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Abstract
Determining the crossing numbers of Cartesian products of small graphs with arbitrarily large
paths has been an ongoing topic of research since the 1970s. Doing so requires the establishment
of coincident upper and lower bounds; the former is usually demonstrated by providing a suitable
drawing procedure, while the latter often requires substantial theoretical arguments. Many such
papers have been published, which typically focus on just one or two small graphs at a time, and use
ad hoc arguments specific to those graphs. We propose a general approach which, when successful,
establishes the required lower bound. This approach can be applied to the Cartesian product of any
graph with arbitrarily large paths, and in each case involves solving a modified version of the crossing
number problem on a finite number (typically only two or three) of small graphs. We demonstrate
the potency of this approach by applying it to Cartesian products involving all 133 graphs of orders
five or six, and show that it is successful in 128 cases. This includes 60 cases which a recent survey
listed as either undetermined, or determined only in journals without adequate peer review.
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1 Introduction

In this paper, we will refer to a number of common graph families, and so we list them
upfront to aid the reader. Pn, Cn, Sn is the path, cycle, star with n edges and thus on n + 1,
n, n + 1 vertices respectively. The Cartesian product of two graphs G and H is written as
G2H. What results is a graph with vertex set V (G) × V (H), and edges between vertices
(u, u′) and (v, v′) if and only if either u = v and (u′, v′) ∈ E(H), or u′ = v′ and (u, v) ∈ E(G).

A drawing D of a graph G is a representation of G in the plane, such that each vertex is
mapped to a discrete point, and each edge (a, b) is mapped to a closed curve between the
points corresponding to vertices a and b, which does not intersect with a point corresponding
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to any other vertex. If two curves intersect in such a drawing, we say that there is a crossing
between their corresponding edges, and we denote the number of crossings in the drawing D

as crD(G). Then the crossing number problem (CNP) is to determine cr(G) := minD crD(G),
the minimum number of crossings among all possible drawings of G. We can assume that all
intersections are crossings, rather than tangential, and also that three edges never intersect
at a common point. Furthermore, a drawing is said to be simple if edges incident with a
common vertex do not intersect, and no two edges intersect more than once. It is well known
that for any graph G, cr(G) crossings are achieved by a simple drawing.

CNP is known to be NP-hard [18], and is notoriously difficult to solve, even for relatively
small graphs. Indeed, cr(K13) and cr(K9,9) are still unknown despite significant effort
[1, 15,33,42]. Nonetheless, there are some infinite families of graphs for which the crossing
numbers are known; these are summarised in the recent survey paper by Clancy et al. [15].
The most common of these are families which result from Cartesian products, the study of
which originated with a conjecture by Harary et al. [20] in 1973 that cr(Cm2Cn) = (m − 2)n
for n ≥ m ≥ 3. Despite significant effort [2–4, 6, 17, 19, 32, 35, 36] to date the conjecture
has only been resolved for the case when m ≤ 7, and also the case when n ≥ m(m + 1).
While resolving the m = 4 case, Beineke and Ringeisen [6] considered cr(G2Cn) for all
six non-isomorphic connected graphs G of order four, and successfully determined all of
them except for the case G = S3. This latter case was subsequently settled by Jendrol’ and
Šcerbová [22]. Following this, Klešč [24] determined cr(G2Pn) and cr(G2Sn) for the same
six connected graphs G of order four. This was then followed by a decade-long effort by
Klešč [23, 25–29] to determine cr(G2Pn) for all 21 non-isomorphic connected graphs G of
order five, which was finally completed in 2001. In the two decades since, significant efforts
have been made by multiple authors (including Klešč) to extend these results to the 112
non-isomorphic connected graphs of order six. Currently, slightly less than half of these have
been resolved; the progress is chronicled in [15].

In order to determine cr(G2Pn) for a given graph G, one needs to establish lower and
upper bounds, and show that they coincide. Establishing a valid upper bound is generally
straight-forward, and is usually either achieved by providing a drawing procedure which
results in the desired number of crossings, or else uses an existing result and the monotonicity
property cr(G2Pn) ≤ cr(H2Pn) if G is a subgraph of H. Establishing a lower bound is
typically much more complicated, usually involving ad hoc arguments specific to the graph
in question. Due to this ad hoc nature, it is not uncommon for publications to focus on a
single graph G and determine cr(G2Pn) for that one case (e.g. see [27, 28,30, 34]). Even in
papers which focus on several graphs, often the complicated arguments are needed for only
one or two graphs, and the remaining results follow as corollaries.

In this paper, we propose a new approach to determining, cr(G2Pn) which can be applied
to any graph G. There are two possible outcomes to this approach; either the required lower
bound is established, or else nothing is established. We will demonstrate that the approach
is successful in resolving 128 of the 133 non-isomorphic connected graphs of orders five or
six, including 60 cases which were hitherto unresolved. Of the five remaining graphs, four
have been previously solved in the literature, while the one remaining graph is equivalent to
K5 with a pendant edge attached to one of its vertices. We discuss these five graphs further
towards the end of Section 5.

The approach we describe requires a modified version of CNP to be solved for G2Pd,
where d is a small number (typically d = 2 or d = 3 suffices). As such, this approach is
tractable for sufficiently small graphs G.
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The remainder of this paper is laid out as follows. In Section 2 we introduce the modified
version of CNP, which we call binary-weighted capacity-constrained CNP (BCCNP). In
Section 3 we describe the approach which, when successful, uses this modified version of
CNP to obtain the required lower bounds for cr(G2Pn). In Section 4 we briefly discuss the
manner in which we will establish the required upper bounds and base cases, and also the
manner in which we solve instances of BCCNP. In Section 5 we report on calculations which
test the efficacy of the approach, and show that we are able to determine cr(G2Pn) for 60
new graphs G on six vertices, and also explore its efficacy on graphs G with seven vertices.
Finally, we conclude the paper in Section 6.

2 Binary-weighted capacity-constrained CNP (BCCNP)

For a given graph G, denote by C(G) ⊆ E(G) × E(G) the set of all possible pairs of edges
between which a crossing may occur in a simple drawing. That is, C(G) contains all pairs
of non-adjacent edges. Then, for a simple drawing D of G, and c ∈ C(G), define a binary
variable xD

c to be equal to 1 if crossing c occurs in D, and 0 otherwise. CNP is then equivalent
to

min
D

∑
c∈C(G)

xD
c , over all simple drawings D.

The above formulation considers every possible crossing that could occur in D and then
counts those that do. However, suppose that we additionally define some subset B ⊆ C(G),
and are only interested in simple drawings that minimize the crossings in B:

min
D

∑
c∈B

xD
c , over all simple drawings D.

This is equivalent to the weighted CNP (cf. Schaefer [37]) when all the weights are binary.
Another variant that could be considered would be to add some additional constraints to

the formulation. Suppose that we have a family F = {Fi}i which contains subsets Fi ⊆ C(G),
and an |F|-dimensional vector f = (fi) of non-negative integer capacities. Then a set of
constraints of the form

∑
c∈Fi

xD
c ≤ fi, for all 1 ≤ i ≤ |F|, could be imposed: we only allow

simple drawings that, for each i, contain no more than fi crossings from the subset Fi. We
say Fi has a maximum capacity of fi.

The two concepts above can be combined together; we refer to the resulting problem as
binary-weighted capacity-constrained CNP (BCCNP), formulated as:

min
D

∑
c∈B

xD
c

s.t. D is a simple drawing, and∑
c∈Fi

xD
c ≤ fi ∀i = 1, . . . , |F|

An instance of BCCNP requires us to specify not only the graph G, but also the subset B,
the family F ⊆ 2X of subsets (where X ⊆ C(G)), and the capacity vector f . Thus, let
cr(G, B, F , f) denote the solution of a BCCNP instance. Naturally, cr(G, C(G), ∅, ∅) yields
the standard CNP. BCCNP has potential applications in its own right. However, our reason
for defining it is that it will assist us in determining the crossing numbers for various families
of graphs.

GD 2025
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(a) Optimal drawing with 8 crossings; the three
inner K4-copies are involved in 2 crossings each.

(b) a-restricted drawing for a = 2 with 11 crossings.

Figure 1 Two drawings of K42P4. The K4-copies are solid red; the path edges are dotted blue.

3 Using BCCNP to determine crossing numbers

Suppose that we have a graph G, and that we have reason to believe there are integers s, a, b

(with s, a > 0) such that cr(G2Pn) = an − b for n ≥ s. Certainly this is the case for every
established result to date [15]. Furthermore, suppose that we already possess a proof that
this formula holds for n = s, s + 1, . . . , t for some integer t, and also that we have established
the corresponding upper bound cr(G2Pn) ≤ an − b for n ≥ s. Then all that remains is to
determine the lower bound, cr(G2Pn) ≥ an − b for n > t.

In order to determine the lower bound, we will seek to look at a fixed-size graph G2Pd

for some small integer d, and use it to infer results about G2Pn for arbitrarily large n. As
such, in what follows, we will tend to use Pd when referring to a path of a fixed size, and Pn

otherwise.
We begin by giving some definitions and notation that will be useful in the upcoming

discussion. Note that the graph G2Pn contains n + 1 copies of G, with consecutive copies
linked together by some edges. Denote the copies of G as G0, G1, . . ., Gn, each with edges
E(Gi). We call remaining edges path edges; those linking Gi to Gi+1 form the subgraph Hi,
for i = 0, . . . , n − 1. Note that each Hi corresponds to a matching between Gi and Gi+1; see
Figure 1a for an example.

▶ Definition 1. Consider a positive integer a. A simple drawing of G2Pn is a-restricted (cf.
Figure 1b) if each copy of G has fewer than a crossings on its edges.

For sets of crossings, we use the shorthand H ′ ⊗ H ′′ := E(H ′) × E(H ′′) and define

cra(G, d, B) := cr(G2Pd, B,
{

Gi ⊗ G2Pd

}
0≤i≤d

, (a − 1) · 1),

which is the minimum number of crossings on the set of edge pairs B over all a-restricted
drawings of G2Pd.

▶ Lemma 2. Suppose that there is an integer n ≥ 2 such that cr(G2Pn−1) ≥ a(n − 1) − b,
but cr(G2Pn) < an − b. Then every crossing-minimal drawing of G2Pn is a-restricted.

Proof. Suppose that there is a crossing-minimal drawing Dn of G2Pn which is not a-
restricted. Recall that G2Pn has n + 1 copies of G. Since Dn is not a-restricted, at least one
of those copies, say Gi, must have a or more crossings on its edges. By deleting the edges
E(Gi) from the drawing, we obtain a drawing of a new graph with fewer than a(n − 1) − b

crossings. However, since this new drawing is of a graph that is either homeomorphic to
G2Pn−1, or else, if i = 0 or i = n, contains G2Pn−1 as a subgraph, this violates the initial
assumption. ◀

Now, consider the graph G2Pd for some d ≥ 2. The arguably most natural approach
when discussing Cartesian products with paths is to try to consider the graph “copy-wise”,
i.e., look at the graph in chunks of subgraphs Gi ∪ Hi, possibly akin to how we define our
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G0 H0 G1 H1 G2 H2 G3 H3 G4 H4 G5 H5 G6 H6 G7

G0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4
H0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4
G1 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4
H1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
G2 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5
H2 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5
G3 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5
H3 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5
G4 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6
H4 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6
G5 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6
H5 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6
G6 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7
H6 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7
G7 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7

Figure 2 Crossing bands A7
i for G2P7 and i = 0, . . . , 7, visually highlighted as colored stripes. A

colored cell represents crossings between an edge of the subgraph corresponding to the row and the
column, respectively. The number “i” in a cell indicates that these crossings are contained in A7

i . In
contrast to this, the restriction of an a-restricted drawing w.r.t. copy Gi sums over all crossings in
row and column Gi; a bold outline marks this for G3. This is very different from A7

3.

a-restrictions. However, it turns out that a different way to group crossings is more useful in
our proofs. We partition the possible crossings C(G2Pd) into d + 1 crossing bands Ad

i , as
follows.

Crossings in Gi ⊗ (Gj ∪ Hj) are assigned to Ad
k, where k = ⌈(i + j)/2⌉,

Crossings in Hi ⊗ Hj are assigned to Ad
k, where k = ⌈(i + j + 1)/2⌉.

Of course, there are other ways the crossings could have been partitioned, and indeed,
we experimented with many other choices. The partitioning method we present here is
the one we found to be the most effective in obtaining results. The partition of crossings
into the crossing bands is visualized in Figure 2 for the case when d = 7. For the sake of
convenience, in the following discussions we will often refer to a drawing as having crossing
bands; technically, this refers to the crossing bands of the underlying graph.

We will show that each crossing band contributes a specific minimum number of crossings
to the overall crossing number of G2Pd. Intuitively speaking, one may think about a natural
drawing, like Figure 1a: Essentially each G-copy is drawn identically and requires a certain
number of crossings, except for the left- and right-most G-copy (“front” and “end”) which
may require less crossings. However, for more complex G, the special front and end may
consist of multiple G-copies each. All path-products for which the crossing number is known
allow such a “natural” optimal drawing, however, our proof may of course not assume that
this would always be the case. Nonetheless, this pattern allows us to establish certain minimal
numbers of crossings that are forced along the crossing bands.

Let d ≥ 2 and 0 < m < d. We use the term middle force to refer to the minimum possible
number of crossings from Ad

m in any a-restricted drawing of G2Pd. Likewise, the term front
force (end force) refers to the minimum possible number of crossings from the first m (final

GD 2025
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Ad
0 · · · Ad

m−1 Ad
m Ad

m+1 · · · Ad
d Ad

0 · · · Ad
m−1 Ad

m Ad
m+1 · · · Ad

d

f<m
d,a ,+f

<m
d,a (r) +f

<m
d,a (r)

a
2a

· · ·
(d−m+ 1)a

fmd,a,
+f

m
d,a

a
+f

m
d,a

f>m
d,a ,+f

>m
d,a

a− 1

+f
>m
d,a

Figure 3 Crossing bands considered in a (plus-)force triple: (left) front, (right) middle and end.

d − m, respectively) crossing bands in any a-restricted drawing of G2Pd (cf. Figure 3):

front force f<m
d,a := cra(G, d, Ad

0 ∪ · · · ∪ Ad
m−1 ),

middle force fmd,a := cra(G, d, Ad
m ),

end force f>m
d,a := cra(G, d, Ad

m+1 ∪ · · · ∪ Ad
d ).

Together they define the force triple (f<m
d,a , fmd,a, f>m

d,a ). The rationale for considering the
force triple is revealed in the following lemma.

▶ Lemma 3. Let (f<m
d,a , fmd,a, f>m

d,a ) be a force triple of G. Let Dn, with n ≥ d, be an a-restricted
drawing of G2Pn. Then there are
(a) at least f<m

d,a crossings in Dn from the first m crossings bands;
(b) at least fmd,a crossings in Dn from the (m + i)-th crossing band for i ∈ {0, . . . , n − d}; and
(c) at least f>m

d,a crossings in Dn from the final d − m crossing bands.

Proof. First, note that Dn contains n−d+1 subdrawings of G2Pd. In particular, we denote
the j-th subdrawing as Dj

n, for j ∈ {0, . . . , n − d}; it is the one containing copies Gj through
to Gj+d. Since Dn is an a-restricted drawing, each of these subdrawings is also a-restricted.
We can obtain lower bounds on how many crossings in Dn come from each crossing band, by
looking at the forced number of crossings in corresponding subdrawings.

Consider D0
n, and recall that it is a-restricted. Then, by definition, the number of crossings

in D0
n from its first m crossing bands is at least f<m

d,a . However, the set of potential crossings
contained in its first m crossing bands is a strict subset of the potential crossings contained
in the first m crossing bands of Dn. Hence, item (a) is true. Analogous arguments hold for
item (b) by considering the m-th crossing bands in Di

n for i ∈ {0, . . . , n − d}, and for item
(c) by considering the final d − m crossing bands in Dn−d

n . ◀

Lemmas 2 and 3 lead to our first main statement.

▶ Theorem 4. Let (f<m
d,a , fmd,a, f>m

d,a ) be a force triple of G. If

cr(G2Pd−1) ≥ a(d − 1) − b, f<m
d,a + f>m

d,a ≥ a(d − 1) − b, and fmd,a ≥ a,

then for all n ≥ d we also have

cr(G2Pn) ≥ an − b.
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Proof. We will prove by induction, where the base case is known to be true according to
the assumptions. Then, suppose that there is some value n ≥ d such that cr(G2Pn−1) ≥
a(n − 1) − b, but cr(G2Pn) < an − b. Let Dn be a crossing-minimal drawing of G2Pn. By
Lemma 2, Dn is a-restricted, and we note that it has fewer than an − b crossings. Then,
by Lemma 3, Dn must contain at least f<m

d,a + f>m
d,a + (n − d + 1)fmd,a ≥ an − b crossings,

contradicting our initial assumption and completing the proof. ◀

As will be demonstrated in Section 5, Theorem 4 is already sufficient to provide the
desired lower bounds in several cases. However, in many cases the force triple values are not
large enough to meet the conditions of Theorem 4. In Section 3.1 we briefly discuss why
this might occur, and then propose a more sophisticated way of considering the forces which
leads to significantly improved results.

3.1 Plus-forces and star-forces
The above results are obtained by partitioning all possible crossings of G2Pn into various
crossing bands, and then considering lower bounds on the number of crossings from those
crossing bands. If each of these individual lower bounds is sufficiently large, we obtain the
desired result. However, in practice, it is often possible to draw a graph such that there are
relatively few crossings in one crossing band, at the cost of a higher number of crossings
in nearby crossing bands. Theorem 4 does not take this into account and pessimistically
assumes that the minima for each crossing band could be attained simultaneously. Whenever
this is not the case, the conditions of Theorem 4 are not met and it cannot be applied.

To remedy this, we propose a more sophisticated way of measuring forces. When
calculating the above force values by solving a BCCNP instance, the objective function only
considers crossings from certain crossing band(s); except for insisting on an a-restricted
drawing, there are no further restrictions on the other crossing bands. This leads to
the issue mentioned above, where additional crossings are able to “hide” in the other,
largely unrestricted, crossing bands. With this in mind, we introduce plus-forces, which are
illustrated in Figure 3. Each plus-force is defined the same as its corresponding force, but
with additional restrictions that are placed on the number of crossings in other crossing
bands. In particular, for the middle and end plus-forces, restrictions are placed on exactly
one, adjacent, crossing band. For the front plus-force, restrictions are placed on r crossing
bands, for r ∈ {0, . . . , d − m + 1}. Hence, we use the terms +f

<m
d,a (r), +f

m
d,a, +f

>m
d,a to denote

the front, middle, and end plus-forces, respectively. We again require d ≥ 2 and 0 < m < d:
The middle plus-force +f

m
d,a is the minimum number of crossings from Ad

m in any a-
restricted drawing, such that there are at most a crossings from Ad

m+1. This can be computed
analogously to fmd,a, by simply adding the one extra capacity constraint

∑
c∈Ad

m+1
xD

c ≤ a.

The end plus-force +f
>m
d,a is the minimum number of crossings from the final d−m crossing

bands in any a-restricted drawing, such that there are at most a − 1 crossings from Ad
m. This

can be computed in the same way as f>m
d,a by adding

∑
c∈Ad

m
xD

c ≤ a − 1. We specifically
clarify that the right-hand side here is really a − 1, not a as in the middle plus-force, or a
multiple of a as in the front plus-force below.

For the front plus-force +f
<m
d,a (r), we need to specify r ∈ {0, . . . , d − m + 1}, which is the

number of crossing bands (starting from Ad
m) that restrictions should be placed on. Hence, we

define +f
<m
d,a (0) := f<m

d,a , and for r > 0, +f
<m
d,a (r) is the minimum number of crossings from the

first m crossing bands in any a-restricted drawing, such that, for every r ∈ {0, 1, . . . , r − 1},

GD 2025
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there are at most (r + 1) · a crossings in
⋃m+r

i=m Ad
i . Hence, +f

<m
d,a (r) can be computed in the

same way we compute f<m
d,a by adding r additional capacity constraints:

m+r∑
i=m

∑
c∈Ad

i

xD
c ≤ (r + 1) · a, ∀r ∈ {0, 1, . . . , r − 1}.

Since the plus-forces are simply more restricted versions of the forces, each plus-force is
at least as large as its corresponding force. Whether or not they coincide tells us something
about a-restricted drawings of the underlying graph. For example, if fmd,a < +f

m
d,a, it tells us

that in order for an a-restricted drawing of G2Pd to have only fmd,a crossings from Ad
m, it

must have more than a crossings from Ad
m+1.

To see why such an observation could be valuable, recall that for Theorem 4, we require
fmd,a ≥ a. This requirement ensures there are at least a crossings in each of the “middle”
crossing bands (those after the first m and before the final d − m crossing bands), hence
ensuring that, for sufficiently large n, drawings of G2Pn+1 must have at least a more crossings
than drawings of G2Pn. However, the situation could arise where one (or more) of the
middle crossing bands has a − 1 crossings, and yet we would still end up with the expected
number of crossings as long as another middle crossing band has at least a + 1 crossings.
Indeed, if fmd,a = a − 1 and +f

m
d,a ≥ a, it tells us that whenever there are a − 1 crossings in a

middle crossing band, the subsequent crossing band (if one exists) must have at least a + 1
crossings. This observation permits us to adopt a broader condition; we want either (a)
fmd,a ≥ a, or (b) fmd,a = a − 1 and +f

m
d,a ≥ a.

However, there are some awkward edge-cases to handle here. For example, what if it is
the last middle crossing band that has a − 1 crossings? Since there is no subsequent middle
crossing band (the next crossing band is part of the final d − m crossing bands), we cannot
ensure that it has a+1 crossings simply by referring to the middle plus-force. Such edge-cases
need to be handled delicately. In order to do so, we define the following star-forces, in a
manner that will make the upcoming proofs neater.

front star-force ∗f<m
d,a (r) := min{ +f

<m
d,a (r) , f<m

d,a + 1 }

middle star-force ∗fmd,a := min{ +f
m
d,a , fmd,a + 1 }

end star-force ∗f>m
d,a := min{ +f

>m
d,a − 1 , f>m

d,a }

In the upcoming Theorem 6, the star-forces, as defined above, will allow us to handle the
situation where fmd,a = a − 1 and +f

m
d,a ≥ a, while also taking care of the edge-cases. First,

however, we establish a set of intermediate results in Lemma 5. In particular, we give bounds
on the number of crossings that must occur in the first m and final d − m crossing bands,
and also discuss the manner in which crossings may occur in the middle crossing bands.

▶ Lemma 5. Let (∗f<m
d,a (r), ∗fmd,a, ∗f>m

d,a ) be a star-force triple of G, and suppose that ∗fmd,a ≥ a.
Let Dn be an a-restricted drawing of G2Pn for n ≥ d. Then:
(a) Dn contains at least ∗f<m

d,a (r) − 1 crossings from the first m crossing bands;
(b) Dn contains at least a − 1 crossings from An

i+m for i ∈ {0, . . . , n − d};
(c) if Dn contains exactly a − 1 crossings from An

i+m for i ∈ {0, . . . , n − d − 1}, then Dn

contains at least a + 1 crossings from An
i+m+1; and

(d) Let z = 1 if Dn contains exactly a − 1 crossings from An
n−d+m, and z = 0 otherwise.

Then, Dn contains at least ∗f>m
d,a + z crossings from the final d − m crossing bands.
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Proof.

Item (a). As previously noted, Dn contains n − d + 1 subdrawings of G2Pd, which we
denote as Dj

n for j ∈ {0, . . . , n − d}. From Lemma 3(a), we have that Dn contains at least
f<m
d,a crossings from the first m crossing bands. From the definition of ∗f<m

d,a (r), it is clear that
f<m
d,a ≥ ∗f<m

d,a (r) − 1. Hence, item (a) is true.

Item (b). By Lemma 3(b), we have that Dn contains at least fmd,a crossings from An
i+m for

i ∈ {0, . . . , n − d}. Now consider ∗fmd,a, which by definition is either equal to +f
m
d,a or fmd,a + 1.

Since +f
m
d,a ≥ fmd,a and both are integers, there are only two possibilities; either fmd,a = ∗fmd,a,

or fmd,a = ∗fmd,a − 1. Either way, item (b) is true.

Item (c). Now, suppose that Dn contains exactly a − 1 crossings from An
i+m, which is only

possible if fmd,a = ∗fmd,a − 1 ≥ a − 1. This, in turn, is only possible if +f
m
d,a > fmd,a, and so

+f
m
d,a ≥ a. According to the definition of +f

m
d,a, it is hence impossible to draw G2Pd with

fewer than a crossings from Ad
m and fewer than a + 1 crossings from Ad

m+1. However, in the
subdrawing Di

n there are fewer than a crossings from Ad
m. Hence, there must be at least

a + 1 crossings in Di
n from Ad

m+1, which implies that there are at least a + 1 crossings in Dn

from An
i+m+1. Therefore item (c) is true.

Item (d). Finally, by Lemma 3(c), we have that Dn contains at least f>m
d,a crossings from

the final d − m crossing bands. Note that by definition we have f>m
d,a ≥ ∗f>m

d,a , so if z = 0 then
item (d) is true. Suppose that z = 1, and item (d) is false. This could only be the case if
f>m
d,a = ∗f>m

d,a , which implies that Dn must have exactly ∗f>m
d,a crossings from the final d − m

crossing bands, i.e., one crossing less than suggested by item (d). However, since z = 1, Dn

contains exactly a − 1 crossings from An
n−d+m by definition. Thus, the subdrawing Dn−d

n

must also have no more than a − 1 crossings in its m-th crossing band, and since Dn−d
n is an

a-restricted drawing, it must have at least +f
>m
d,a crossings from its final d − m crossing bands.

This implies that Dn must contain at least +f
>m
d,a crossings from its final d−m crossing bands.

However, by definition we have +f
>m
d,a ≥ ∗f>m

d,a + 1 = ∗f>m
d,a + z. Hence item (d) is true. ◀

Lemma 5 enables us to establish a stronger version of Theorem 4.

▶ Theorem 6. Let (∗f<m
d,a (r), ∗fmd,a, ∗f>m

d,a ) be a star-force triple of G and r′ := max(r, 1). If

cr(G2Pd+r′−2) ≥ a(d + r′ − 2) − b, ∗f<m
d,a (r) + ∗f>m

d,a ≥ a(d − 1) − b, and ∗fmd,a ≥ a

then for n ≥ d + r′ − 1,

cr(G2Pn) ≥ an − b.

Proof. Suppose that there is some value n ≥ d + r′ − 1 such that cr(G2Pn−1) ≥ a(n − 1) − b,
but cr(G2Pn) < an − b. Let n be minimal with this property. Let Dn be a crossing-minimal
drawing of G2Pn, then Dn contains fewer than an − b crossings, and from Lemma 2 it is an
a-restricted drawing. We want to count the number of crossings in Dn, cf. Figure 4. We will
use the term front crossings to refer to the crossings in Dn from the first m crossing bands,
end crossings to refer to the crossings in Dn from the final d − m crossing bands, and middle
crossings to refer to all remaining crossings of Dn. To assist in calculating these, let cj

i be the
number of crossings in Dn from An

m+i ∪ . . . ∪ An
m+j . To simplify the notation, let ci := cn−d

i .
Note that the number of middle crossings in Dn is equal to c0. We seek to compute a lower
bound for ci for i ∈ {0, . . . , n − d}. As in Lemma 5 it will be convenient to set z = 1 if Dn

has exactly a − 1 crossings from An
n−d+m, and z = 0 otherwise.
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An
0 An

1 · · · An
m−2 An

m−1 An
m An

m+1 An
m+2 · · · An

m+n−d−1 An
m+n−d An

n−(d−m)+1 · · · An
n−1 An

n

c0
c1

c2 · · ·
cn−d−1

cn−d

︸ ︷︷ ︸
front crossings

(on m crossing bands)

︸ ︷︷ ︸
middle crossings

(on n− d+ 1 crossing bands)

︸ ︷︷ ︸
end crossings

(on d−m crossing bands)

Figure 4 Counting crossings in Dn.

Recall from Lemma 5(b) that ci
i ≥ a − 1, for i ∈ {0, . . . , n − d}. If equality holds for any

i < n − d, then from Lemma 5(c) we know that ci+1
i ≥ (a − 1) + (a + 1) = 2a. Inductively

then, it is clear that cj
i ≥ (j − i + 1)a − 1 for i, j ∈ {0, . . . , n − d} and i ≤ j, and if equality

is met it implies that Dn contains exactly a − 1 crossings from An
j+m. Hence, by setting

j = n − d, we obtain

ci ≥ (n + 1 − d − i)a − z, ∀i ∈ {0, . . . , n − d}. (1)

In particular, setting i = 0 in (1) tells us that there are at least c0 = (n + 1 − d)a − z

middle crossings, while Lemma 5(a) and Lemma 5(d) give us lower bounds on the front
and end crossings respectively. Combining all of these, we can see that Dn contains at
least (∗f<m

d,a (r) − 1) + c0 + (∗f>m
d,a + z) ≥ an − b − 1 crossings. Since by assumption Dn has

fewer than an − b crossings, it must have exactly an − b − 1 crossings. In particular, Dn

has exactly ∗f<m
d,a (r) − 1 front crossings. However, from the definition of ∗f<m

d,a (r), this is
only possible if +f

<m
d,a (r) > f<m

d,a and r ≥ 1. Hence, Dn must have fewer than +f
<m
d,a (r) front

crossings, and so from the definition of +f
<m
d,a (r), there must be some positive integer j ≤ r

such that cj−1
0 ≥ aj + 1. Note that since n ≥ d + r′ − 1, and r ≤ r′, we have j ≤ n − d + 1. If

j = n − d + 1 then c0 = cj−1
0 ≥ a(n − d + 1) + 1. Alternatively, if j < n − d + 1, then from (1)

we have cj ≥ (n + 1 − d − j)a − z, and so c0 = cj−1
0 + cj ≥ (n − d + 1)a − z + 1.Either way,

adding c0 to (∗f<m
d,a (r) − 1) + (∗f>m

d,a + z) implies that Dn contains at least an − b crossings,
contradicting our initial assumption and completing the proof. ◀

As will be shown in Section 5, Theorem 6 is much stronger than Theorem 4, and will
enable us to established the desired lower bounds for many more graph classes.

4 Upper bounds, base cases, and computing forces by solving BCCNP

Upper bounds. An important ingredient of the crossing number proofs is establishing an
upper bound matching the lower bound. In practice, in the case of G2Pn, this turns out to
be surprisingly simple, as simple enumeration schemes for simple drawings suffice. In fact, in
most cases all but the very first and the very last copy of G can be drawn identically, and
these drawings are easy to figure out. Thus, we will not discuss this further in the following,
but state that whenever we could prove a lower bound, we also identified a construction for
the matching upper bound. The tables in the appendix show the corresponding subdrawings
(and explain their interpretation).
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Base cases and force computation. To apply our above theorems, each graph class G2Pn

requires us to establish (a) cr(G2Pn) for small values of n as the base cases, and (b) G-specific
force values: sound proofs of BCCNP for small values d, m. Each thereby considered graph
is relatively small (typically below 50 edges), but since our goal is to solve many different
graph classes, there are too many such instances to reasonably do them all by hand.

It was shown in Buchheim et al. [10] that CNP can be formulated as an integer linear
program (ILP). Subsequently, Chimani et al. [11, 13] implemented this formulation as a
practical algorithm, which requires sophisticated column generation techniques and other
speed-up heuristics, to be tractable for “real-world” graphs with up to 100 edges. As this
implementation is generally not easy to understand and validate, Chimani and Wiedera [14]
presented a proof and validation framework that extracts a crossing number proof from the
ILP computation; this certificate can be independently validated (with comparably simple
methods). This tool has since regularly been used to establish base cases or to validate
results, e.g., [8, 9, 15, 16, 21, 31, 38–41]. The modifications necessary to tackle BCCNP instead
of CNP are relatively straight-forward: analogously to the case of the simultaneous crossing
number [12], when restricting the objective function to disregard certain crossings, these
crossing variables are considered with a small enough coefficient ε instead of 0, to avoid
issues with non-simple drawings. The capacity constraints can directly be added to the ILP
computation and the proof validator as well. We call this algorithm the BCCNP solver ; all
corresponding certificates for the crossing number proofs required below (as well as the proof
validator), can be found at [5].

5 Calculations

Theorems 4 and 6 are only useful when the conditions are met, and checking if they are
met requires us to compute multiple forces using the BCCNP solver for some setting of the
parameters. Clearly, there are three possible outcomes to this approach. The first outcome
is that the values computed by the BCCNP solver satisfy the requirements of at least one of
the two theorems, and the desired result is obtained. The second outcome is that the values
computed by the BCCNP solver do not satisfy the requirements of either theorem, and no
result is obtained. The third outcome is that the BCCNP solver is unable to compute the
values, as the graph is too large or complex to be tackled with reasonable computing power1.

To test the efficacy of the two proposed approaches, we ran them both on all 21 non-
isomorphic connected graphs on five vertices, and all 112 non-isomorphic connected graphs
on six vertices. Since Theorems 4 and 6 attempt to show that cr(G2Pn) ≥ an − b, we began
by assuming that cr(G2Pn) = an − b for some integers a, b. We computed cr(G2Pn) for
some small values of n, and used these to predict the values of a, b. Then, we checked to see
if they matched the upper bound yielded from our simple enumeration schemes. Indeed, in
all tested cases, the values of a, b matched.

Then, armed with an appropriate choice of a, b, we computed the forces for the (d, m)
pair (2, 1), and checked to see if they satisfy the relevant conditions for Theorem 4. If not, we
then proceeded to compute the plus-forces for the same (d, m) pair and r = d − m + 1. Then,
we checked if the relevant conditions of Theorem 6 were satisfied first for r = 0 (by using
+f

<m
d,a (0) = f<m

d,a ), and if not, then for r = d − m + 1. If any of these checks were successful, we
computed the relevant base cases to settle the instance; note that checking for r = 0 first is

1 All computations were conducted on an Intel Xeon Gold 6134 with a time limit of 2 hours. Nearly 3/4
of the calculations finished in under a minute and less than 0.05% needed more than half an hour but
less than two hours. This indicates that neither more computation power nor a higher time limit is
likely to yield significant improvements.
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Table 1 The number of instances (as well as percentage) for which Theorems 4 and 6 yield
positive results for at least one (d, m) pair (2, 1), (3, 1), or (4, 2).

G2Pn, Theorem 4 Theorem 6 Theorem 6 total
where G are with r = 0 with r = d − m + 1

5-vertex graphs 19 90% 21 100% 21 100% 21 100%

6-vertex graphs 91 81% 104 93% 105 94% 107 96%

7-vertex graphs 529 62% 573 67% 675 79% 676 79%

worthwhile because the corresponding base case is considerably smaller than for r = n − d + 1.
If none of the checks were successful, then we then repeated the above for the (d, m) pairs
(3, 1), and (4, 2), only declaring failure if all of these proved unsuccessful.

We summarize the results of these calculations in Table 1. In particular, we note that we
obtained a successful result for all 21 graphs on five vertices, and 107 (out of 112) graphs on
six vertices. The successful instances include 60 graphs on six vertices which, according to
the recent survey by Clancy et al. [15], have not previously been handled in the literature2.

Concisely, we establish the following results w.r.t. 6-vertex graphs:

▶ Theorem 7. Let i, in G6
i , be the graph indices from [15] to name all 6-vertex graphs3.

For large enough n (in most cases n ≥ 1), the crossing number cr(G6
i2Pn) is given by:

cr(G6
i2Pn) i (new results) i (previously established, reproved)

0n + 0 25, 40
1n − 1 26, 28, 41, 43, 46, 60
2n − 4 42
2n − 2 49, 27, 29, 44, 45, 47, 53, 54, 59, 63, 64, 66, 74, 77, 83, 94
2n + 0 61, 75, 85
3n − 5 62
3n − 3 67, 76, 78, 92, 51, 65, 70, 89, 90, 120
3n − 1 84, 95, 98, 110 68, 71, 86, 87, 91, 111
4n − 4 31, 72, 79, 80, 104, 113
4n − 2 82, 88, 99, 100, 101, 108, 115, 116, 118, 133
4n 93, 109, 112, 121, 130, 137
5n − 3 81, 102, 106, 107, 114, 122, 123, 124, 127, 125
5n − 1 131, 138, 146
6n − 4 134
6n − 2 105, 126, 128, 129, 132, 140, 141, 143, 103
6n 152
7n − 1 119, 135, 139, 145, 148
8n − 2 144, 147, 151
9n − 3 150
9n − 1 154
10n 149, 153
12n 155

The table includes all 112 connected 6-vertex graphs except for i = 31, 48, 73, 142, 156.

2 This includes instances which have not been handled at all in the literature, and also instances which
have only been handled in journals or periodicals which Clancy et al. [15] determined “impose no peer
review, or that which does occur is inadequate.” They note that such results “should be revisited and
submitted to thorough peer review”. As such, we treat such results as new in this manuscript.

3 The index scheme from [15] includes the 44 disconnected 6-vertex graphs, and hence goes up to 156.
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The appendix lists all these graphs, together with their upper bound construction and the
required values for d, m, r. As mentioned above, the computer generated proof files for the
BCCNP base cases (together with a proof validator) can be found at [5]. It is worth noting
that in 78 of the 112 cases the smallest setting, d = 2 and m = 1, already suffices to prove
the claim with Theorem 6 and in 66 cases, even with Theorem 4.

We note that, of the five graphs on six vertices we were unable to obtain a solution,
four have already been handled in the literature. In particular, the graph with index i = 31
was handled in Bokal [7], the graphs with indices i = 48, 73 were handled in Klešč and
Petrillová [30], and the graph with index i = 156 was handled in Zheng et al. [43]. As such,
there is only one graph remaining from the six-vertex set that is yet to be handled in the
literature at all, specifically the graph with index i = 142. It is equivalent to K5 with a
pendant edge attached to one of the vertices, and based on our experiments it appears the
crossing number should be 9n − 3. We discuss some possible reasons why our approach may
have proved unsuccessful for these five graphs in Section 6.

Finally, we also tackled the Cartesian products of paths with any connected 7-vertex
graph. There are few existing crossing number results on these graph classes (nine, according
to [15]). Our goal here is to determine how many of these graph classes are in fact relatively
simple – in terms of solvability using our framework – and thus do not merit specific treatment
in the literature. On the other hand, we hope that (failings of) our approach may point at
graphs which require us to identify new lower bound arguments. Overall, we see that already
with only small values of d, m, r, our approach generates proofs for nearly 4/5 of all G72Pn

graph classes. Again, see the appendix for more details.

6 Conclusions

The potency of the approach described in this manuscript is demonstrated by the number of
new results that have been established, particularly given that this field of research has been
saturated for decades with papers painstakingly establishing one or two results at a time.

In addition to the volume of new results, another benefit of this approach is that it lets
us identify the truly difficult graphs, compared to graphs which just require more exhaustive
versions of existing arguments. These difficult graphs can then be given individual attention.
As shown in the previous section, our approach was successful for all but five graphs from
the six-vertex set. Four of these five graphs were previously handled in the literature. Two
of them (i = 31, 156) required specialised arguments applicable only to those graphs, while
the other two (i = 48, 73) were corollaries. Researchers in this field can now focus on the one
remaining case (i = 142), potentially handling not only this graph, but perhaps a family of
graphs which emerge from complete graphs with pendant edges added.

Our star-forces, as strengthenings of our basic forces, have essentially accounted for cases
where one crossing was able to “hide” in a nearby crossing band. Although this proved to be
powerful, it stands to reason that there could be instances where multiple crossings are able
to hide, and an accordingly stronger definition and theorem statement would be required.
Indeed, an analysis of the i = 31 instance shows this to be exactly the case; in this graph, two
crossings can hide. Given this context, our approach could perhaps be viewed as the first step
in a more general approach that seeks to account for cases where arbitrarily many crossings
can hide. Furthermore, it seems likely that the BCCNP framework can be used to attack
other families of graphs, particularly those resulting from graph products. In particular, we
anticipate that it should be possible to obtain new results for Cartesian products with cycles,
although this will likely require further fine-tuning of the crossing bands and corresponding
forces. Other common families such as Cartesian products with stars, as well as other kinds
of graph products such as strong products, should also be considered in this framework.
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A APPENDIX

Figures A1–A3 list the smallest (d, m) pair for which at least one of Theorems 4 and 6
establishes the lower bounds for each successfully solved graph. The background color
intensity reflects how high the values are. The d,m∗ indicates that Theorem 4 does not suffice
and that Theorem 6 with r = 0 is needed. d,m∗

∗ indicates that Theorem 6 with r = d − m + 1
is needed. The blueness of the background also reflects this. Proof files for each of the
obtained values can be found at [5] along with a tool that can be used to verify the results.

Then, all that remains is to handle the upper bounds. Also contained in Figures A1–A3 are
small figures corresponding to each graph, indicating a drawing procedure which establishes
the desired upper bound. The small figures should be interpreted as follows. To draw G2Pn

with the indicated number of crossings, n + 1 copies of G should be drawn side by side, with
the path edges forming horizontal lines. We call the first and last copies of G the end copies,
and the remaining n − 1 copies are the middle copies. In the small figures from Figure A2,
we show two drawings of G. The end copies should be drawn identically to the right-most
drawing in the small figure (taking the mirror image for the first copy). All of the middle
copies should be drawn identically to the left-most drawing in the small figure. The edge
colors are chosen arbitrarily, but are consistent between the copies. Any edges which end
up stubs at the top and bottom are routed around the graph and connected according to
the symbol of the stub and the edge color. The figures are presented in such a way that
routing the edges around the graph never needs to introduce any additional crossings. If,
in the small figure, the left-most drawing contains cl crossings, and the right-most drawing
contains cr crossings, then an upper bound of cl(n − 1) + 2cr is established for cr(G2Pn).
For the graphs marked by a ! between its two copies in Figures A2 and A3, we need to draw
two neighboring copies together either at the ends or in the middle for a sufficient upper
bound. Essentially, we use one (or more) of the following three strategies:

Two last copies (G6
42) Two last copies (G6

63) Two middle copies (G6
82)

We use the following symbols to indicate the status of the results:

symbol previously known solved by us

) no yes
) not peer-reviewed yes
" yes yes
" yes no
# no no

https://doi.org/10.1002/jgt.3190170602
https://doi.org/10.1007/s00373-007-0726-z
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Figure A1 Results for 5-vertex graphs. We omit the planar instances i = 1, 8.
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Figure A2 Results for 6-vertex graphs.
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Figure A3 Successful results for 7-vertex graphs.
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