frati [12]. They presented an
algorithm which, given an n-vertex maximal outerplanar graph G with weak dual tree T ,
uses a structural decomposition of binary trees by Chan [8] in order to construct an O(n1.48)
area “star-shaped” drawing of T ; this is a planar straight-line grid drawing which can be
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18:2 Internally-Convex Drawings of Outerplanar Graphs in Small Area

augmented to an outerplanar straight-line drawing of G within the same area bound. The
same strategy has later led to an almost-linear area bound, namely O

(
n2

√
2 log n

√
log n

)
[16],

and also to an O(dn log n) bound for outerplanar graphs of maximum degree d [15].
In this paper we study the area requirements of convex drawings of outerplanar graphs,

in which the boundary of every face (including the outer face) is a convex polygon. It was
surprising to us that this question has not been studied before, considering the prominent
place that convex drawings occupy in the graph drawing literature. We only mention here
the result on convex drawings that is most relevant to our paper. Namely, Chrobak and
Kant [9, 18] and, independently, Felsner [13] have presented extensions of the algorithms
by de Fraysseix, Pach, and Pollack [10] and Schnyder [20], proving that every 3-connected
planar graph admits a convex drawing in quadratic area, which is asymptotically optimal.
Specifically, Felsner’s upper bound is (f − 1) × (f − 1), where f denotes the number of faces.

Strictly-convex drawings, in which no three vertices on the boundary of a face are
allowed to be collinear, require larger area. Indeed, an n-vertex cycle cannot be drawn as
a strictly-convex polygon on a grid of size o(n3) [1]. This bound is not yet matched by a
corresponding upper bound. Bárány and Rote [2] proved that n-vertex 3-connected planar
graphs admit strictly-convex grid drawings in O(n4) area. Bekos, Gronemann, Montecchiani,
and Symvonis [4] provided an alternative algorithm with the same asymptotic area bound
but with significantly smaller hidden constants.

The construction of small-area convex grid drawings of outerplanar graphs encounters
two natural barriers. First, a planar graph admits a convex drawing only if it is biconnected,
hence one is required to consider biconnected outerplanar graphs only. Second, we observe
that there exist n-vertex biconnected outerplanar graphs that require Ω(n3) area in any
convex grid drawing (Section 2); note that an O(n3) upper bound for (even strictly-)convex
drawings of n-vertex biconnected outerplanar graphs can be achieved by drawing the cycle
delimiting the outer face as a strictly-convex polygon [1] and drawing the internal edges
as chords. We thus relax the convexity requirement and require only the internal faces to
be convex, that is, we consider internally-convex drawings. For outerplanar graphs, this is
a natural variation of the convex drawing style, taking into account that the outer face of
an outerplanar graph is special: All the vertices are incident to it and this property defines
the graph class. Chrobak and Kant’s algorithms [9, 18] allow us to obtain internally-convex
drawings of n-vertex outerplanar graphs on a grid of size O(n2) (via a suitable augmentation
of the input graph to a 3-connected planar graph, by adding vertices and edges in its outer
face). This restores in the internally-convex setting the pursuit for a sub-quadratic area
upper bound for grid drawings of outerplanar graphs. We also consider the, in our opinion
equally interesting, question of determining the area requirements of internally-strictly-convex
drawings of outerplanar graphs.

Our contributions. Our main result is an algorithm that constructs an internally-convex
grid drawing with O(n1.5) area for n-vertex outerplanar graphs (Section 3). We employ some
ideas and tools from a recent paper [6]. The main geometric component of our algorithm
consists of constructing a “leveled” drawing, where consecutive levels are drawn on consecutive
horizontal grid lines, up to a level where there are sufficiently few vertices so that the drawing
can “make a turn” and extend horizontally rather than vertically. We remark that ours is the
first algorithm that constructs outerplanar straight-line grid drawings in sub-quadratic area
by drawing directly the outerplanar graph, without passing through a star-shaped drawing
of its weak dual tree. This aspect might be of independent interest.
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For internally-strictly-convex grid drawings, the same arguments as in the strictly-convex
setting prove that Θ(n3) is a tight bound for the area requirements. However, the natural
question to consider here is how the area relates not only to the number n of vertices but
also to the maximum size k of an internal face. We show that there exist outerplanar graphs
requiring Ω(nk2) area in any internally-strictly-convex grid drawing and that the lower
bound can be matched by a corresponding upper bound for outerpaths, that is, biconnected
outerplanar graphs whose weak dual is a path (Section 4).

We conclude in Section 5 with several open problems. Full proofs of statements marked
with a (⋆) can be found in the extended version of the paper [3].

2 Preliminaries

We assume familiarity with Graph Drawing, see, e.g. [11].
A drawing of a graph maps each vertex to a distinct point in the plane and each edge to a

Jordan arc between its endpoints. In a grid drawing vertices have integer coordinates. Let Γ
be a grid drawing of a graph. Let maxq(Γ) and minq(Γ) be the maximum and minimum q-
coordinate of a vertex in Γ, with q ∈ {x, y}, respectively. The height h(Γ) and width w(Γ) of Γ
are the positive integers h(Γ) = maxy(Γ) − miny(Γ) + 1 and w(Γ) = maxx(Γ) − minx(Γ) + 1,
respectively. In other words, h(Γ) and w(Γ) represent the number of horizontal and vertical
grid lines intersecting the smallest axis-parallel rectangle enclosing Γ, respectively. The area
of a drawing is the product of its width and height.

A drawing is planar if no two edges intersect, except at a common end-point. In a planar
drawing, a vertex or an edge is external if it is incident to the outer face, and internal
otherwise. A graph is planar if it admits a planar drawing. A graph is outerplanar if it
admits a planar drawing in which each vertex is external. A planar drawing partitions the
plane into topologically connected regions called faces. The unbounded face is the outer
face, whereas the bounded faces are the internal faces. Two planar drawings of a connected
graph are equivalent if they induce (i) the same counter-clockwise order of the edges incident
to each vertex and (ii) the same counter-clockwise order of the edges along the boundaries
of their outer faces. The equivalence classes of equivalent outerplanar drawings are called
outerplanar embeddings, or in this paper just embeddings. An outerplane graph is a planar
graph equipped with an outerplanar embedding. A biconnected outerplanar graph has a
unique outerplanar embedding (up to an inversion of all the orders defining the embedding),
hence we often talk about faces of a biconnected outerplane graph, referring to faces of its
unique outerplanar embedding. Also, a drawing of a graph is embedding-preserving if it
respects an embedding associated to the graph.

In a straight-line drawing, edges are drawn as straight-line segments. In a planar straight-
line drawing, a face is convex (strictly-convex) if it is delimited by a polygon whose internal
angles are not larger than 180◦ (resp. are smaller than 180◦). A convex drawing (a strictly-
convex drawing) is a straight-line planar drawing in which every face, including the outer face,
is convex (resp., strictly-convex). An internally-convex drawing (an internally-strictly-convex
drawing) is a straight-line planar drawing in which every internal face, but not necessarily
the outer face, is convex (resp., strictly-convex). When dealing with outerplanar graphs, we
do not require convex drawings to be outerplanar per se. Our results however hold in the
strongest possible sense: The lower bounds on the area hold true even for drawings that are
not outerplanar, while the upper bounds are proved by constructing outerplanar drawings.

The following theorem motivates the study of internally-convex drawings.

GD 2025



18:4 Internally-Convex Drawings of Outerplanar Graphs in Small Area

G=G[u, v]

G′=G[x, y]
T ∗

x

y

v

u

Figure 1 An outerplanar graph G[u, v] rooted at the external edge (u, v) and its weak dual T ∗.
The outerplanar graph G′ = G[x, y] is light-blue shaded.

▶ Theorem 1. There exists an n-vertex biconnected outerplanar graph that requires Ω(n3)
area in every convex grid drawing.

Proof. Let G be the n-vertex biconnected outerplanar graph obtained from a cycle C with n/2
vertices by attaching a degree-2 vertex incident to the end-vertices of each edge of C. First,
every convex drawing of G respects the unique outerplanar embedding of G, as moving a
degree-2 vertex inside C would create an angle larger than 180◦ in an internal face at that
vertex. Second, in every outerplanar convex drawing of G, the drawing of C is strictly-convex,
as the angle at each vertex v of C in the interior of the cycle delimiting the outer face of G is
at most 180◦ and part of this angle is used by the two triangular faces incident to v. Since
every strictly-convex drawing of a cycle requires cubic area [1], the lower bound follows. ◀

Let G be a biconnected outerplane graph with n ≥ 3 vertices; refer to Fig. 1. Note that G

has at least one internal face. The weak dual of G, denoted by T ∗, is the tree having a vertex
for each internal face of G and an edge between any two vertices corresponding to internal
faces sharing an edge. For simplicity, we use the same label to denote a vertex of T ∗ and the
corresponding face of G. If T ∗ is a path, then G is an outerpath. Let (u, v) be an external
edge of G such that v immediately precedes u in counter-clockwise order along the outer
face of G. The outerplane graph G with the designated edge (u, v), denoted by G[u, v], is
said to be rooted at (u, v). Let (x, y) be an internal edge of G[u, v] such that u, x, y, v appear
in this counter-clockwise order along the outer face of G (possibly u = x or y = v may hold).
Consider the outerplane subgraph G′ of G induced by the vertices x, y, and the vertices
that are encountered when traversing the outer face of G in counter-clockwise direction
from x to y. Observe that the edge (x, y) is an external edge of G′ such that y immediately
precedes x in counter-clockwise order along the outer face of G′. Then we denote by G[x, y]
the outerplanar graph G′ rooted at the edge (x, y).

Let G be rooted at (u, v) and let f1 be the internal face of G incident to (u, v). The
extended weak dual tree T of G[u, v] is the tree with root f1 obtained from the weak-dual
tree T ∗ of G by inserting a new leaf ℓe for each external edge e of G different from (u, v)
and an edge (f, ℓe) if f is the internal face of G incident to e. Let d be the number of
vertices of T . Note that d ≥ n, as T contains the root f1 plus one leaf for each of the n − 1
external edges of G different from (u, v). Also, d ≤ 2n − 3, since G has n − 1 external edges
different from (u, v) and at most n−2 internal faces. Let π = (f1, f2, . . . , fp) be a root-to-leaf
path in T . We denote by G[π] the outerpath induced by the vertices incident to the faces
f1, f2, . . . , fp−1. We call G[π] the outerpath dual to π. Denote by ep the edge of G dual
to (fp−1, fp). Let u = z1, z2, . . . , za, za+1, . . . , zm = v be the counter-clockwise order of the
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vertices along the outer face of G[π], where ep = (za, za+1). We call the rooted outerplanar
graphs G[z1, z2], . . . , G[za−1, za] left subgraphs of G at π and the rooted outerplanar graphs
G[za+1, za+2], . . . , G[zm−1, zm] right subgraphs of G at π.

3 Internally-Convex Drawings

In this section we prove the following theorem, which is our main result.

▶ Theorem 2. Every n-vertex outerplane graph admits an embedding-preserving internally-
convex grid drawing in O(n1.5) area.

Our proof is inspired by the proof that every outer-1-plane graph admits an embedding-
preserving visibility representation in O(n1.5) area [6]. In particular, we are going to use the
following theorem, which generalizes a well-known result by Chan [8].

▶ Theorem 3 ([6, Theorem 1]). Let p = 0.48. Given any rooted tree with n vertices, there
exists a root-to-leaf path π such that for any left subtree α and for any right subtree β of π,
|α|p + |β|p ≤ (1 − δ)np, for some constant 0 < δ < 1.

The following lemma is similar to the combination of Definition 1 and Observation 3 from
[6], although with different constants. Recall that p = 0.48 and 0 < δ < 1 are the constants
from Theorem 3. We define the constant c as c := 2/δ.

▶ Lemma 4 (⋆). Let f(d) be the recursive function defined on N0 as follows. First, f(0) = 0
and f(1) = 1. Second, for d ∈ N0 with d ≥ 2, we have that

f(d) = max
da,db∈N0:dp

a+dp
b

≤(1−δ)dp
{f(da) + f(db)} + 2

√
d.

Then f(d) ≤ c
√

d.

Let G be an n-vertex outerplane graph; refer to Fig. 2. In what follows, we assume G to
be biconnected. Indeed, if it is not, it can be augmented to a biconnected outerplane graph G′

by introducing edges in its outer face. Then the restriction of an embedding-preserving
internally-convex drawing Γ′ of G′ yields an embedding-preserving internally-convex drawing
of G that inherits the area bounds of Γ′. Let u and v be any two vertices such that v

immediately precedes u in counter-clockwise order along the outer face of G. We root G at
the edge (u, v). Recall that G[u, v] denotes the outerplanar graph G rooted at the edge (u, v).

We show that G[u, v] admits a (small-area) uv-separated drawing. This is an embedding-
preserving internally-convex grid drawing Γ of G satisfying the following properties:
P.1 u and v lie on a horizontal line h0;
P.2 all neighbors of u and v lie on the horizontal line h1 one unit below h0;
P.3 all the other vertices of G lie not above h1; and
P.4 all vertices different from u (from v) are to the right of u (resp. to the left of v).

The following property is a direct consequence of the definition of uv-separated drawing.

▶ Property 1. Let Γ be a uv-separated drawing of G[u, v]. Vertices u and v can be shifted
arbitrarily by integer amounts to the left and right, respectively, while maintaining Γ an
outerplanar internally-convex grid drawing.

If n ≥ 3, then let T be the extended weak dual tree of G[u, v] and let d be the number of
vertices of T . If n = 2, then T is not defined and we set d = 1. This choice is justified by the
size of the subtrees of T we generate. Indeed, if n ≥ 3, we will select a root-to-leaf path π

GD 2025
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u v

π

P1

P0

Pk

P2
G2

1

v11 v12 v13

G1
1 G1

2

v14 v15 v16 v17

v1ℓ1−1

v1ℓ1
G1

ℓ1−1

Gk
4

vk1 vk2 vk3 vk4 vk5 vk6 vkℓk−1 vkℓk

Gk
5

G1
ℓk−1

v21 v22

G2
ℓ2−1

v2ℓ2

e∗0

e∗1

e∗2

vk7

G1
8

v18

G1
7

G2
3v23

G1
3 G1

5

v2ℓ2−1v25v24

v19

e∗k=ep

fp

f1

fp−1

Figure 2 An outerplanar graph G[u, v] rooted at the external edge (u, v). The outerpath G[π]
dual to the path π selected by Theorem 3 is light-blue shaded. Transition edges are drawn thick blue.

in T and consider left and right subgraphs of G at π. If any of such subgraphs is just an
edge, it is associated with a subtree of T which consists of a single vertex, from which the
correspondence between n = 2 and d = 1 stems.

We show an algorithm that, by induction on n, constructs a uv-separated drawing Γ
of G[u, v] satisfying the following two properties:

Property W: every vertical grid line intersecting Γ contains at least one vertex of G (and
thus the width of Γ is at most n); and
Property H: every horizontal grid line intersecting Γ contains at least one vertex of G

and the height of Γ is at most f(d).
The statement implies Theorem 2, given that f(d) ∈ O(

√
d) by Lemma 4 and since d ≤ 2n−3.

Denote by h(d) the maximum value of h(Γ), over all drawings Γ constructed by our
algorithm for rooted outerplane graphs whose extended weak dual has d vertices.

In the base case, we have n = 2 (and thus d = 1). Hence, G is the edge (u, v) and a
drawing Γ satisfying Properties W and H is constructed by placing u on a grid point one
unit to the left of v. In particular, note that h(Γ) = 1 and that f(1) = 1.

In the inductive case, we have n > 2, hence G has internal faces, since it is biconnected. Let
f1 be the root of T , which is the internal face of G incident to (u, v). Let π = (f1, f2, . . . , fp)
be the root-to-leaf path in T from Theorem 3, where ep is the edge of G dual to (fp−1, fp).

We introduce some notation and definitions. Call e∗
0 = (u, v) a transition edge; let

V0 := {u, v}, let the path P0 = (v0
0 , v0

1) coincide with (u, v), and let the rooted outerplane
graph G∗

0 coincide with G[u, v]. Suppose that, for some i ≥ 1, a transition edge e∗
i−1 has

been defined that is part of a path Pi−1. Consider the set of vertices that do not belong
to V0 ∪ · · · ∪ Vi−1 and that belong to the faces of G incident to the end-vertices of e∗

i−1;
these vertices induce a path Pi = (vi

1, . . . , vi
ℓi

), where the labels of the vertices are such
that u, vi

1, vi
ℓi

, v appear in this counter-clockwise order along the outer face of G. See again
Fig. 2, where, for example, P2 is the path induced by the vertices that do not belong to
V0 ∪ V1 (roughly speaking, by the vertices that are on the “correct side” of e∗

1) and that
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belong to the faces of G incident to the end-vertices of e∗
1 (only one of such faces is incident

to both the end-vertices of e∗
1, the other ones are incident to a single end-vertex of e∗

1).
Only one of the edges of Pi might be dual to an edge of π; this edge of Pi is the transition
edge e∗

i with end-vertices vi
si

and vi
si+1, for some 1 ≤ si ≤ ℓi − 1. The set Vi comprises

the vertices vi
1, . . . , vi

ℓi
of Pi, as well as the vertices of the subgraphs Gi

j := G[vi
j , vi

j+1] of G,
for j = 1, . . . , ℓi − 1 with j ̸= si. Observe that, for j = 1, . . . , si − 1, the graph Gi

j is a
left subgraph of G at π or a proper subgraph of a left subgraph of G at π. Similarly, for
j = si + 1, . . . , ℓi − 1, the graph Gi

j is a right subgraph of G at π or a proper subgraph of
a right subgraph of G at π. We denote by G∗

i the graph G[vi
si

, vi
si+1]. For the last-defined

path Pk, we have that either the transition edge e∗
k does not exist or, if it does, it is the

edge ep, which is incident to the outer face of G and thus G∗
k coincides with the edge e∗

k. An
example of a situation in which e∗

k does not exist is the one in which Pk is a single vertex.
This happens if fp−1, the second-to-last vertex of π, is a triangular face delimited by the
end-vertices of e∗

k−1 and by one additional vertex, which coincides with Pk. In this case ep,
the edge of G dual to the last edge (fp−1, fp) of π, connects a vertex of e∗

k−1 with the unique
vertex of Pk and e∗

k does not exist.
Ideally, we would like the uv-separated drawing we construct to have the following

features. The vertices vi
1, . . . , vi

ℓi
of each path Pi should appear on a common horizontal

line hi in this left-to-right order, and hi should lie one unit above hi+1. The subgraphs Gi
j

with j ̸= si should be recursively drawn and placed below hi, except for the edge (vi
j , vi

j+1)
which lies on hi, in such a way that any two of these subgraphs are horizontally disjoint,
that is, there exists a vertical line that keeps the drawings of the two subgraphs on different
sides, except, possibly, for a single vertex shared by the two subgraphs which lies on the
line. The subgraph Gi

si
is not drawn recursively, as it coincides with the subgraph G∗

i on
which the level-by-level construction we are describing is further applied. Recall that k is
the index of the path Pk defined last in the procedure discussed above. If k ≤

√
n (Case 1),

this plan can be accomplished. Otherwise (Case 2), by a simple vertex counting argument,
there exists an index 2 ≤ t ≤ 1 +

√
n such that the set Vt has at most

√
n vertices. In

this case, we draw the vertices in Vt differently than before, so that the transition edge e∗
t

is vertical. The small size of Vt allows us to “turn” from horizontal to vertical without
increasing the height dramatically. From e∗

t towards the end of π, the construction proceeds
by drawing the vertices of the outerpath dual to π on two horizontal lines, and by placing
the recursively-constructed drawings of the right and left subgraphs of G at π above and
below it, respectively.

We now formalize this argument. As sketched above, we distinguish two cases. In Case 1,
we have k ≤

√
n; refer to Fig. 3. For i = 1, . . . , k and for j = 1, . . . , ℓi − 1 with j ̸= si,

we recursively construct a vi
jvi

j+1-separated drawing Γi
j of Gi

j [vi
j , vi

j+1]. We construct, for
i = k − 1, k − 2, . . . , 0, a vi

si
vi

si+1-separated drawing Γ∗
i of G∗

i [vi
si

, vi
si+1] as described in

the following. Notice that the order of the indices ensures that, if G∗
i+1 exists, then its

drawing Γ∗
i+1 has been already constructed once Γ∗

i is about to be constructed. In order to
start the iteration, if e∗

k does not exist, then G∗
k does not exist either, and hence Γ∗

k does not
need to be defined. If e∗

k exists, then G∗
k coincides with such an edge and Γ∗

k is constructed
by placing vk

sk
on a grid point one unit to the left of vk

sk+1. In order to construct Γ∗
i , we

place the recursively constructed drawings Γi+1
j with j = 1, . . . , ℓi+1 − 1 with j ̸= si+1, as

well as the drawing Γ∗
i+1 (if G∗

i+1 exists), side by side, so that the placement of a vertex vi+1
j

coincides in two drawings it belongs to; these are Γi+1
j−1 and Γi+1

j if vi+1
j is neither vi+1

si+1
nor

vi+1
si+1+1, or are Γi+1

si+1−1 and Γ∗
i+1 if vi+1

j is vi+1
si+1

, or are Γ∗
i+1 and Γi+1

si+1+1 if vi+1
j is vi+1

si+1+1.
This ensures that the vertices of Pi+1 all lie on the same horizontal line hi+1. Further, we

GD 2025
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u v
P0

e∗0

Γ1
8

Γ1
3

Γ1
6

Γ1
ℓ1−1

Γ1
2

Γ1
1

Γ := Γ∗
0

P1 v1ℓ1v11 v17 v1ℓ1−1v13v12 v16 v18 v19

Γ1
5

e∗1v14=v1s1 v15=v1s1+1

Γ2
1

Γ2
3 Γ2

ℓ2−1
e∗2

Γ∗
1

Γ∗
2

P2

v2ℓ2

Figure 3 Construction for a uv-separated drawing of G[u, v] when k ≤
√

n. To avoid cluttering,
vertical and horizontal proportions are not respected, but vertices are assumed to lie on the grid.

place vi
si

one unit above and one unit to the left of the leftmost vertex of Pi+1, and vi
si+1

one unit above and one unit to the right of the rightmost vertex of Pi+1. This results in the
desired vi

si
vi

si+1-separated drawing Γ∗
i of G[vi

si
, vi

si+1]. When i = 0, the resulting drawing
Γ := Γ∗

0 is a uv-separated drawing of G[u, v], as established by the following lemma.

▶ Lemma 5 (⋆). In Case 1, the constructed drawing Γ is a uv-separated drawing of G[u, v]
satisfying Properties W and H.

We now describe the construction of Case 2. Recall that, in this case, we have k ≥ 1+
√

n

We start the description with the following simple combinatorial lemma.

▶ Lemma 6. There exists an index t with 2 ≤ t ≤ 1 +
√

n such that |Vt| ≤
√

n.

Proof. Since the sets V2, V3, . . . , V1+
√

n are disjoint and since there are
√

n of them, the
smallest among them contains at most

√
n vertices. ◀

The construction for Case 2 proceeds in three steps. In Step 1, we construct a drawing
Γ∗

t of G∗
t ; in Step 2, we augment Γ∗

t to a drawing Γ∗
t−1 of G∗

t−1; finally, in Step 3, we
augment Γ∗

t−1 to the desired drawing Γ of G.

Step 1. We construct a drawing Γ∗
t of G∗

t ; refer to Fig. 4. Recall that the transition
edge e∗

t has end-vertices vt
st

and vt
st+1 and that G∗

t is the graph G[vt
st

, vt
st+1]. Let (fj , fj+1)

be the edge of π dual to e∗
t , let π′ be the subpath (fj+1, fj+2, . . . , fp) of π, and let (u0 =

vt
st

, u1, . . . , ux, wy, wy−1, . . . , w1, w0 = vt
st+1) be the counter-clockwise order of the vertices

along the outer face of G[π′], where (ux, wy) is the edge ep. We initialize Γ∗
t by drawing e∗

t

as a vertical segment of height 1. For j = 1, . . . , x, we recursively construct a drawing Λu
j

of G[uj−1, uj ]. We place the drawings Λu
1 , . . . , Λu

x side by side, so that the placement of
a vertex uj coincides in the drawings Λu

j and Λu
j+1 where it appears, for j = 1, . . . , x − 1,

and so that the placement of u0 coincides in Λu
1 and in the drawing of e∗

t . Analogously, for
j = 1, . . . , y, we recursively construct a drawing Λw

j of G[wj , wj−1]. Unlike for Λu
1 , . . . , Λu

x, we
rotate the drawings Λw

1 , . . . , Λw
y by 180◦, and place them side by side, so that the placement

of a vertex wj coincides in Λw
j and Λw

j+1, for j = 1, . . . , y − 1, and so that the placement
of w0 coincides in Λw

1 and in the drawing of e∗
t . This completes the construction of Γ∗

t .
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vtst+1=w0

vtst=u0

Λu
x

Λu
3

Λu
8

u8u2u1 u6 u7 ux−1

Λu
6

Λu
1

Γ∗
t

u3 u4 u5

w1 w2 w3 w4 w5 wy−1

Λw
yΛw

1

Λw
3

Λw
4

fp−1

fj

fj+1

π′

fp

ep

epe∗t Γ∗
t

wy

ux

e∗t

Figure 4 (Left) Construction of the drawing Γ∗
t of G∗

t . Labels Λu
j and Λv

j are omitted for single
edges. (Right) Polygon used to represent the drawing of Γ∗

t in the subsequent figures.

vtst+1=w0

vtst=u0

Γ∗
t

e∗t

fp−1fj fj+1

π′

vt3 vt4 vtst−1

Γ∗
t−1

vt2

Γt
1 Γt

3

Γt
st−1

vt−1
st−1

vt−1
st−1+1e∗t−1

Γt
st+1

Γt
ℓt−1

vtℓt−1

Pt

vtℓt

vt1
ux

wy

ep

fp

e∗t−1

Γ∗
t−1

Figure 5 (Left) Construction of Γ∗
t−1 from Γ∗

t , whose boundary is depicted by the yellow-tiled
region. (Right) Polygon used to represent Γ∗

t−1 in the subsequent figures.

Step 2. We now augment Γ∗
t to a drawing Γ∗

t−1 of G∗
t−1; refer to Fig. 5. Recall that the

path Pt has vertices (vt
1, vt

2, . . . , vt
st

, vt
st+1, . . . , vt

ℓt
). For j = 1, . . . , ℓt − 1 with j ̸= st, we

recursively construct a vt
jvt

j+1-separated drawing Γt
j of G[vt

j , vt
j+1]. We place the recursively

constructed drawings Γt
1, . . . , Γt

st−1 side by side, so that the placement of a vertex vt
j coincides

in Γt
j−1 and Γt

j , for j = 2, . . . , st − 1, and so that the placement of vt
st

coincides in Γt
st−1 and

in Γ∗
t . Next, we rotate the drawings Γt

st+1, . . . , Γt
ℓt−1 in counter-clockwise direction by 90◦,

and we stack them one on top of the other, so that the placement of a vertex vt
j coincides

in Γt
j−1 and Γt

j , for j = st + 2, . . . , ℓt − 1, and so that the placement of vt
st+1 in Γt

st+1 is on
the same vertical line as in Γ∗

t and on the same horizontal line as the highest vertex in Γ∗
t

(refer to the left side of Fig. 6). This might provide a double placement for vt
st+1 (unless

vt
st+1 is the highest vertex in Γ∗

t ). The issue is resolved by keeping for vt
st+1 the position it

GD 2025
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Γt
st+1

vtst+1

in Γt
st+1

vtst+2

part of Γ∗
t above vtst+1

vtst+1 in Γ∗
t vtst+1 in Γ∗

t

Γ∗
t Γ∗

t

vtst+2

Figure 6 Transformation of Γt
st+1 shifting downward vt

st+1 while avoiding overlapping with Γ∗
t .

e∗t−2
vt−2
st−2

Γ∗
t−2

vt−1
1

vt−1
ℓt−1

vt−2
st−2+1

Γt−1
1

e∗t−1
Γt−1
3

placement of vt−1
st−1+1

in Γt−1
st−1+1

vt−1
st−1+1

Γt−1
ℓt−1−1vt−1

st−1+1

Γ∗
t−1

fp−1 fp

Figure 7 Construction of Γ∗
t−2 from Γ∗

t−1, whose boundary is depicted by the red-tiled region.
The illustration shows the modification of the placement of vt−1

st−1+1 from the one it has in Γt−1
st−1+1.

has in Γ∗
t ; note that, in Γt

st+1, this amounts to shifting vt
st+1 downwards (refer to the right

side of Fig. 6). The drawing of Γ∗
t−1 is completed by placing vt−1

st−1
and vt−1

st−1+1 on the same
horizontal line, one unit higher than the highest vertex in Γ∗

t−1 so far (this is either vt
ℓt

if
st ≤ ℓt − 2 or the highest vertex in Γ∗

t otherwise), so that vt−1
st−1+1 is one unit to the left of

the vertical line through e∗
t and vt−1

st−1
is one unit to the left of the leftmost vertex in Γ∗

t−1 so
far (this is either vt

1 if st ≥ 2 or vt−1
st−1+1 otherwise).

Step 3. Finally, we show how to augment Γ∗
t−1 to a uv-separated drawing of G[u, v]. This is

done similarly to Case 1. Namely, we construct, for i = t−2, t−3, . . . , 0, a vi
si

vi
si+1-separated

drawing Γ∗
i of G[vi

si
, vi

si+1] from an already constructed vi+1
si+1

vi+1
si+1+1-separated drawing Γ∗

i+1
of G[vi+1

si+1
, vi+1

si+1+1]. Recall that, in Step 2, we constructed Γ∗
t−1. As in Case 1, we place the
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recursively constructed drawings Γi+1
j with j = 1, . . . , ℓi+1 − 1 with j ≠ si+1, as well as the

drawing Γ∗
i+1, side by side, so that the placement of a vertex vi+1

j coincides in two drawings
it belongs to, with one exception in the case i = t − 2; refer to Fig. 7. Namely, the drawing
Γt−1

st−1+1 of Gt−1
st−1+1 is embedded so that vt−1

st−1+1 is on the same horizontal line as in Γ∗
t−1 and

on the same vertical line as the rightmost vertex in Γ∗
t−1. This provides a double placement

for vt−1
st−1+1. The issue is resolved by keeping for vt−1

st−1+1 the position it has in Γ∗
t−1; note

that, in Γt−1
st−1+1, this amounts to shifting vt−1

st−1+1 leftwards. The desired vi
si

vi
si+1-separated

drawing Γ∗
i of G[vi

si
, vi

si+1] is completed by placing vi
si

one unit above and one unit to the
left of the leftmost vertex of Pi+1, and vi

si+1 one unit above and one unit to the right of
the rightmost vertex of Pi+1. When i = 0, the obtained drawing Γ := Γ∗

0 is a uv-separated
drawing of G[u, v], as proved in the following.

▶ Lemma 7 (⋆). In Case 2, the constructed drawing Γ is a uv-separated drawing of G[u, v]
satisfying Property W and H.

Sketch. First, it trivially comes from the construction that Γ is a straight-line grid drawing.
Most of the arguments used to prove that Γ is planar and satisfies Properties P.1–P.4 of a

uv-separated drawing are easy geometric considerations. For example, each graph G[ui, ui+1]
does not cross any graph G[uj , uj+1], as it is horizontally disjoint from it, does not cross
any subgraph G[wj , wj+1] as it is vertically disjoint from it, and does not cross G[π′] as
it is vertically disjoint from it, except for the edge (ui, ui+1) which is shared by the two
graphs. The most interesting part in the proof of the planarity of Γ consists of showing
that the drawings Γt

st+1 and Γ∗
t do not cross each other. This proof uses the fact that Γt

st+1
satisfies the properties of a vt

st+1vt
st+2-separated drawing. In fact, the avoidance of crossings

between Γt
st+1 and Γ∗

t is the driving force behind the definition of our drawing invariant.
Namely, by Property P.4 and by the 90◦ counter-clockwise rotation of Γt

st+1, we have that
vt

st+1 is the lowest vertex in Γt
st+1. Since vt

st+1 is on the same horizontal line as the highest
vertex in Γ∗

t , the only edges of Gt
st+1 that might cross G∗

t in Γ are those incident to vt
st+1.

However, since all the vertices of Gt
st+1 different from vt

st+1 lie above Γ∗
t and all the neighbors

of vt
st+1 in Gt

st+1 lie on the vertical line one unit to the right of vt
st+1, by Property P.2 and

by the rotation of Γt
st+1, it follows that the edges of Gt

st+1 incident to vt
st+1 lie above every

edge of G∗
t with which they have a horizontal overlap. Note that, by Property 1, placing

vt
st+1 at the point where it is placed in Γ∗

t maintains the planarity of Γt
st+1.

The convexity of each internal face f of G in Γ follows by induction if f is internal to
some recursively drawn subgraph Gi

j of G. If f is an internal face of G[π′] or has vertices on
two distinct paths among P0, P1, . . . , Pt−1, then f is drawn as a triangle or a trapezoid in Γ,
hence it is convex. The only faces that do not fit in any of these two categories are those
incident to vt−1

st−1
and/or vt−1

st−1+1 and incident to at least one vertex in Pt. The convexity of
these faces follows from two facts. First, the polygon Q delimited by the edge (vt−1

st−1
, vt−1

st−1+1)
and by the path Pt is a convex pentagon (vt−1

st−1
, vt−1

st−1+1, vt
ℓt

, vt
st

, vt
1) (if st > 1) or a convex

quadrilateral (vt−1
st−1

, vt−1
st−1+1, vt

ℓt
, vt

1) (if st = 1). Second, the faces incident to vt−1
st−1

and/or
vt−1

st−1+1 and incident to at least one vertex in Pt form a convex subdivision of Q.
Property W follows by induction and since every vertical grid line intersecting Γ intersects

a recursively constructed drawing or a vertex directly placed by the algorithm.
Concerning Property H, we prove that h(Γ) is at most t, plus

√
n, plus the maximum

height of a recursively constructed drawing of a subgraph of a left subgraph of G at π,
plus the maximum height of a recursively constructed drawing of a subgraph of a right
subgraph of G at π. The first term accounts for the horizontal grid lines h0, h1, . . . , ht−1
on which P0, P1, . . . , Pt−1 are placed. The

√
n term accounts for the horizontal grid lines
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between the highest line intersecting Γt
ℓt−1 (which is one unit below ht−1) and the lowest

line intersecting Γt
st+1 before vt

st+1 is moved to the position it has in Γ∗
t . Indeed, since the

drawings Γt
st+1, Γt

st+2, . . . , Γt
ℓt−1 are constructed recursively, and hence satisfy Property W,

and are rotated by 90◦, and since the graphs Gt
st+1, Gt

st+2, . . . , Gt
ℓt−1 have a total of at

most
√

n vertices, by Lemma 6, it follows that the drawings Γt
st+1, Γt

st+2, . . . , Γt
ℓt−1 intersect,

before moving vt
st+1, at most

√
n grid lines. The third and fourth terms in the upper

bound for h(Γ) account for the total height of the recursively drawn subgraphs different
from Gt

st+1, Gt
st+2, . . . , Gt

ℓt−1. The key observation here is that, apart for the drawings
of Γt

st+1, Γt
st+2, . . . , Γt

ℓt−1, which are already accounted for, any two recursively constructed
drawings which are stacked one on top of the other are drawings of subgraphs of a left
subgraph of G at π and of a right subgraph of G at π (and not of two left subgraphs or
of two right subgraphs); in fact, only the right subgraphs G[wj , wj+1] of G at π are forced
to be stacked on top of the left subgraphs G[uj , uj+1] of G at π (and on top of the graphs
G[vt

j , vt
j+1] with j < st which are also subgraphs of left subgraphs of G at π).

Note that t ≤
√

n by construction and hence t ≤
√

d, given that d ≥ n. Assume that i

and j are indices such that Gi
j is a recursively drawn subgraph of a left subgraph of G at π

and h(Γi
j) is maximum. Indices i′ and j′ are defined analogously for the right subgraphs of G

at π. Let di
j and di′

j′ be the number of vertices in the extended weak dual trees of Gi
j and

Gi′

j′ , respectively. By the upper bound proved above, we have h(Γ) ≤ 2
√

d + h(Γi
j) + h(Γi′

j′)
and thus, by induction, h(Γ) ≤ 2

√
d + f(di

j) + f(di′

j′). By Theorem 3, it holds true that
(di

j)p + (di′

j′)p ≤ (1 − δ)dp. By the definition of f(d) in Lemma 4 (with da = di
j and db = di′

j′),
we have that 2

√
d + f(di

j) + f(di′

j′) ≤ f(d), hence h(Γ) ≤ f(d), which proves Property H. ◀

4 Internally-Strictly-Convex Drawings of Outerpaths

In this section, we prove a tight bound on the area required by internally-strictly-convex grid
drawings of outerpaths. More precisely, we prove that every n-vertex outerpath whose internal
faces have size at most k admits an internally-strictly-convex grid drawing in area O(nk2),
which we also show to match a general lower bound for the internally-strictly-convex grid
drawings of outerplanar graphs. We start by proving the lower bound.

▶ Theorem 8. Every n-vertex outerplane graph with Ω( n
k ) internal faces of size k requires

Ω(nk2) area in any internally-strictly-convex grid drawing.

Proof. Let G be an n-vertex outerplane graph with Ω(n
k ) internal faces of size k. First,

note that any internally-strictly-convex grid drawing of G must be outerplanar. Indeed,
any embedding of an outerplanar graph which is not an outerplanar embedding contains a
degree-2 vertex as an internal vertex. However, such a vertex would create an angle larger
than or equal to 180◦ in an internal face. The area lower bound is obtained by a simple
packing argument. Since any internally-strictly-convex grid drawing of G is outerplanar, it
contains Ω( n

k ) internal faces of size k. Each of these faces occupies Ω(k3) area [1], hence the
total area of the drawing is Ω( n

k · k3), which gives the bound claimed by the theorem. ◀

In the rest of the section, we prove a matching upper bound for the case of outerpaths.
Note that there exist n-vertex outerpaths with Ω(n

k ) internal faces of size k, hence the
lower bound of Theorem 8 applies to outerpaths as well. We introduce some notation and
definitions. Let G be an outerpath and let π = (f1, f2, . . . , fp−1) be the weak-dual of G,
which is a path; refer to Fig. 8. Let ê be the edge of G dual to the edge (f1, f2) of π and
let ẽ be the edge of G dual to the edge (fp−2, fp−1) of π. Moreover, let ĝ = (u0, v0) be any of
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ê
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G0 G1
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vr GrG2

f7

f8

e∗r

f3

e∗2

Figure 8 Decomposition of an outerpath G in fan graphs G0, G1, . . . , Gr. Gate edges are blue.

the two external edges incident to ê that belong to the face f1 of G, where u0 immediately
follows v0 when traversing the outer face of G in counter-clockwise order. Also, let g̃ be any
of the two external edges incident to ẽ that belong to the face fp−1 of G. We augment π

with two new vertices f0 and fp, and edges (f0, f1) and (fp−1, fp). We interpret (f0, f1) and
(fp−1, fp) as edges dual to ĝ and g̃, respectively.

We now describe a decomposition of G into a sequence of smaller outerpaths such that any
two consecutive outerpaths in the sequence share exactly one internal edge of G. We let e∗

0 be
the edge ĝ. Let G0 be the plane graph induced by the vertices delimiting the internal faces
of G incident to the end-vertex common to e∗

0 and ê (see the vertex u0 in Fig. 8). Let e∗
1 be

the external edge of G0, other than e∗
0, dual to an edge of π. We call G0 a fan graph with gate

edges e∗
0 and e∗

1. Suppose that, for some i ≥ 1, a fan graph Gi−1 with gate edges e∗
i−1 and e∗

i

has been defined. Let ui and vi be the end-vertices of e∗
i , where ui is encountered before vi

when traversing the outer face of G in counter-clockwise direction from u0 to v0. We define
the fan graph Gi as follows. Let Vi−1 be defined as

⋃i−1
j=0 V (Gj) \ {ui, vi}. Then Gi is the

outerplane graph induced by the vertices that do not belong to Vi−1 and that are incident
to faces that have ui or vi on their boundary. Let e∗

i+1 be the external edge of Gi, other
than e∗

i , dual to an edge of π. The edges e∗
i and e∗

i+1 are the gate edges of Gi. Eventually,
the decomposition defines a fan graph Gr with gate edges e∗

r and e∗
r+1 such that e∗

r+1 = g̃.
We will show that each fan graph Gi with gate edges e∗

i and e∗
i+1 admits a block-drawing.

This is an outerplanar internally-strictly-convex grid drawing Γi of Gi satisfying the following
properties:
B.1 The two gate edges e∗

i and e∗
i+1 are drawn as vertical segments of unit length such that

y(ui) = y(ui+1) = 0 and y(vi) = y(vi+1) = 1;
B.2 the vertices ui and vi are the leftmost vertices of Γi and no other vertex of Gi has the

same x-coordinate as these vertices; and
B.3 the vertices ui+1 and vi+1 are the rightmost vertices of Γi and no other vertex of Gi

has the same x-coordinate as these vertices.
We proceed as follows. Lemmas 9 and 10 are two technical lemmas that yield special

internally-strictly-convex grid drawings of cycles. We use these two lemmas to compute a
block-drawing Γi of each fan graph Gi with appropriate area bounds. We do so by drawing
each of its faces using either Lemma 9 or Lemma 10, and we appropriately “merge” them
together (Lemma 11). The final drawing Γ of G is obtained by “gluing” the block-drawings
Γ0, . . . , Γr (Theorem 12) at their shared gate edges.

In the following, by half-plane of a line we mean an open half-plane bounded by the line.

▶ Lemma 9 (⋆). Let C = (v1, v2, . . . , vh) with h ≥ 3 be a cycle. Let s1 be a segment
representing e1 = (v1, v2) such that v1 is at the origin (0, 0), x(v2) is a non-negative integer,
and y(v2) = 1. Then C admits an internally-strictly-convex grid drawing ΓC such that C:
I.1 s1 represents e1 in ΓC ;
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v2
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vh−1

vh−2

v1
vh

Figure 9 Illustrations for the proof of Lemma 9.
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vi−2

v1
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vi+2

v1 vi+1

vh−1

ΓCΓC1

ΓC2

Figure 10 Illustration for the proof of Lemma 10.

I.2 the vertex vh is placed at (x(v2) + h − 2, 1);
I.3 let ℓ be the line that passes through s1 oriented in the direction from v1 to v2. Then, all

the vertices v3, . . . , vh lie in the right half-plane of ℓ;
I.4 the width of ΓC is x(v2) · (h − 2) + (h−3)(h−2)

2 + 1; and
I.5 the height of ΓC is h − 1.

Sketch. The drawing ΓC can be obtained as follows; see Fig. 9. Vertices v1 and v2 are at (0, 0)
and (x(v2), 1) in ΓC . For j = 3, . . . , h − 1, we place vj at (x(v2) · (j − 1) + (j−2)(j−1)

2 , j − 1).
Finally, we place vertex vh at (x(v2) + h − 2, 1). This completes the construction of ΓC . We
defer the proof that ΓC satisfies Properties I.1–I.5 to the full version [3]. ◀

The following property is a consequence of the constraints of the drawings of Lemma 9.

▶ Property 2. Let ΓC be the drawing of a cycle C = (v1, v2, . . . , vh) produced by Lemma 9.
Then the drawing obtained by shifting vertex vh in ΓC by any integer amounts to the right
and/or to the bottom is an internally-strictly-convex grid drawing of C.

▶ Lemma 10 (⋆). Let C = (v1, v2, . . . , vh) with h > 3 be a cycle. Let e1 = (v1, v2) and
e2 = (vi, vi+1) be two non-adjacent edges of C. Let s1 be a segment that represents (v1, v2)
such that v1 is at the origin (0, 0), x(v2) is a non-negative integer, and y(v2) = 1. Then C

admits an internally-strictly-convex grid drawing ΓC such that:
J.1 s1 represents e1 in ΓC ;
J.2 the edge e2 is represented by a vertical segment such that x(vi) > x(v2), y(vi) = 1, and

y(vi+1) = 0;
J.3 the width of ΓC is 1 + max{x(v2) · (i − 2) + (i−3)(i−2)

2 , (h−i−1)(h−i)
2 }; and

J.4 the height of ΓC is h − 2.

Sketch. We show how to construct the drawing ΓC ; refer to Fig. 10. First, we define two
cycles C1 = (v1, v2, . . . , vi) and C2 = (v1, vh, vh−1, . . . , vi+1). We apply Lemma 9 to obtain a
drawing ΓC1 of C1 in which the edge (v1, v2) is represented by s1 and to obtain a drawing
ΓC2 of C2 in which the edge (v1, vh) is represented by the segment connecting points (0, 0)
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Figure 11 Illustration for Lemma 11 and Theorem 12. The drawing represents the graph in Fig. 8.

and (1, 1). Let M be the maximum x-coordinate of a vertex in ΓC1 and ΓC2 . We leverage
Property 2 to obtain a drawing Γ′

C1
of C1 by shifting the vertex vi horizontally and rightward

in ΓC1 so that its x-coordinate is 1 + M . Analogously, we leverage Property 2 to obtain a
drawing Γ′

C2
of C2 by shifting the vertex vi+1 downward and rightward in ΓC2 so that its

x-coordinate is 1 + M and its y-coordinate is 0. To obtain the drawing ΓC we then proceed
as follows. We first initialize ΓC to Γ′

C1
. Then we construct a vertically-mirrored copy Γ′′

C2

of Γ′
C2

, that is, we flip the sign of the y-coordinate of each vertex, and we insert Γ′′
C2

in ΓC

so that the placement of v1 is the same in both drawings. Finally, we remove from ΓC the
drawing of the edges (v1, vi) and (v1, vi+1) and draw the edge (vi, vi+1) as a vertical segment
of unit length. This concludes the construction of ΓC . We defer the proof that ΓC satisfies
Properties J.1–J.4 to the full version [3]. ◀

▶ Property 3. Let ΓC be the drawing of a cycle C = (v1, v2, . . . , vi, vi+1, . . . , vh) produced by
Lemma 10. Then the drawing obtained by shifting vertices vi and vi+1 in ΓC by the same
integer amount to the right is an internally-strictly-convex grid drawing of C.

We next show how to construct a block-drawing of a fan graph with appropriate area bounds.

▶ Lemma 11 (⋆). Every ni-vertex fan graph Gi with internal faces of size at most ki admits
a block-drawing whose width is O(niki) and whose height is O(ki).

Sketch. We show how to construct a block drawing Γi of an ni-vertex fan graph Gi with
gate edges e∗

i = (ui, vi) and e∗
i+1 = (ui+1, vi+1) in the more interesting case in which one of

ui and vi, say ui, is incident to at least two internal edges (see, e.g., G0 in Fig. 11). Let
g1, g2, . . . , gt+2 be the internal faces of Gi in clockwise order around ui, where g1 is incident
to e∗

i . Then, for j = 1, . . . , t, we draw the cycle bounding face gj by applying Lemma 9
with e1 being e∗

i and s1 being the segment between (0, 0) and (0, 1), if j = 1, and e1 being
the unique edge (ui, zj) shared by gj−1 and gj , and s1 being the segment representing (ui, zj)
in the drawing constructed so far, otherwise. Finally, we draw the cycle C, obtained by
merging the boundaries of gt+1 and gt+2 and by removing their shared edge (ui, zt+2), by
applying Lemma 10 with e1 being the edge (ui, zt+1), s1 being the segment representing the
edge (ui, zt+1), and e2 being e∗

i+1. Then, by Property 3, we shift to the right vertices ui+1
and vi+1 so that they lie one unit to the right of the rightmost of the remaining vertices
of Gi. Finally, we obtain the desired block drawing Γi of Gi by simply drawing the removed
edge (ui, zt+2) as a straight-line chord of the strictly-convex polygon representing C. We
defer the proof that ΓC is a block drawing with the desired width and height bounds, as well
as the remaining cases of the proof, to the full version [3]. ◀

We are now ready to prove the main theorem of this section.
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▶ Theorem 12. Every n-vertex outerpath whose internal faces have size at most k admits
an internally-strictly-convex grid drawing in O(nk2) area.

Proof. We compute block drawings Γ0, . . . , Γr of the fan graphs G0, . . . , Gr of the outerpath G

so that each block drawing has height O(ki) and width O(niki) by Lemma 11, where ni is
the number of vertices of Gi and ki is the maximum size of any face of Gi (0 ≤ i ≤ r). We
iteratively construct Γ by “gluing” together the block drawings Γ0, . . . , Γr at their common
gate edges. More precisely, we proceed as follows. We initialize Γ to Γ0. Then, for i = 1, . . . , r,
we augment Γ with a copy of Γi so that the drawing of the gate edge e∗

i in Γi coincides
with the drawing of e∗

i in the drawing constructed so far. It follows that the height of Γ is
O( max

0≤i≤r
{ki}), which is in O(k), while its width is O(

∑r
i=0 niki), which is in O(nk). ◀

5 Conclusions

In this paper we have proved the first sub-quadratic area upper bound for internally-convex
grid drawings of outerplanar graphs. We also presented algorithms to construct internally-
strictly-convex grid drawings of outerpaths whose area is asymptotically optimal, with respect
to the number of vertices of the graph and the maximum size of an internal face.

Several intriguing questions are left open by our research:
A first, natural, research direction is to narrow the gap between the O(n1.5) upper bound
and the Ω(n) lower bound for internally-convex grid drawings of n-vertex outerplanar
graphs. In particular, any super-linear lower bound would be an important step towards
proving an analogous result for (not necessarily convex) planar straight-line grid drawings.
Concerning internally-strictly-convex grid drawings of (general) n-vertex outerplane
graphs whose faces have size at most k, for which we proved an Ω(nk2) lower bound, we
are not aware of any upper bound better than O(n3), which comes from the literature on
strictly-convex polygons [1]. Tightening this gap is a nice goal.
The case k = 4, for which there is an O(n2) upper bound (a consequence of results in [2]),
is especially interesting. Indeed, any upper bound would translate to an upper bound for
the area requirements of straight-line drawings of outer-1-planar graphs.
Finally, we have observed that, for convex grid drawings of n-vertex outerplane graphs
(in which the outer face is also required to be convex), Θ(n3) is a tight bound for the
area requirements. However, if the maximum size of an internal face is bounded, then our
lower bound does not hold anymore. We believe that an Ω(n log n) lower bound can be
proved, given that the outer face would require a dimension to have Ω(n) length in order
to be convex and given that there exist n-vertex trees that require Ω(log n) length in
both dimensions in any planar straight-line drawing (see, e.g., [14]). However, this lower
bound is far from the O(n3) upper bound and it would be interesting to close this gap.
We conclude by mentioning that we believe that the techniques we developed in order

to construct internally-strictly-convex grid drawings of outerpaths could lead to non-trivial
area bounds for outerplanar graphs whose weak dual tree has bounded diameter. We plan to
investigate the truth of this intuition in the near future.
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