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Abstract
For a finite set P of points in the plane in general position, a crossing family of size k in P is a
collection of k line segments with endpoints in P that are pairwise crossing. It is a long-standing
open problem to determine the largest size of a crossing family in any set of n points in the plane in
general position. It is widely believed that this size should be linear in n.

Motivated by results from the theory of partitioning complete geometric graphs, we study a
variant of this problem for point sets P that do not contain a non-crossing family of size m, which is
a collection of 4 disjoint subsets P1, P2, P3, and P4 of P , each containing m points of P , such that
for every choice of 4 points pi ∈ Pi, the set {p1, p2, p3, p4} is such that p4 is in the interior of the
triangle formed by p1, p2, p3. We prove that, for every m ∈ N, each set P of n points in the plane in
general position contains either a crossing family of size n/2O(

√
log m) or a non-crossing family of

size m, by this strengthening a recent breakthrough result by Pach, Rubin, and Tardos (2021). Our
proof is constructive and we show that these families can be obtained in expected time O(nm1+o(1)).
We also prove that a crossing family of size Ω(n/m) or a non-crossing family of size m in P can be
found in expected time O(n).
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1 Introduction

Let P be a finite set of points in the plane. We say that P is in general position if there is
no line containing three points of P . Two line segments in the plane are crossing if their
intersection is a single point in the relative interior of both of them. If F is a set of k line
segments in the plane, each having both endpoints in P , then we say that F is a crossing
family of size k in P if any two line segments in F cross; see Figure 1(a) for an example.
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19:2 Crossing and Non-Crossing Families

A classic topic in discrete geometry is to find the largest size T (n) of a crossing family in any
set of n points in the plane in general position. The study of this problem was initiated in 1991
by Aronov, Erdős, Goddard, Kleitman, Klugerman, Pach, and Schulman [9], who proved
that T (n) ∈ Ω(

√
n). On the other hand, it is trivial to see that T (n) ≤ ⌊n/2⌋. The currently

best known upper bound is T (n) ≤ ⌈8n/41⌉, obtained by Aichholzer, Kynčl, Scheucher,
Vogtenhuber, and Valtr [3]. There is a prevailing conjecture that T (n) ∈ Θ(n) [9, 14].

▶ Problem 1 ([14]). Is there a constant c > 0 such that every set of n points in the plane in
general position contains a crossing family of size at least cn?

Despite many attempts and several studied variants of the problem – see for example [3,
5, 19, 24, 29, 33] – to date no one has been able to resolve this problem. In fact, for a long
time, not even an improvement of the lower bound of Ω(

√
n) was obtained. In 2021, Pach,

Rubin, and Tardos [29] achieved a breakthrough result by proving that T (n) ∈ n1−o(1). More
precisely, they showed the following result.

▶ Theorem 1 ([29]). Every set of n points in the plane in general position contains a crossing
family of size at least n/2O(

√
log n).

Despite this remarkable progress, the problem of deciding whether T (n) ∈ Θ(n) remains
open. Note that the problem becomes trivial if restricted to point sets in convex position,
that is, point sets whose points are vertices of a convex polygon. It is easy to see that any
set of n points in convex position determines a crossing family of size ⌊n/2⌋.

In this work, we study a variant of the crossing family problem where we relate the
size of a largest crossing family in a point set to how convex/non-convex the point set
is. A non-crossing family in a set P of points in the plane is a collection of four disjoint
non-empty subsets P1, P2, P3, and P4 of P , such that for every choice of four points pi ∈ Pi

the set {p1, p2, p3, p4} is not in convex position, with p4 in the interior of the convex hull of
{p1, p2, p3}. The size of a non-crossing family is the minimum over the cardinalities of the
four subsets P1, P2, P3, and P4. see Figure 1(b) for an example.

(a) (b)

P1

P2

P3

P4

Figure 1 (a) A crossing family of size 5. (b) A non-crossing family of size 2.

It is easy to see and follows from Carathédory’s theorem that a point set is in convex
position if and only if it does not contain a non-crossing family of size one. Then, as we have
mentioned, it is easy to find a linear-size crossing family. Towards answering the question of
whether T (n) ∈ Θ(n), we parameterize point sets according to the largest non-crossing family
they contain, and try to find their largest crossing family in dependence of this parameter.
We thus study the following Ramsey-type problem.

▶ Problem 2. Given positive integers m and n, what is the size of a largest crossing family
in any set of n points in the plane in general position that does not contain a non-crossing
family of size m?
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In particular, for which values of m can we always find a crossing family that is larger
than the bound n/2O(

√
log n) from Theorem 1 for any set of n points in general position?

1.1 Motivation: partitioning of complete geometric graphs
The motivation for studying Problem 2 also comes from the theory of partitioning complete
geometric graphs into subgraphs. A complete geometric graph is a pair (V,E), where V is a
set of points in the plane in general position and E is the set of all closed line segments with
endpoints in V . The elements of V are called vertices and the elements of E are called edges.

In 2006, Bose, Hurtado, Rivera-Campo, and Wood [12] introduced the problem of
partitioning the edge set of a complete geometric graph into plane trees, or, more generally, into
plane subgraphs. Recently, these problems have attracted considerable attention [4, 11, 17, 30].

It is not hard to see that the edge set of every complete geometric graph on n vertices
can be partitioned into n− 1 plane subgraphs. The best known lower bound n

2 + 1 [28] is
also linear in n, but it is not known whether a partition into cn plane subgraphs for some
constant c < 1 is always possible. However, if every point set contains a large crossing family
or a large non-crossing family, we get such an upper bound: Bose, Hurtado, Rivera-Campo,
and Wood [12] proved that the edge set of every complete geometric graph on n vertices with
k pairwise crossing edges can be partitioned into n− k plane trees (which are not necessarily
spanning). By Theorem 1, this gives an upper bound of n− n/2O(

√
log n) for the partition

problem. On the other hand, Pach, Saghafian, and Schnider [30] showed that the edge set
of every complete geometric graph on n vertices whose vertex set contains a non-crossing
family of size bn can be partitioned into (1 − b)n plane subgraphs.

Motivated by these two results, Orthaber [27] posed the following problem.

▶ Problem 3 ([27]). Is there a constant c > 0 such that every set of n points in the plane in
general position contains a crossing family of size cn or a non-crossing family of size cn?

An affirmative solution to Problem 3 would imply that the edge set of any complete
geometric graph on n vertices can be partitioned into cn plane subgraphs for some constant
c < 1. This is a further motivation for studying Problem 2.

We note that a weaker variant of Problem 3 was independently posed by Schnider [32];
see Problem 5 in Section 6. Bose, Hurtado, Rivera-Campo, and Wood [12] actually proved a
stronger result, where the crossing family of size k is replaced by a more general configuration
called a spoke set by Schnider [32]. A spoke set of size k in a set P of n points in the plane
in general position is a set L of k pairwise non-parallel lines such that in each unbounded
region of the arrangement defined by the lines in L there lies at least one point of P ; see
Figure 2(a) for an example. It is not difficult to see that if P determines a crossing family of
size k, then it determines a spoke set of size k [12]. The converse, however, is not true, as
the example in Figure 2(b) illustrates.

Non-crossing families were also used by Dumitrescu and Pach [17], who proved that every
complete geometric graph on a dense set of n points can be partitioned into at most cn plane
subgraphs for some constant c < 1. Here, a set P of n points is dense if the ratio between
the maximum and the minimum distances in P is of the order of Θ(

√
n).

1.2 Motivation: geometric quasiplanarity of complete graphs
For an integer k ≥ 2, we say that a graph drawing is k-quasiplanar if it contains no set of k
pairwise crossing edges. We say that a drawing of a graph G is straight-line if each edge of
G is represented by a line segment between its endvertices. A graph G is k-quasiplanar if it
admits a k-quasiplanar drawing. If G admits a straight-line k-quasiplanar drawing, then G

is geometric k-quasiplanar.

GD 2025



19:4 Crossing and Non-Crossing Families

(a) (b)

Figure 2 (a) A spoke set of size 5. (b) A set of 6 points in the plane in general position that
determines a spoke set of size 3 but does not determine a crossing family of size 3.

The study of k-quasiplanar graphs was initiated in the 1990s and has gathered considerable
attention from researchers in discrete geometry and graph drawing communities; see [1, 2,
6, 7, 8, 13, 16, 23, 22], among many others. One of the problems in this line of research
is determining the minimum value k for which the complete graph Kn is k-quasiplanar or
geometric k-quasiplanar. These values are only known for small values of n. In particular,
Ackerman [1] showed that K9 is geometric 3-quasiplanar and Brandenburg [13] proved that
K10 is 3-quasiplanar but not geometric 3-quasiplanar. For larger values of n, it remains an
interesting open problem to determine these values. In this language, Problem 2 asks us to
determine this value for specific classes of straight-line drawings of Kn, that is, the ones for
which the underlying point set does not contain a non-crossing family of size m.

1.3 Notation
In this paper, we consider only finite sets of points in the plane in general position. For
brevity, we sometimes just refer to them as point sets. We use log to denote the logarithm
with base 2. For a positive integer n, we denote by [n] the set {1, . . . , n}. For the sake of
clarity of presentation, we systematically omit floor and ceiling signs whenever they are not
crucial. For a point set P , we use conv(P ) to denote the convex hull of P . If A and B are
two sets of points in the plane, then we call them separated if their convex hulls are disjoint.

2 Our contribution

We first show that forbidding non-crossing families of some small size can indeed help in
finding larger crossing families than the ones obtained from Theorem 1. We actually find
something stronger, a so-called convex bundle.

For a positive integer k and a point set P in the plane, a convex bundle of size k in P is
a k-tuple of disjoint non-empty subsets C1, . . . , Ck of P , such that for every choice of points
ci ∈ Ci for every i ∈ [k], the points c1, . . . , ck are in convex position. The width of a convex
bundle of size k is the minimum over the cardinalities of its subsets C1, . . . , Ck.

Our first result guarantees the existence of a convex bundle of size Θ(n/m) in any n-point
set without a non-crossing family of size m. To show it, we make use of the so-called
Same-Type-Lemma [10], a classic result on orientations of point tuples in point sets.

▶ Theorem 2. There is a constant C > 0 such that, for all positive integers m and k, every
set of at least Ckm points in the plane in general position contains either a convex bundle of
size k and width m or a non-crossing family of size m.
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Since every convex bundle of size 2k and width at least 1 determines a crossing family of
size k, we obtain the following immediate corollary of Theorem 2.

▶ Corollary 3. There is a constant C > 0 such that, for all positive integers m and k, every
set of at least Ckm points in the plane in general position contains either a crossing family
of size k or a non-crossing family of size m. ◀

In particular, it follows from Corollary 3 that if our point set does not contain a constant
size non-crossing family, then it contains a crossing family of linear size. Working with
crossing families directly, we use Theorem 2 in combination with Theorem 5 below to improve
the bound from Corollary 3 as follows, by this obtaining our main theorem.

▶ Theorem 4. There is a constant C ′ > 0 such that, for every positive integer m, every set
of n ≥ C ′m points in the plane in general position contains either a non-crossing family of
size m or a crossing family of size n/2O(

√
log m).

Since no set of n points in the plane contains a non-crossing family of size n, Theorem 1
can be obtained as a corollary of Theorem 4 by setting m = n. The lower bound on the size
of the crossing families that we obtain by Theorem 4 is asymptotically larger than the bounds
from Theorem 1 and Corollary 3, as long as the point set does not contain a non-crossing
family of size nΩ(1). For example, if we forbid non-crossing families of size logn, then we
find a crossing family of size Ω(n/2

√
log log n) instead of n/2O(

√
log n) and Ω(n/ logn) that

we would get from Theorem 1 and Corollary 3, respectively. Further, Theorem 4 implies
that for any constant m, if P is a set of n points in the plane in general position with no
non-crossing family of size m, then the complete geometric graph on P can be decomposed
into cn plane subgraphs for some constant c < 1, by this resolving the problem of Bose,
Hurtado, Rivera-Campo and Wood [12] for such point sets.

To prove Theorem 4, we use the following slight strengthening of Theorem 1, which we
obtain by modifying the proof of the result by Pach, Rubin, and Tardos [29].

▶ Theorem 5. For every set P of n ≥ 2 points in the plane in general position and every
partition of P into two separated subsets P1 and P2 such that ||P1| − |P2|| ≤ 1, P contains a
crossing family F of size at least n/2O(

√
log n) where each segment from F has one endpoint

in P1 and one endpoint in P2.

We also consider the algorithmic aspects of our results. The proofs of Theorems 2 and 4
are both constructive. By analyzing their time complexity, we obtain an expected linear time
algorithm for Theorem 2 and an expected polynomial time algorithm for Theorem 4.

▶ Theorem 6. There is a constant C > 0 such that for all positive integers k and m, if P is
a set of n = Ckm points in the plane in general position, then a convex bundle of size k and
width m or a non-crossing family of size m can be computed in expected time O(n).

Further, a crossing family of size n/2O(
√

log m) or a non-crossing family of size m can be
computed in expected time O(nm1+O((log m)−1/3)).

We remark that the non-determinism in the time complexities stems from an analysis of
the runtime requirements of the Same-Type-Lemma. A deterministic variant of this building
block would yield a deterministic analogue of Theorem 6. Further, we note that the proof of
Theorem 1 is also constructive and results in an n2+O((log n)−1/3) time algorithm for finding
an according crossing family in a set of n points; see [29].

Finally, we show that the size of the largest spoke set and the largest crossing family in a
point set can differ by a constant multiplicative factor, showcasing the different behavior of
these two closely related notions.

GD 2025



19:6 Crossing and Non-Crossing Families

▶ Proposition 7. For any odd integer k, there is a set P of 3k − 1 points in the plane in
general position, such that the largest spoke set in P contains ⌊1.5k⌋ lines but P does not
contain a crossing family of size larger than k.

Note that if Problem 1 admits an affirmative solution, then the sizes of the maximal
spoke set and the maximal crossing family differ by at most a constant multiplicative factor.

3 Proofs of Theorems 2 and 4

This section is devoted to proving our main result, the existence of a large crossing family or
a large non-crossing family (Theorem 4), for which we will use and first prove the existence
of a large convex bundle or a large non-crossing family (Theorem 2).

One crucial ingredient for the proof of Theorem 2 is a well-known result by Bárány and
Valtr [10], called the Same-Type lemma, on the combinatorics of point sets in Rd.

For an integer d ≥ 2 and non-coplanar points p1, . . . , pd+1 ∈ Rd, where pi,j is the
jth coordinate of pi, the orientation of the (d + 1)-tuple (p1, . . . , pd+1) is the sign of the
determinant of the matrix

1 1 · · · 1
p1,1 p2,1 · · · pd+1,1

...
...

...
...

p1,d p2,d · · · pd+1,d

 .

For point sets Y1, . . . , Yd+1 in Rd, we say that the sets Y1, . . . , Yd+1 have the same-type
property if, for every choice of points y1 ∈ Y1, . . . , yd+1 ∈ Yd+1, the orientation of the (d+ 1)-
tuple (y1, . . . , yd+1) is the same. More generally, for every integer r ≥ d+ 1, we say that sets
Y1, . . . , Yr in Rd have the same-type property if any d+ 1 of them do.

With these definitions, we can now state the Same-Type lemma.

▶ Theorem 8 (Same-Type lemma [10]). For all integers d ≥ 2 and r ≥ d + 1, there is a
constant c = c(d, r) > 0 such that for all pairwise disjoint sets X1, . . . , Xr in Rd whose union
is in general position, there exist point sets Y1, . . . , Yr having the same-type property and
satisfying Yi ⊆ Xi and |Yi| ≥ c|Xi|.

Bárány and Valtr [10] showed that c(d, r) ≥ (d+ 1)(−2d−1)(r−1
d ). This was later improved

by Fox, Pach, and Suk [18] to c(d, r) ∈ 2−O(d3r log r). Very recently, Bukh [15] proved the
bounds d−50d3

r−d2 ≤ c(d, r) ≤ ddr−d, which are polynomial in r.
For disjoint sets P and Q of points in the plane, we write x(P ) < x(Q) if the x-coordinate

x(p) of every point p ∈ P is smaller than x(q) for every point q ∈ Q. For a positive integer
a, we say that a points in the plane form an a-cap if they lie on the graph of some concave
function. Similarly, for u ∈ N, a set of u points in the plane forms a u-cup if its points lie on
the graph of some convex function. Note that any a-cap or u-cup is a point set in convex
position.

▶ Theorem 2. There is a constant C > 0 such that, for all positive integers m and k, every
set of at least Ckm points in the plane in general position contains either a convex bundle of
size k and width m or a non-crossing family of size m.

Proof. We set C = 7·c(2, 7)−1 ·c(2, 5)−6, where c(2, r) ∈ (0, 1] is the constant from Theorem 8.
We assume k ≥ 3 as otherwise the statement is trivial. Let P be a set of n = Ckm points
in the plane in general position that does not contain a non-crossing family of size m. We
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partition P by vertical lines into sets P1, . . . , P7 such that x(P1) < · · · < x(P7) and |Pi| = n/7
for every i ∈ {1, . . . , 7}. We now apply Theorem 8 to the 7-tuple (P1, . . . , P7) and obtain
the 7-tuple B = (P ′

1, . . . , P
′
7) that satisfies P ′

i ⊆ Pi and |P ′
i | ≥ c(2, 7) · n/7 ≥ m for every

i ∈ {1, . . . , 7}.
We let pi be an arbitrary point from P ′

i for each i ∈ {1, . . . , 7}. We show that the
set S = {p1, . . . , p7} is in convex position. Suppose for contradiction it is not. Then, by
Carathéodory’s theorem, there is a 4-tuple T of points from S such that T is not in convex
position. Since the collection B has the same-type property, the sets from B whose points
are in T form a non-crossing family of size m. This contradicts our assumption that P does
not contain such a family. Moreover, since x(P ′

1) < · · · < x(P ′
7), it follows from Theorem 8

that there are sets A and U such that A ∪ U = {1, . . . , 7}, A ∩ U = {1, 7}, {pi : i ∈ A} is an
|A|-cap, and {pi : i ∈ U} is a |U |-cup for every choice of S = {p1, . . . , p7}. By the pigeonhole
principle, we have |A| ≥ 5 or |U | ≥ 5. By symmetry, we can assume without loss of generality
that |A| ≥ 5 and we let a1 < · · · < a5 be the 5 smallest elements of A.

Thus, we are done if k ≤ 5, and we can assume k ≥ 6. We partition the set P ′
a3

by vertical strips into sets P ′
a3,1, . . . , P

′
a3,k, each of size |P ′

a3
|/k. Now, we let Q1 = P ′

a1
,

Q2 = P ′
a2

, Qk−1 = P ′
a4

, Qk = P ′
a5

, and Qj = P ′
3,j for every j ∈ {3, 4, . . . , k − 2}. Observe

that x(Q1) < · · · < x(Qk) and |Qi| ≥ c(2, 7) · n/(7k) ≥ m for every i ∈ [k]. Moreover, for
every choice of q1 ∈ Q1, q2 ∈ Q2, q3 ∈ Q3 ∪ · · · ∪Qk−2, q4 ∈ Qk−1, and q5 ∈ Qk, the points
q1, . . . , q5 form a 5-cap.

Let π be the permutation of [k] defined by π(i) = ⌈i/2⌉ if i is odd and π(i) = k + 1 − i/2
if i is even. Our goal is to show that for any 5 ≤ ℓ ≤ k, there exist large sets Rℓ

i ⊆ Qπ(i) for
i ∈ [ℓ] such that for all choices ri ∈ Rℓ

i , the points r1, . . . , rℓ form an ℓ-cap; cf. Figure 3. To
this end, we first iteratively construct the sets Rℓ

i such that any five sets Rℓ
i , . . . , R

ℓ
i+4 fulfill

the same-type property. Then, we reason about their sizes, and finally, we show by induction
that they fulfill ℓ-cap property.

Rℓ+1
1

Rℓ+1
3

Rℓ+1
5

Rℓ+1
7

Rℓ+1
6

Rℓ+1
4

Rℓ+1
2

r1

r3
r5

r7 r6

r4

r2

Figure 3 An illustration of the proof of Theorem 2 for ℓ = 6.

For ℓ = 5, we simply set Rℓ
i = Qπ(i) for each i ∈ [ℓ]. Note that these sets have the

same-type property by construction, and that for all choices ri ∈ R5
i , the points r1, . . . , r5

form a 5-cap. We proceed by iteratively increasing ℓ. Assume that we have sets Rℓ
1, . . . , R

ℓ
ℓ

for some integer ℓ with 5 ≤ ℓ < k such that Rℓ
i ⊆ Qπ(i) for every i ∈ [ℓ] and such that any

five sets Rℓ
i , . . . , R

ℓ
i+4 fulfill the same-type property. We apply Theorem 8 to the 5-tuple

Rℓ
ℓ−3, R

ℓ
ℓ−2, R

ℓ
ℓ−1, R

ℓ
ℓ, R

ℓ
ℓ+1 = Qπ(ℓ+1) ordered by x-coordinates. This way, we obtain sets

Rℓ+1
j ⊆ Rℓ

j for every j ∈ {ℓ− 3, . . . , ℓ+ 1} such that |Rℓ+1
j | ≥ c(2, 5) · |Rℓ

j | and the collection
Rℓ+1

ℓ−3, R
ℓ+1
ℓ−2, R

ℓ+1
ℓ−1, R

ℓ+1
ℓ , Rℓ+1

ℓ+1 has the same-type property. For every i ∈ [ℓ − 4], we set
Rℓ+1

i = Rℓ
i .

GD 2025



19:8 Crossing and Non-Crossing Families

Next, consider the sizes of the final sets Rk
i for i ∈ [k]. Note that we apply Theorem 8 at

most five times within each set Qi. Thus, at the end we have, for every i ∈ [k],

|Rk
i | ≥ c(2, 5)5 · |Qπ(i)| ≥ c(2, 5)5 · c(2, 7) · n/(7k) ≥ m/c(2, 5),

where we used the choice of C and n.
Finally, we argue by induction on ℓ that for all choices ri ∈ Rℓ

i , the points r1, . . . , rℓ form
an ℓ-cap. This is clearly true for ℓ = 5 by the choice of Q1, Q2, Q3, Qk−1, and Qk. Thus,
we assume ℓ ≥ 5 and proceed with the induction step ℓ → ℓ+ 1.

Since Rℓ+1
j ⊆ Rℓ

j for every j ∈ [ℓ], it follows from the induction hypothesis that the points
r1, . . . , rℓ form an ℓ-cap for any choice of ri ∈ Rℓ+1

i with i ∈ [ℓ]. Thus, we only need to verify
that rℓ+1 extends this ℓ-cap into an (ℓ+ 1)-cap.

Since x(Rℓ+1
ℓ−1) < x(Rℓ+1

ℓ+1) < x(Rℓ+1
ℓ ) or x(Rℓ+1

ℓ ) < x(Rℓ+1
ℓ+1) < x(Rℓ+1

ℓ−1), all points from
Rℓ+1

ℓ+1 lie in a vertical strip S between Rℓ+1
ℓ−1 and Rℓ+1

ℓ . Since for every choice of q1 ∈ Q1,
q2 ∈ Q2, q3 ∈ Q3 ∪ · · · ∪Qk−2, q4 ∈ Qk−1, and q5 ∈ Qk, the points q1, . . . , q5 form a 5-cap,
all points from ∪i∈{3,4,...,ℓ+1}R

ℓ+1
i lie above any line determined by one point from Rℓ+1

1 and
one point from Rℓ+1

2 .
Since the collection Rℓ+1

ℓ−3, R
ℓ+1
ℓ−2, R

ℓ+1
ℓ−1, R

ℓ+1
ℓ , Rℓ+1

ℓ+1 has the same-type property, for every
choice of one point from each set of this collection, the resulting 5-tuple is in convex position.
Otherwise, similarly as before, it follows from Carathéodory’s theorem that P contains a
non-crossing family of size m/c(2, 5) ≥ m, which is impossible by assumption. It follows
from this fact that all points from Rℓ+1

ℓ+1 lie below every line determined by a point from
Rℓ+1

ℓ−3 and a point from Rℓ+1
ℓ−1 (otherwise there are four points from Rℓ+1

ℓ−3, Rℓ+1
ℓ−1, Rℓ+1

ℓ+1, and
Rℓ+1

ℓ that are not in convex position). Similarly, all points from Rℓ+1
ℓ+1 lie below every line

determined by a point from Rℓ+1
ℓ−2 and a point from Rℓ+1

ℓ . All points from Rℓ+1
ℓ+1 lie on the

same side of all lines determined by a point from Rℓ+1
ℓ−1 and a point from Rℓ+1

ℓ . If they lie
above all such lines, then r1, . . . , rℓ+1 form an (ℓ+ 1)-cap, since rℓ+1 ∈ S is contained in the
triangle spanned by lines rℓ−3rℓ−1, rℓ−2rℓ, and rℓ−1rℓ, and we are done. Thus, we suppose
that all points from Rℓ+1

ℓ+1 lie below these lines.
Then, for every choice r1 ∈ Rℓ+1

1 , r2 ∈ Rℓ+1
2 , rℓ−1 ∈ Rℓ+1

ℓ−1, rℓ ∈ Rℓ+1
ℓ , and rℓ+1 ∈ Rℓ+1

ℓ+1,
the points r1, r2, rℓ−1, rℓ, rℓ+1 are not in convex position. This is because rℓ+1 is located in
the part of the vertical strip S that lies between the two line segments r1r2 and rℓ−1rℓ. We
apply Theorem 8 to the 5-tuple (Rℓ+1

1 , Rℓ+1
2 , Rℓ+1

ℓ−1, R
ℓ+1
ℓ , Rℓ+1

ℓ+1) and obtain sets Sj ⊆ Rℓ+1
j

for every j ∈ {1, 2, ℓ− 1, ℓ, ℓ+ 1} such that |Sj | ≥ c(2, 5) · |Rℓ+1
j | and (S1, S2, Sℓ−1, Sℓ, Sℓ+1)

has the same-type property. By selecting a point from each Sj we cannot get a point set in
convex position, since no 5-tuple of points from Rℓ+1

1 , Rℓ+1
2 , Rℓ+1

ℓ−1, R
ℓ+1
ℓ , Rℓ+1

ℓ+1 is in convex
position. It follows from the same-type property and from Carathéodory’s theorem that some
4-tuple of sets Sj forms a non-crossing family. This family has size |Sj | ≥ c(2, 5) · |Rℓ+1

j | ≥ m,
which contradicts the fact that P does not contain such a non-crossing family.

Altogether, the sets Rk
1 , . . . , R

k
k form a convex bundle of size k and width at least m. ◀

To obtain the bound in Theorem 4, we combine Theorem 2 with Theorem 5 (the proof of
which can be found in Section 4).

▶ Theorem 4. There is a constant C ′ > 0 such that, for every positive integer m, every set
of n ≥ C ′m points in the plane in general position contains either a non-crossing family of
size m or a crossing family of size n/2O(

√
log m).

Proof. Let C ′ = 6C, where C is the constant from Theorem 2, and let P be a set of n ≥ C ′m

points in general position that does not contain a non-crossing family of size m. Further,
let k = ⌊n/(2Cm)⌋ ≥ 3, and note that 2kCm ≤ n < 2(k + 1)Cm ≤ 8

3kCm. It follows from
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Theorem 2 applied with 2k that P contains a convex bundle of size 2k and width m. We
denote the sets which form this convex bundle by A1, A2, . . . , Ak, B1, B2, . . . , Bk in cyclical
order given by the convex position.

For every i ∈ [k], we apply Theorem 5 to the set Ai ∪ Bi and obtain a crossing family
Fi of size at least m/2c

√
log m for some constant c > 0 such that each of its line segments

has one endpoint in Ai and the other in Bi, where the constant c does not depend on the
cardinality m of the point sets.

By the definition of the convex bundle, each line segment from Fi crosses each line
segment from Fj for all i and j with 1 ≤ i < j ≤ k. It follows that the line segments in
∪k

i=1Fi form a crossing family of size

km

2c
√

log m
≥ 3

8C · n

2c
√

log m
∈ n

2O(
√

log m)
,

which completes the proof. ◀

4 Proof of Theorem 5

In this section, we show that every set of n points in the plane in general position partitioned
into two separated nonempty subsets P1 and P2 of equal size contains a crossing family F
of size at least n/2O(

√
log n), where each segment from F has one endpoint in P1 and one

endpoint in P2. We do so by slightly modifying the proof of Theorem 1 by Pach, Rubin, and
Tardos [29].

Let L be a finite set of lines in the plane. Following the terminology in [29], we call the
partition A = A(L) of R2 \ (

⋃
L) into 2-dimensional sets, called cells, the arrangement1 of

lines from L. Each cell of A is a maximal connected region of R2 \ (
⋃

L) and a (possibly
unbounded) convex polygon. The boundary of each cell consists of edges, which are portions
of the lines from L. The edges connect crossings between lines from L, which are called
vertices. The zone of a line ℓ ̸∈ L in the arrangement A is the union of all the open cells
whose closure is intersected by ℓ.

We will need the following result on point sets and line arrangements, which was implicitly
established by Matoušek [26, 25]; see [29] for a proof.

▶ Lemma 9 ([26]). For any n-element point set P in the plane in general position and for
any ε > 0, there exists a set L of O(1/ε2) lines such that the zone of any line ℓ /∈ L within
the arrangement A(L) contains at most εn points of P .

The following definitions were introduced by Pach, Rubin, and Tardos [29]. For non-empty
separated point sets A and B, we define a binary relation <B on A such that, for distinct
points x, y ∈ A, we let x <B y if B is contained in the open half-plane to the left of the line
determined by x and y and oriented from x towards y. Pach, Rubin, and Tardos [29] proved
that <B is a partial order on A, in which two distinct points x and y are incomparable if
and only if the line through x and y intersects conv(B).

For a partially ordered set (S,<S), we use ι(S,<S) to denote the number of pairs of
elements from S that are incomparable in <S . For ε > 0, two separated point sets A and B,
each with m points, are said to form an ε-avoiding pair if ι(A,<B) + ι(B,<A) ≤ εm2.

1 We remark that in other literature, the line arrangement formed by a set L of lines also contains L,
partitioned into vertices, which are the crossings of L, and edges, which are the (possibly unbounded)
segments of lines of L between consecutive crossings.
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The following lemma is a variant of Lemma 3.3 by Pach, Rubin, and Tardos [29]. Its
proof is a modification of their argument.

▶ Lemma 10. There is an absolute constant c > 0 with the following property. For every
positive integer m and every real number ε ∈ (0, 1), if P is a set of n points in the plane in
general position such that n ≥ cm

ε4 and P is partitioned into two separated subsets P1 and
P2 with ||P1| − |P2|| ≤ 1, then there are two (separated) m-element sets A ⊆ P1 and B ⊆ P2
that form an ε-avoiding pair.

Proof. We first apply Lemma 9 to obtain a set L of r = c0/ε
2 lines for some constant c0 > 0

and an arrangement A = A(L) such that the zone of any other line within A contains at
most εn/16 points of P . We assume that r ≥ 3 and choose a constant c such that c ≥ 16c2

0.
We split each cell of A with parallel segments or half-lines that do not pass through

any point of P into smaller cells such that all but at most one of them (which we will call
exceptional) contain precisely m points of P , and if there is an exceptional cell, it contains
fewer than m points. Since there is at most one exceptional (smaller) cell per cell of A, there
are at most r2+r+1

2 < r2 exceptional cells in total. Let Π be the resulting cell decomposition
of R2 induced by A and the additional segments and half-lines. Note that every cell in Π is
convex. We call the set of m points of P inside a non-exceptional cell of Π a cluster. Let D
be the number of clusters and note that D ≤ n/m.

Let ℓ be a line that separates P1 from P2. Such a line exists as P1 and P2 are separated.
By the choice of A, the zone of ℓ in A contains at most εn/16 points of P . These points lie
in at most εn/(16m) clusters, as each such cluster contains m points from the zone of ℓ in A.

There are at most r2m points of P that do not belong to any cluster as the number of
exceptional (smaller) cells is at most r2 and each such a cell contains less than m points
of P . Thus, since |P1| = n/2, the number of clusters that contain points from P1 is at least
(n/2 − r2m)/m, and an analogous claim is true for P2.

The number of pairs (C1, C2) of clusters C1 and C2 such that C1 ⊆ P1 and C2 ⊆ P2 is at
least(

n/2 − r2m

m

)2

− εn

16mD ≥ (n/2 − c2
0m/ε

4)2

m2 − εn2

16m2

≥ (n/2 − n/16)2

m2 − n2

16m2 >
n2

8m2 ,

as every cluster containing points from P1 and P2 is in the zone of ℓ and the number of
exceptional cells is at most r2. We also used the choice of n, r = c0/ε

2, ε < 1, D ≤ n/m,
n ≥ cm/ε4, and c ≥ 16c2

0.
Let

X =
∑

(C1,C2)

(ι(C1, <C2) + ι(C2, <C1)),

where the sum is taken over all ordered pairs (C1, C2) of distinct clusters such that C1 ⊆ P1
and C2 ⊆ P2.

We now estimate X according to the point pairs that are incomparable with respect to a
cluster. An unordered pair of distinct points {x, y} ∈

(
P
2
)

contributes to X only if x and y

come from the same cluster whose points from P are contained in P1 or P2. In this case, the
contribution of {x, y} is the number of other clusters whose points from P are contained in
P2 or P1, respectively, and whose convex hulls are crossed by the line ℓ′ containing x and
y. All of these clusters belong to the zone of ℓ′ in the arrangement A. By the choice of A,
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the zone of any line contains at most εn/16 vertices. Thus, the contribution of any pair of
points is at most εn/(16m) and we obtain

X ≤ D

(
m

2

)
εn

16m <
εn2

32 ,

since D ≤ n/m.
On the other hand, every pair of clusters (C1, C2) which is not ε-avoiding contributes

more than εm2 to X. Therefore, there are at most X/(εm2) such pairs, implying that the
number of not ε-avoiding pairs of clusters is less than

εn2

32 · 1
εm2 = n2

32m2 .

Clearly, each cluster has m points of P and any two of them are separated.
Putting everything together, the number of pairs (C1, C2) of clusters such that C1 ⊆ P1

and C2 ⊆ P2 is at least n2

8m2 , which is larger than the number n2

32m2 of pairs of clusters that
are not ε-avoiding. Thus, there is a pair of clusters (A,B) that is ε-avoiding and satisfies
A ⊆ P1 and B ⊆ P2. ◀

Finally, we state the following lemma by Pach, Rubin, and Tardos [29].

▶ Lemma 11 ([29]). Let s be a positive integer and set K = 8(s
2), M = 9sK, ε = 2−3s−11.

Assume that A and B are M -element point sets that form an ε-avoiding pair and A∪B is in
general position. Then, we can find K pairwise crossing segments, each connecting a point
of A to a point of B.

We are now ready to prove Theorem 5 by slightly modifying the proof of Theorem 1 by
Pach, Rubin, and Tardos [29].

▶ Theorem 5. For every set P of n ≥ 2 points in the plane in general position and every
partition of P into two separated subsets P1 and P2 such that ||P1| − |P2|| ≤ 1, P contains a
crossing family F of size at least n/2O(

√
log n) where each segment from F has one endpoint

in P1 and one endpoint in P2.

Proof. Assuming n ≥ 3, let s be the smallest positive integer such that P does not determine
a crossing family of size K = 8(s

2) that has all line segments between P1 and P2. We have
s ≥ 1, since P determines a crossing family of size 1 = 8(1

2).
By Lemma 11, there is no pair {A,B} of sets, with A containing M = 9sK points of P1

and B containing M points of P2, that is ε = 2−3s−11-avoiding. Applying Lemma 10 to P
gives n ∈ O(Mε−4) = 2O(s)K.

By the choice of s, the point set P determines a crossing family of size K ′ = 8(s−1
2 ) ∈

K/2O(s) with all line segments between P1 and P2. Therefore, we have n > K ′ ∈ K/2O(s)

and s = O(
√

logn). We also have K ′ ∈ K/2O(s) = n/2O(s) = n/2O(
√

log n). ◀

5 Proof of Theorem 6

This section is devoted to the algorithmic aspects of Theorems 2 and 4. Specifically, we
prove that there is a constant C > 0 such that for all positive integers k and m if P is a set
of n = Ckm points in the plane in general position, we can find a convex bundle of size k
and width m or a non-crossing family of size m in time O(n). Similarly, we show that we
can find a crossing family of size n/2O(

√
log m) or a non-crossing family of size m in time

O(nm1+O((log m)−1/3)).
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To do so, we use a variant of the semi-algebraic regularity lemma recently proved by
Rubin [31]. To state it, we first need to introduce some more definitions.

A Boolean function ψ : Rd×r → {0, 1} is an r-wise semi-algebraic relation in Rd if it
can be described by a finite combination (f1, . . . , fs, ϕ), where f1, . . . , fs ∈ R[z1, . . . , zrd] are
polynomials, and ϕ is a Boolean function in {0, 1}s → {0, 1}, so that

ψ(y1, . . . , yr) = ϕ(f1(y1, . . . , yr) ≤ 0; . . . ; fs(y1, . . . , yr) ≤ 0)

holds for all the ordered r-tuples (y1, . . . , yr) of points yi ∈ Rd. We call the (s + 1)-tuple
(f1, . . . , fs, ϕ) a semi-algebraic description of ψ (which need not be unique). Such a relation
ψ has description complexity at most (∆, s) if it admits a description using at most s
polynomials fi ∈ R[z1, . . . , zrd] of maximum degree at most ∆. We let Ψd,r,∆,s be the family
of all such r-wise semi-algebraic relations ψ : Rd×r → {0, 1} with description complexity
bounded by (∆, s).

▶ Theorem 12 ([31]). The following statement holds for any fixed integers d ≥ 1, r ≥ 2,
∆ ≥ 0, s ≥ 1, and any fixed δ > 0. Let X1 . . . , Xr be sets of n points in Rd, and ψ be
an r-wise relation in Ψd,r,∆,s which is satisfied for at least ε|X1| · · · · · |Xr| of the r-tuples
(x1, . . . , xr) ∈ X1×· · ·×Xr. Then one can find, in expected time O(

∑r
i=1(|Xi|+1/ε) log(1/ε)),

subsets Yi ⊆ Xi, each of cardinality Ω(εd+1+δ|Xi|), so that ψ(y1, . . . , yr) = 1 holds for all
(y1, . . . , yr) ∈ Y1 × · · · × Yr.

The proof of the Same-Type Lemma by Fox, Pach, and Suk [18] is constructive. We go
through it step by step in order to estimate the running time of the algorithm it yields. If
(p1, . . . , pn) is a sequence of n ≥ d+ 1 points in Rd in general position, then the order-type
of (p1, . . . , pn) is the mapping χ :

(
P

d+1
)

→ {+1,−1}, which assigns to each (d+ 1)-tuple of
these points its orientation (positive or negative). For integers d ≥ 2 and r ≥ d + 1, let
X1, . . . , Xr be pairwise disjoint sets in Rd, each containing n points, whose union is in general
position. It is known that the number of different order-types of r-element point sets in Rd

is at most rO(d2r) [20, 21]. Thus, by the pigeonhole principle, at least r−O(d2r)|X1| · · · |Xr|
r-tuples (x1, . . . , xr) ∈ (X1, . . . , Xr) have the same order-type χ. We define the relation
E ⊂ X1 × · · · ×Xr, where (x1, . . . , xr) ∈ E if and only if (x1, . . . , xr) has the order-type χ.
Then it can be shown [18] that the description complexity of E is

((
r

d+1
)
, 1

)
. Therefore, we

can apply Theorem 12 to the r-partite semi-algebraic hypergraph (P,E) with d, r, ∆ =
(

r
d+1

)
,

s = 1, δ = 1, and ε = r−O(d2r) to obtain subsets Yi ⊆ Xi, each of cardinality c(d, r) · |Xi|,
with the same-type property, where c(d, r) ∈ r−O(d3r), in time

O
(
r

(
n+ rO(d2r)

)
log

(
rO(d2r)

))
≤ O((n+ rO(d2r))d2r2 log r).

Thus, we obtain the following estimate on the time complexity of the Same-Type Lemma.

▶ Corollary 13. For all integers d ≥ 2 and r ≥ d+ 1, the sets Y1, . . . , Yr from Theorem 8
can be found in expected time O((n+ rO(d2r))d2r log r) if |X1| = · · · = |Xr| = n. ◀

▶ Theorem 6. There is a constant C > 0 such that for all positive integers k and m, if P is
a set of n = Ckm points in the plane in general position, then a convex bundle of size k and
width m or a non-crossing family of size m can be computed in expected time O(n).

Further, a crossing family of size n/2O(
√

log m) or a non-crossing family of size m can be
computed in expected time O(nm1+O((log m)−1/3)).
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Proof. Let P be a set of at least Θ(km) points in the plane in general position. In the proof
of Theorem 2, we apply the Same-Type Lemma (Theorem 8) with d = 2, r = 6, n = Θ(m)
O(k)-times to obtain a convex bundle A1, . . . , Ak, B1, . . . , Bk of size 2k and width m in P .
Since k = Θ(|P |/m), it follows from Corollary 13 applied with d = 2, r = 6, and n = |P |
that this can be done in time

O

(
|P |
m

·m
)

= O(|P |),

which is the estimate on the time complexity in Theorem 2.
To prove Theorem 4, we also apply Theorem 5 to each set Ai ∪Bi with 1 ≤ i ≤ k. The

proof of Theorem 5 is an adaptation of the proof of Theorem 1 and has asymptotically the
same time complexity. As mentioned by Pach, Rubin, and Tardos [29], their proof yields an
algorithm whose running time is n2+O((log n)−1/3) on sets of n points. Since k = Θ(|P |/m)
and |Ai ∪Bi| ∈ O(m), it follows from this and the previous estimate that the total running
time is

O(|P | + (|P |/m) ·m2+O((log m)−1/3)) = O(|P | ·m1+O((log m)−1/3)),

which completes the proof. ◀

6 Discussion and open problems

As the main result in this work, we have obtained a Ramsey-type result that gives a lower
bound on the size of a maximum crossing family in a set P of n points in general position
in the plane in dependence of the size m of a maximum non-crossing family in P . The
resulting bound of n/2O(

√
log m) for the crossing family improves the currently best known

lower bound of n/2O(
√

log n) whenever m ∈ o(n). Our proofs are constructive and yield an
algorithm that finds a crossing family of desired size in polynomial expected time.

The result also constitutes a relevant step towards answering Problem 3. Unfortunately,
the obtained bounds are not strong enough to completely resolve Problem 3, which seems
difficult. Thus, the first natural open problem is to improve the currently best lower bound
k ∈ n/2O(

√
log m) on the size k of the largest crossing family determined by a set of n points

in the plane in general position that does not contain a non-crossing family of size m. In
particular, it is interesting to find out for how large values of m we can get that k ∈ Ω(n). It
follows from both Corollary 3 and Theorem 4 that if m ∈ O(1), then k ∈ Ω(n). Is it possible
to obtain a linear lower bound on k even if m ∈ ω(1)?

▶ Problem 4. Does there exist a constant c > 0 and a function f : N → N with limn→∞ f(n) =
∞ such that every set of n points in the plane in general position contains either a crossing
family of size at least cn or non-crossing family of size at least f(n)?

Bose, Hurtado, Rivera-Campo, and Wood showed that the edge set of every complete
geometric graph with a spoke set of size k can be partitioned into n − k plane trees [12].
Motivated by this result, Schnider [32] posed the following variant of Problem 3.

▶ Problem 5 ([32]). Is there a constant c > 0 such that every set of n points in the plane in
general position contains a spoke set of size cn or a non-crossing family of size cn?

Since every crossing family is a spoke set but not every spoke set is a crossing family,
Problem 5 is a weaker variant of Problem 3. However, already an affirmative solution of
Problem 5 would imply that the edge set of any complete geometric graph can be partitioned
into cn plane subgraphs for some constant c < 1.
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Finally, the well-known Problem 1, which asks whether or not T (n) ∈ Θ(n) [14], still
remains open.
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