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—— Abstract

This paper considers the Zarankiewicz problem in bipartite graphs with low-dimensional geometric

representation (i.e., low Ferrers dimension). ' Let Z(n;k) be the maximum number of edges
in a bipartite graph with n nodes and is free of a k-by-k biclique. Note that Z(n;k) € Q(nk)
for all “natural” graph classes. Our first result reveals a separation between bipartite graphs of
Ferrers dimension three and four: while we show that Z(n;k) < 9n(k — 1) for graphs of Ferrers
dimension three, Z(n; k) € Q (nk . log)i gn) for Ferrers dimension four graphs (Chan & Har-Peled,
2023) (Chazelle, 1990). To complement this, we derive a tight upper bound of 2n(k — 1) for chordal

bipartite graphs and 54n(k — 1) for grid intersection graphs (GIG), a prominent graph class residing

in four Ferrers dimensions and capturing planar bipartite graphs as well as bipartite intersection
graphs of rectangles. Previously, the best-known bound for GIG was Z(n; k) € O(2°®n), implied
by the results of Fox & Pach (2006) and Mustafa & Pach (2016). Our results advance and offer new
insights into the interplay between Ferrers dimensions and extremal combinatorics.
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1 Introduction

Bipartite graphs are the most natural mathematical objects used to capture interrelations
between two groups of interest. Therefore, it is unsurprising that they arise routinely in
mathematical and algorithmic research communities. In extremal graph theory, bipartite
graphs have been studied extensively from several perspectives.

The Zarankiewicz problem is perhaps among the oldest questions in extremal graph
theory. In 1951, Zarankiewicz asked for the maximum number of edges in a bipartite graph
with n nodes on each side that does not contain a complete bipartite subgraph Ky . 2
Equivalently, given an n-by-n matrix with 0/1 entries, that does not contain a k-by-k all-one
submatrix, what is the maximum number of 1-entries in such a matrix? This question was
partially answered by Koévari, Sés and Turdn: If we denote such number by Z(n;k), it was
proven that Z(n;k) € O(n*~1/¥) [20], and the best known lower bound is Q(n2-2/(k+1))

L Ferrers dimension, along with interval dimension and order dimension, is a standard dimensional concept
in graphs. Please refer to the introduction for formal definition.

2 Here, we are interested in a symmetric form of the Zarankiewicz problem. A more general question can
involve graphs with different numbers of vertices on each side, that do not contain some biclique K ;.
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shown in [2]. Exact values are known for k = 2, k = 3, and closing the gap for k > 4 is one
of the central open questions in extremal combinatorics. A trivial lower bound would be
n - k, achieved by K .

This question has also attracted significant interest in the context of specific graph classes,
particularly those with additional structural constraints [4, 25, 12]. Chan and Har-Peled, for
instance, studied a wide range of geometrically defined bipartite graphs [4], such as incidence
graphs of points and rectangles, disks, or pseudodisks.

1.1 OQur contributions

We consider the Zarankiewicz problem for geometric bipartite graphs. For “natural” graph
classes, the lower bound of Z(n; k) € Q(nk) holds trivially. Our results show that a nearly
tight upper bound can be achieved for many natural graph classes.

To formalize the discussion, consider a bipartite intersection graph G = (U UV, E),
defined by two families of objects Fy and Fy, where each vertex u € U (resp. v € V) is
associated with an object O, € Fy (resp. O, € Fv); Let ¢ : u — Oy, v — O, for u € U and
v € V be the bijection between vertices and their representations. We say that (¥, Fy, @) is
an intersection representation of G. Whenever the mapping ¢ is clear from the context,
we omit it. Table 1 shows bipartite intersection graphs relevant to this paper.

Table 1 Classes of bipartite intersection graphs that are relevant to this paper.

Graph Classes | Family Fy Family 5y domain | Example
CHAIN rightward rays points R U
CONV intervals points R BN N
CHAIN? rightward rays upward rays R? 1

SR horizontal segments upward rays R? I

GIG horizontal segments vertical segments | R2 _#_
PRIG axis-aligned rectangles | points R? ]

=1

]

For two graph classes C; and Cs, we use C; - C2 to denote the class of graphs, such
that every graph G € C; - Cy is the intersection of some graphs G; € C1, G3 € Cy, where
intersection between graphs is defined as the intersection between their nodes and edges.
When C; = Cy, we use the notation Gf = (1 - C1, and similarly for other powers.

The concept of Ferrers dimension is crucially based on chain graphs (CHAIN). A
bipartite graph G = (UUV, E) is in CHAIN if it is an intersection graph of rays and points on
the line [7]. Ferrers dimension of a bipartite graph G, denoted by fd(G), is the smallest integer
d, such that G € CHAINY. Tt is known that every n-vertex graph has Ferrers dimension at
most n.

We will use Ze¢(n, m; k, k) to denote the maximum number of edges in a bipartite graph
G=(UUV,E) € C, where |U| =n, |V| =m, such that the graph does not contain Ky ; as
a subgraph, and simply Ze(n; k), when n = m.

Our first main result provides a dichotomy between Ferrers dimension three and four.

» Theorem 1 (Dichotomy theorem). The following dichotomy results hold for all k € N:
Zepane (n; k) < 9n(k —1).

Zcnane (n; k) € Q(nk - 1o§ign)-
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By using our upper bound for Ferrers dimension three as a base case, a result by Chan
and Har-Peled [4] can be improved (proof in Appendix A).

» Corollary 2. For graphs of Ferrers dimension d > 3, k € N, we have Zcyana(n; k) <
O(nk - [logn]9=3).

We complement the lower bound for CHAIN* by providing Zarankiewicz upper bounds
for a prominent graph class in CHAIN?.

» Theorem 3. For all k,n € N, Zgic(n; k) < 5dn(k —1).

This is our second main result. Grid intersection graph (GIG) is an intersection graph
of horizontal and vertical segments in R?. This graph class contains all graphs of Ferrers
dimension two and is known to be in CHAIN®. GIG is rich, includes all planar bipartite
graphs, and is equivalent to the bipartite intersection graphs of rectangles [1]. They have been
studied from both structural and algorithmic perspectives [8, 22, 21]. This result improves
upon the 29" )n upper bound that follows from [25, 13] (their results hold for more general
intersection graphs of curves).?

Our final result applies to chordal bipartite graphs — a bipartite graph is chordal if every
cycle of length at least six contains a chord. Chordal bipartite graphs contain all graphs of
Ferrers dimension at most two. On the other hand, it is relatively rich, having unbounded
Ferrers dimension [7, 6].

» Theorem 4. For all k,n € N, Ze(n; k) < 2n(k — 1), where C is a class of chordal bipartite
graphs.

We observe that Zcuain(n;k) > 2n(k — 1) — O(k?) even for CHAIN (see Lemma 38
in Appendix E), so our upper bound is tight up to an additive constant for fixed k. Theorem 4
improves upon the 4nk upper bound that holds for CONV [4] (since such graphs have Ferrers
dimension at most two). Please refer to Table 2 for a comprehensive list of our results
and Figure 1 for a landscape of Ze(n; k), when C is one of these graph chasses.

Table 2 Zarankiewicz Bounds proved in this paper. Our bounds follow from Theorem 4,
Corollary 13, Corollary 19, and Theorem 3 respectively.

Graph classes Our UB Known UB

Chordal bipartite graphs 2n(k — 1) 3kn for a special case. [4]
Segment ray graphs (SR) dn(k — 1) O(kn) [4]

CHAIN? In(k —1)

Grid intersection graphs (GIG) | 54n(k —1) | 29®)n [13, 25]

We remark that all our upper bounds are algorithmic in the sense that, given a graph
and its geometric representation in class C, we give an efficient algorithm that reports a
k-by-k biclique whenever the number of edges exceeds our Z¢(n; k) upper bound (e.g., given
a grid intersection graph C = GIG with more than 54(k — 1)n edges, our algorithm efficiently
finds a k-by-k biclique).

3 Note that Fox and Pach explicitly mentioned the term 2°®)  while Mustafa and Pach’s dependency on
k is somewhat hidden in their calculation. Looking at their calculations reveals that the constant is
20,

21:3

GD 2025



21:4

On Geometric Bipartite Graphs with Asymptotically Smallest Zarankiewicz Numbers

Ze(n; k) = Q(nk - o280 CHAIN®

loglogn

CONV?

PRIG

Chordal Bipartite Graphs

CONV

CHAIN

Figure 1 The relation between graph classes considered in this paper. All inclusions denoted by
arrows are known to be proper. Our results imply the separation shown by the dotted curve. We
show that CHAIN?®  GIG, and chordal bipartite graphs satisfy Ze¢(n;k) € O(nk), which implies the
same for the rest of the graph classes below them.

Comparison to known results. Prior to our results, the upper bound Ze(n; k) € O(nk) has
been known for CONV, segments and rays?, and halfspaces and points [4]. We improve a
constant for CONV (since it is a special case of chordal bipartite graphs) and generalize their
result on the segment-ray graphs to grid intersection graphs. The grid intersection graph is
a special case of string graphs, so the upper bound [13, 25] of Zgig(n; k) € O(2°%)n) follows
from their results on string graphs. Please refer to Figure 1 for the relations between these
classes.

Further related works. The graph classes in this paper have received much attention
from various perspectives, including recognition algorithms, optimization, and structures.
For instance, chordal bipartite graphs have been considered in [23, 15, 24, 30]. For grid
intersection graphs, the recognition problem is NP-complete [21, 22]. The class is known to
capture planar bipartite graphs [16] and is equivalent to the intersection graph of rectangles
that are bipartite [1]. For more detailed literature on GIG, we refer the readers to an
exposition in the PhD thesis of Mustata [26].

Zarankiewicz problems have been studied in many other special graphs, such as semi-
algebraic graphs [14, 10], graphs of bounded VC dimension [17], graphs forbidding a fixed
induced subgraph [3], and in geometric intersection graphs [18, 5, 4, 29, 5]. We refer to the
recent survey by Smorodinsky for a more comprehensive list of related works [28].

4 Chan and Har-Peled use the equivalent 3-sided rectangle and point intersection graphs.
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2 Preliminaries

We use standard graph-theoretic notation. A bipartite graph is denoted as G = (UUV, E)
where U and V' are partitions of the vertices. For a graph G, we refer to its set of vertices as
V(G), its set of edges as E(G), and its induced subgraph on S C V(G) as G[5].

The intersection of two graphs G; and G is defined as G1NG2 = (V(G1)NV(G2), E(G1)N
E(G2)). When G; belongs in graph class C; and Gz in class Cs, then we say that G; N Gs
belongs in C; - C3. For graph classes C; and C,, that are closed under taking induced
subgraphs, a graph G € C; - C3 can be assumed to be the intersection of two graphs on the
same vertex set, because if G; € Cq, then G1[V(G2) NV (G1)] € Cy. Similarly for Gs.

Therefore, for two graph classes C; and Cy that are closed under taking induced subgraphs,
the intersection of the graph classes can be defined as:

Cp-Cy = {Gl n G2 : V(Gl) = V(Gz),Gl S Gl,GQ c Gg}

One can naturally write C% = C - C...C (d times).
Bicliques are the graphs K, 3, where a and b are some positive integers.

» Proposition 5. If the graph class C contains every biclique, then C C C2 C .. ..

Proof. Here, we show that for any positive integer i, C* C C**1. Let G = (UUV, E) € C*.

Then take H being the complete bipartite graph on U and V (where the edges connect
vertices in U and V). Then H € C. Therefore, G = GN H € C+1L. <

Since CHAIN contains every biclique, this implies that CHAIN C CHAIN? C .... It is
known that CHAIN? is equivalent to the class of all two-directional orthogonal ray graphs
(2DOR) [7, Theorem 2.1].

A bipartite graph G = (U UV, E) is convex over V if there exists an ordering V =
{v1,... vy} such that for all u € U, the vertices N(u) are contiguous ({v;,...v;} for some
1,7 € [[V]]). We call the set of such graphs CONV. CONV is known to be equivalent to a
containment graph of points and intervals in R. An interesting graph class worth mentioning
is CONV? - the intersection of two convex graphs.

» Theorem 6. A bipartite graph G = (U UV, E) is in CONV? if and only if G is a disjoint
union of GIG and PRIG graphs.

The proof can be found in Appendix B.

Finally, a bipartite graph is a chordal bipartite graph if every induced cycle of length
at least six contains a chord. It is known that chordal bipartite graphs can have unbounded
Ferrers dimension [7, 6].

3 Warm-up

Recall that a graph G is d-degenerate if every induced subgraph has a vertex of degree at
most d. All graph classes considered in this paper are closed under taking induced subgraphs.

» Observation 7. A d-degenerate graph G has at most d - |V (G)| edges.

3.1 Chordal bipartite graphs

For a bipartite graph G, denote its biadjacency matrix by M. We say that a matrix M
contains submatrix P if we can obtain P by removing some rows and columns of M. A
matrix M is P-free if it does not contain submatrix P. A bipartite graph G is P-freeable,
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if there exists an ordering of rows and columns, such that the biadjacency matrix Mg is
P-free.
The following structural result is known for chordal bipartite graphs.

» Theorem 8 ([19, 11]). Every chordal bipartite graph is (9 1)-freeable.

» Lemma 9. For any k € N, a chordal bipartite graph that does not contain Ky, 1is
(k — 1)-degenerate.

Proof. Let H be a chordal bipartite graph. If for every induced subgraph of H, a node
of degree at most k — 1 exists, we are done. Therefore, let us assume by contradiction
that G is an induced subgraph of H, where a node of degree at most £ — 1 does not exist.
Then all nodes V(G) have a degree of at least k in G. Using Theorem 8, we know that
there is a P-free biadjacency matrix of G, where P = ({1). Let Mg be that biadjacency
matrix. Let G = (U UV, E), where each row i € [|U|] and column j € [|V]|] correspond
to the vertices u; € U and v; € V, respectively. Let i € [|U|] be the maximum integer,
such that Mg(4,|V|]) = 1 (i.e., this is the bottommost row in the last column such that
the entry is one). Consider the rows R = {i’ : uy € Ng(vjy|)} € [|U]] and columns
C={j':vj € No(u;)} C[|V]]. Let M’ be the submatrix induced on rows R and columns C.

\4
0

i/0 1 100

[ R

Figure 2 An example, where rows R are denoted in purple and columns C in green.

According to our assumption, this submatrix M’ contains at least k rows and k columns. It
is easy to see that M’ is an all-one matrix: Assume that it is not, and Mg(a,b) = 0 for some
a € Rand b e C. Since a € R, we have Mg(a,|V|) =1 and since b € C, Mg(i,b) = 1. The
2-by-2 submatrix induced on rows {a,i} and columns {b, |V'|} is then equal to the forbidden
pattern P, a contradiction. <

» Theorem 10. For alln,m,k € N, Ze(m,n; k, k) < (m+n)(k — 1), where C is the class
of chordal bipartite graphs.

Proof. The result follows from Lemma 9 and Observation 7. <
The matching lower bound is shown in Lemma 38.

» Theorem 4. For all k,n € N, Ze(ny k) < 2n(k — 1), where C is a class of chordal bipartite
graphs.

Proof. The result follows from Theorem 10 when n = m. |

3.2 Segment ray graphs

Next, we present a simple proof of the upper bound of Zsg(m,n;k, k) for the intersection
graph of horizontal segments and vertical upward rays in R?, denoted by SR. More precisely,
(8, R, $), is a segment ray (SR) representation of a bipartite graph G = (UUV, E), if §
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and R are sets of horizontal segments and vertical upwards rays in R? respectively, and
¢:Uw— 8,V — R, such that {u,v} € E, where u € U, v € V, if and only if ¢(u) and ¢(v)
intersect.

Although the upper bound O((m + n)k) was shown in [4], we improve this upper bound
to 2(m+n)(k —1).

» Lemma 11. Every segment-ray graph that does not contain Ky, 1 is 2(k — 1)-degenerate.

Proof. Let H be a segment-ray graph. If, for every induced subgraph of H, a node of degree
at most 2(k — 1) exists, we are done. Therefore, let us assume by contradiction, that G is an
induced subgraph of H, where a node of degree at most 2(k — 1) does not exist. Then, all
nodes V(G) must have a degree at least 2k — 1 in G.

Let (8, R, ) be the SR representation of G = (U UV, E), such that ¢ : U — &,V — R.

Let x and y be the horizontal and vertical axes, respectively. Each ray r € R can be
addressed by a pair (rg,7y), where r; and r, are the x and y coordinates of its starting
point respectively. Each horizontal segment s € § can be addressed using three variables
(1,57, 8y), such that [s;, s,] and s, are the projections of s to the z and y axis respectively.

Let r € R be the ray with the largest r, (highest starting point). Let S be the set of
segments that intersect r. Then, according to our assumption, |S| > 2k — 1. Let Spigne € S
be the set of k — 1 segments with the largest (rightmost) s,, and let Sicys C S be the set
of k — 1 segments with the least (leftmost) s;. Then there must be at least one segment
s € S\ (Sright U Sicst) (Figure 3).

.
= Sright

S

Szeﬂ{

Figure 3 Rjcs: and R,ign: are denoted by purple and green rays respectively.

Let R be the set of rays that intersect s. By our assumption, |R| > 2k — 1. Let
Ricyi, Rrighe © R be the sets of rays to the left and right of r, respectively. Since R =
Ricpe U Ryjgne U {r}, then at least one of Riepe, Rrighe must contain at least k — 1 rays. Let
us assume it is Rje s, the other case can be argued symmetrically. Since 7 is the ray with
the highest r,, then each ray in Rj.s; must intersect each segment in Sj.¢; (Figure 3). This
implies that the vertices mapped to rays in Rjep U {r} and segments in Si.s: U {s} must
induce a k-by-k biclique. This is a contradiction. |

» Theorem 12. For alln,m,k € N, Zsg(m,n; k, k) < 2(m+n)(k—1) in segment ray graphs.

Proof. The result follows from Lemma 11 and Observation 7. <

» Corollary 13. When m = n, Zsg(n; k) < dn(k — 1) in segment ray graphs.

4  Graphs of Ferrers Dimension Three

This section presents the proof of the first part of Theorem 1.

21:7

GD 2025



21:8

On Geometric Bipartite Graphs with Asymptotically Smallest Zarankiewicz Numbers

Let x and y be the horizontal and vertical axes, respectively. We say that a rectangle r
in R? is bottomless ° if its projection to the y-axis is an interval that starts at —oc.

We say that (8,B, ¢) is a segment bottomless rectangle containment representation of a
bipartite graph G = (UUV, E), if § and B are sets of horizontal segments and bottomless
rectangles in R?, respectively, ¢ : U — 8,V — @, and for all v € U, v € V, we have
{u,v} € E if and only if ¢(u) is contained within ¢(v). A bipartite graph G is a segment
bottomless rectangle containment graph, if it has a segment bottomless rectangle containment
representation.

For s € S UB, let s.z and s.y denote the projections of s to z- and y-axis respectively.
For an interval s.z = [a,b], we use min(s.z) = a and max(s.z) = b to denote its minimum
and maximum points.

» Lemma 14. A bipartite graph G is of Ferrers dimension three (G € CHAIN®) if and only
if it is a segment bottomless rectangle containment graph.

The proof can be found in Appendix C.

Given a bipartite graph G € CHAIN?, we now know it must have a containment repres-
entation (&, B, ¢), where & and B are sets of horizontal segments and bottomless rectangles
inR?, and ¢: U = 8,V > B.

Let k be the minimum positive integer such that G does not contain Ky ; as a subgraph.

Without loss of generality, assume that no two horizontal segments have the same y-
coordinate. We define three (strict) partial orders (denoted by #PE @PE and #¢) on &
that will be crucial to our analysis (Figure 4). For s, € 8, we say

s succeeds s in the partial order P and denote it by s <pz, s', if min(s’.z) < min(s.z),

max(s’.x) < max(s.z), and s'.y < s.y,

s succeeds s in the partial order P and denote it by s <pr &', if min(s.z) < min(s’.z),

and max(s.z) < max(s'.x), and s'.y < s.y,

s’ succeeds s in the partial order #¢, and denote it by s <¢ &, if s'.o C s.x.

It is easy to check that @PL @PE and ®C are transitive and asymmetric.

S ) S 8 S S

b b

S S S S S S

Figure 4 The scenarios that define relations in #P¥ (two leftmost), #PF (two in the middle)
and »° (two rightmost images), where s’ succeeds s.

If s <pr, s or s’ <pr s, we say that s and s’ are comparable in @PL; otherwise, they
are incomparable. We can say the same about comparability in @ and #¢. The following
claim is straightforward, and a consequence of a simple case analysis (see Figure 4).

» Observation 15. A pair of segments s,s' € 8 is comparable in one of the partial orders
g)DL g)DR @C'

For a segment s € &, denote by succPL(s),succPf(s),succ”(s) C § the sets of all
successors of s with respect to partial orders PPL, PPE and #C respectively.

To count the number of edges in a bipartite graph G with a representation (8,3, ¢),
we classify the edges into bulky and thin edges. For an edge {u,v} € E(G), we have
containment ¢(u) C ¢(v), where ¢(u) € §, ¢p(v) € B. We say that the edge {u,v} is

5 These rectangles have also been called 3-sided rectangles [4] in the context of SR graphs.
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DL-bulky if the bottomless rectangle ¢(v) contains k — 1 segments from succ”Z(¢(u)) (See
Figure 5). We can analogously define DR-bulky and C-bulky edges. All edges that are
not bulky are called thin. An edge is bulky if it is DL-bulky, DR-bulky, or C-bulky.

Figure 5 The edge {u, v} is DL-bulky, if ¢(v) (purple) contains k — 1 segments succeeding ¢(u)
(green) in ®PL.

If s <pr, s or s/ <pr s, we say that s and s’ are comparable in PPF; otherwise, they
are incomparable. We can say the same about comparability in @P% and #¢. The following
claim is straightforward, and a consequence of a simple case analysis (see Figure 4).

» Lemma 16. For each u € U, the number of bulky edges incident to u of each type is at
most (k —1). Therefore, at most 3(k — 1) bulky edges are incident to each u.

Proof. We present the proof for DL-bulky edges. The proofs for the other two cases are similar.

Let B C Ng(u) be the nodes v € V, such that {u, v} is DL-bulky. Let S’ C succP%(¢(u)) be
the k — 1 segments s’ € S’ with the largest min(s’.z). Let U’ be the set of nodes represented
by S’

We will show that each v € B has {u} UU’ in its neighborhood, and therefore |B| < k — 1.

Assume by contraposition that |B| > k. Let v € B be an arbitrary node. For any s’ € 57,
o(u) <pr 8" and ¢(u) C ¢(v) imply the following:

s’y € ¢(v).y. Since ¢(u) <pr s, we have s’.y < ¢(u).y, and since ¢(v) contains ¢(u), we

have ¢(u).y € ¢(v).y. Since ¢(v).y is an interval that starts at —oo, then s'.y € ¢(v).y.

max(s’.z) < max(¢(v).xz). Similarly to the previous case, the implications give us the
inequalities in max(s’.z) < max(¢(u).z) < max(¢(v).x)

Let s’ € S’ be an arbitrary segment. Since ¢(v).y contains s’ on the y-axis, max(¢(v).x)
is larger than any point in s’ on the z-axis, then to show that ¢(v) contains s, it only
remains to show that min(¢(v).z) < min(s’.z). Since S’ was chosen to contain the segments
in succPL(¢(u)) with the largest min(s’.z), then min(¢(v).z) < min(s’.x) holds for s’ € S,
if it holds for any k — 1 segments in succ?%(é(u)). Since {u,v} is DL-bulky, ¢(v) contains
at least k — 1 segments in succ?L(¢(u)). This implies that ¢(v) contains S’, and we have
U’ € Ng(v). Since this is true for all v € B, then B and U’ U {u} induce a K}, j, which is a
contradiction.

The proof for DR-bulky edges is symmetric and the proof for C-bulky edges can easily be

seen by selecting S’ C succ®(¢(u)) to be the k — 1 segments s’ € S’ with the smallest s".y.

Since every s’ € S’ is already contained in ¢(u) on the x-axis, then the y coordinate is the
only factor determining which elements of succ”(¢(u)) are contained within a bottomless
rectangle that contains ¢(u). <

» Lemma 17. For each v € V, there are at most 6(k — 1) thin edges incident to v.

Proof. For a partial order &, we use E(#) to denote the number of comparable pairs in .

Let T C Ng(v) be the set of nodes u, such that {u,v} is thin. Let &, P, P, be the
partial orders PPE PPE pC induced on set ¢(T). According to Observation 15, each pair
of segments s, s’ € ¢(T), is comparable in at least one of the partial orders. We then have
B(®) U E(®) U E(®)| > (1])).

21:9
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Since for all u € T, the edge {u, v} is thin, there are at most (k —2) DL-successors of ¢(u)
in ¢(T), so we have |E(#;)| < (k — 2)|T|. Similarly, we have at most (k — 2) C-successors
and (k — 2) DR-successors in ¢(T'). Therefore, |E(P,)], |E(P.)| < (k — 2)|T|. Combining the
edges in the three partial orders, we get |E(%#;) U E(%,) U E(®.)| < 3(k — 2)|T|. Putting
these inequalities together, we have

o
iz - /2= () <36 217
which implies that |T'| < 6k — 11 < 6(k — 1). <

» Theorem 18. For alln,m,k € N, Zcyanz(m,n; k, k) < (3m + 6n)(k —1).

Proof. Let G = (U UV, E) € CHAIN? be a K}, -free graph, where |U| = m, |V| = n. Note
that we defined every edge in E as either thin or bulky. According to Lemma 16, the
number of bulky edges in F is at most 3(k — 1)m. According to Lemma 17, the number
of thin edges in E is at most 6(k — 1)n. This means that the total number of edges is
|E| < (3m +6n)(k —1). <

» Corollary 19. When m = n, we have Zcyanz (n; k) < 9(k — 1)n.

» Theorem 1 (Dichotomy theorem). The following dichotomy results hold for all k € N:
Zepane (n; k) < 9n(k —1).
Zeuame (n; k) € Q(nk - —28m ),

loglogn

Proof. The first part will be proved in Section 4. The second part is a simple corollary of
existing results: Chazelle [9] constructed Ky o-free PRIG graphs on n' vertices that have at
least Q(n' - 10{51%;2;1/) edges. Chan and Har-Peled [4] assert the applicability of this result
in graph theory, since the original context was pointer machines. By a simple modification

that we show in Lemma 36, there exist K, ;-free PRIG graphs on N vertices with at least
N
Q(N- (kq)-b{g"iﬁ) = Q(N k- 222N edges. Since PRIG C CONV? (Lemma 31), which
k—1

loglog N
is contained in CHAIN? [7], then the constructed graphs give a lower bound for Zarankiewicz
numbers for CHAIN* graphs. <

5  Grid Intersection Graphs

This section will use a more formal definition of grid intersection graphs. We say that
(X,Y, ¢) is a grid intersection representation of a bipartite graph G = (UUV, E), if X, Y
are sets of horizontal and vertical segments in R? respectively, ¢ : U — X,V Y, and for
all u e U, v € V, we have {u,v} € E if and only if ¢(u) and ¢(v) intersect. A bipartite
graph G is a grid intersection graph (GIG) if it has a grid intersection representation. For
asegment z € XUY, let N(z) ={z € XUY :2' Nz # 0}, e.g the set of segments that
intersect z.
Let £ be the minimum positive integer such that G' does not have Ky, ;. as a subgraph.

» Observation 20. If G = (UUV,E) € GIG is 27(k — 1)-degenerate, then |E| < 27(k —
DAUT+ V-

The proof is done via charging arguments.
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5.1 Charging Arguments

For each segment z € X UY, let z.z and z.y denote its projections to the z-axis (horizontal)
and y-axis (vertical) respectively. Note that the projections are closed intervals and points.
For an interval [a, ], let min([a,b]) = a and max([a,b]) = b. For two intervals I and I, we
say that I < I', if max(I) < min(I’).

For any segment z € X UY, we define DIRjoun(2) = {z € XUY : 2.y < z.y}, i.e. the
set of segments whose projection to the y axis is entirely smaller than that of z. Similarly,
we define DIR,,(2) = {2/ € XUY : 2.y > 2.y}, DIRjese(2) = {2/ € XUY : 2.z < z.x},
DIRignt(2) = {2’ € XUY : 2.2 > z.x}. For a set S, we define DIR;,(S) = [, cg DIRup(2)
and similarly for the other directions.

» Definition 21. We say that a vertical segment v € Y is down-heavy with respect to
oe€X, ifo.y Cry and |N(v) NDIRgown(0)| > 3(k — 1).

» Definition 22. We say that a vertical segment v € Y is up-heavy with respect to o € X,
if o.y C vy and |[N(v) NDIR,,(0)| > 3(k —1).

~>3k-1) T | Porz3tk-1) T[T

o :
e 1 RS

X

Figure 6 down-heavy segments are represented by the green vertical segments on the left and
up-heavy segments by the purple ones on the right.

To show that a node w € UUV, such that |N(w)| < 27(k — 1) exists in any GIG graph, we
present a payment scheme algorithm whereby each horizontal segment starts with 27(k — 1)
credits, which is subsequently paid to vertical segments. We will see that each vertical
segment v € Y whose degree is at least 27(k — 1), receives at least |N(v)| credits.

Algorithm 1 Neighbor payments.

From each 0 € X
Pay % credits to each of the following vertical segments in N(o):
k — 1 leftmost up-heavy vertical segments with respect to o
k — 1 rightmost up-heavy vertical segments w.r.t. o
k — 1 leftmost down-heavy vertical segments w.r.t. o
k — 1 rightmost down-heavy vertical segments w.r.t. o

Algorithm 2 Further payments.

From each 0 € X
Pay % credits to each of the following segments v, where 0.y C v.y:
k — 1 rightmost up-heavy vertical segments in DIR;e (o)
k — 1 rightmost down-heavy vertical segments in DIR;e (o)
k — 1 leftmost up-heavy vertical segments in DIR, ;g5 (0)
k — 1 leftmost down-heavy vertical segments in DIR,;gn:(0)

Now, we will analyze the credits received by an arbitrary vertical segment v € Y.

21:11
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T T

}23(};— 1)

J

<k-1 <k-1
Figure 7 Algorithm 1 credit receivers are shown in purple and Algorithm 2 credit receivers in
green.

For a set of horizontal segments S C X, let S.y denote the interval [min, max], where
min = minyes(0.y) and maz = max,cg(0.y).

» Lemma 23. Let S C N(v), such that

1] = 3(k — 1)

|N(v) NDIR,,(S)| > 3(k — 1) (Intuition: S is not among the highest elements of N(v))

|N(v) NDIRgown (S)| > 3(k — 1) (Intuition: S is not among the lowest elements of N(v))
Then at least %(k — 1) credits are paid to v from horizontal segments o € X, such that
oy €Sy.

The proof is deferred to Appendiz D.
» Lemma 24. If [N(v)| > 27(k — 1), then v receives at least |[N(v)| credits.

Proof. We choose the maximum number ¢ of disjoint sets Si,... S, in N(v), such that every
set S; satisfies the conditions of Lemma 23. Since each set receives 3(k — 1) credits from a

distinct set of horizontal segments, then the total amount in credits v receives is at least
(k1)
5 .

It remains to see that 2(k — 1)¢ > |N(v)|. Note that ¢ > LlN(”)‘fé((lzf_ll))fg(kfl)j >
N((v)|—9(k— N()|—9(k—
WA= We get that (k — 1)¢ > §(k — 1) 20D = SIN()| - Z(k 1) =
IN()| + 5(|N(v)| — 27(k — 1)). Since according to our assumption |N(v)| > 27(k — 1), then
this result is at least |N(v)]. <

» Lemma 25. Any G = (UUV, E) € GIG is 27(k — 1)-degenerate.

Proof. Assume by contradiction that there is a graph G = (U UV, E) € GIG, where no
such node exists. Since according to our assumption, for any node w € U UV, we have
|N(w)| > 27(k — 1) 4+ 1, then by running Algorithm 1 and Algorithm 2, we see that for each
horizontal node, fewer credits are given out than their degree. This implies that the amount
in credits given by these algorithms is smaller than |E)|.

For each vertical node v € Y, on the other hand, according to Lemma 24, the amount in
credits received is at least that of their degree. This implies that the total amount in credits
received from these algorithms greater than or equal to |E|. This is a contradiction. |

» Theorem 26. For alln,m,k € N, Zgic(m,n; k, k) < 27(m +n)(k —1).

Proof. The result follows from Lemma 25 and Observation 7. <



P. Chalermsook, L. Orgo, and M. Zarsav

» Theorem 3. For all k,n € N, Zgic(n; k) < 5dn(k — 1).

Proof. The result follows from Theorem 26, when n = m <
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A Higher Ferrers Dimension

We prove Corollary 2 in this section. Note that the proof closely follows Section 2.2 of Chan
and Har-Peled [4]. We repeat their definitions here for completeness. For integers a < b,
we denote {a,a + 1,...,b} by [[a : b]]. A dyadic range is an integer range of the form
[[s2¢ : (s + 1)2¢+1 — 1]] for some integers s and i. Considering a CHAIN graph, we can view
the points as integers ® = {1,...,n}. Denote by @D(n) the set of all dyadic ranges. Each
integer (point) appears in at most [logn] dyadic ranges.

Notice that a ray is simply a range [[a, n]] for some a.

» Lemma 27 (An analogue of Lemma 2.2 in [4]). Let r be a ray. Denote by dy(r) the set
of minimal disjoint dyadic ranges covering r. Then dy(r) is unique and contains at most
[logn] ranges.
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Remark that we have [logn] instead of 2[logn] as in [4] since we have rays instead of
intervals. The following lemma implies Corollary 2.

» Lemma 28. Let G = (AU B, E) € CHAIN? for d > 3 that does not contain Ky, . Then
the number of edges in G is at most O(|A| + |B|) - k - [logn]9=3 where n = max{|A|, |B|}.

Proof. The proof is obtained by induction on d. The base case when d = 3 is proved
in Theorem 18. When d > 3, assume the claim is true for all dimensions up to d — 1. We
write G = G’ N G where ¢/ € CHAIN and G € CHAIN®"!. Since G’ € CHAIN, it is an
intersection bigraph of rays R and points & where a € A is mapped to 7, € R and b € B to
pp € P. Assume w.lo.g. that @ ={1,...,q} for ¢ < n.

For each dyadic range v € @(q), we have an auxiliary graph G, which is an induced
subgraph G[A, U B,] where A, = {a € A:v € dy(r.)} and B, = {b: p, € v}. Notice that
[E(G)] <X vemm) [E(GY)]-

Moreover, G, = G'[4, U B,| N @[A,, U B,] where G'[4, U B,] is a biclique; therefore
G, € CHAIN®! and is free of k-by-k biclique. This allows us to invoke the induction
hypothesis, which implies that

IB(G)| < Y O(A] +|By|)k[logn]*~*

veD(n)

Finally, since each vertex a € A appears in at most [log q] < [logn] sets A, (and similarly for
each vertex b € B), this implies that the above sum is at most O(|A| + |B|)k[logn]?~3. =

B Intersection of Two Convex Graphs

In this section, we will use a more formal definition of PRIG graphs. We say that (X,Y, ¢)
is a point-rectangle intersection representation of a graph G = (U UV, E), if X, Y are sets
of points and rectangles, respectively, in R?, ¢ : U — X,V —~ Y, and forallu c U, v € V,
we have {u,v} € E if and only if ¢(u) and ¢(v) intersect. A graph G = (UUV,E) is a
point-rectangle intersection bigraph, if it has a point-rectangle intersection representation.
We call the class of such graphs PRIG.

GIG —_—— PRIG

Figure 8 Examples of GIG and PRIG graphs with their projections into axes.

» Lemma 29. Any graph G = (U UV, E) € CONV? is a disjoint union of GIG and PRIG
graphs.

Proof. Since G € CONV2, then there exist graphs G; and G, such that G; NGy = G. Let
V1 and V5 be the partitions that the graphs G; and Gs, respectively, are convex over, and
U, CV(Gy), Us C V(G2), the other partitions.

GD 2025
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Figure 9 The partitions of two intersecting graphs.

Since CONV graphs are closed under taking induced subgraphs, we can assume that
U uVy =U; UV, Let A = U; NU,, AQZUlﬁVQ, B =ViNV,, By =V, NUs, as shown
on Figure 9.

We have UUV = A; U A3 U B; U By and all edges must start and end at these nodes.
Since A; is in the same partition as As, and By, in at least one of the graphs, there can
be no edges between A; and As U By. The same is true for B;. Clearly, G can have one
component consisting of nodes A; U B; and another component consisting of nodes A, U B,
with no edges between these components.

It remains to see that G[A; U By] € PRIG and G[A2 U By] € GIG. To do this, we show
that there exist representations of these graphs in PRIG and GIG respectively, such that the
projections of these representations to x and y axis are the convex representations of graphs
G1 and G induced on A1 U By and A U By respectively.

Let Hy = G1[A1UB4] and Hy = G3[A1UBy]. Since G and G4 are convex over V; and Vs,
and By = V1NVa, then Hy and Hj are convex over By. Let (X1,Y1, ¢1) be the point-segment
representation of H;, such that Y; are the points. Then ¢; : A1 — X1,B1 — Y. Let
(X32,Y2, ¢2) be the point-segment representation of Hs, such that Yy are the points. Then
¢ : A1 — Xo, By — Yo. We construct a mapping ¢ : A3 — X, B; — Y, where X is a
set of rectangles, and Y a set of points in R?. For each w € A; U By, ¢(w) is the object
whose projection to the x-axis is ¢1(w) and whose projection to the y-axis is ¢o(w). Note
that for all a € Ay, ¢(a) is a rectangle, and for all b € By, ¢(b) is a point. It is easy to
verify that ¢(a) intersects ¢(b), if and only if ¢1(a) intersects ¢1(b) and ¢o(a) intersects
¢2(b), which implies that there is an edge {a,b} in the graph represented by ¢, if and
only if {a,b} € E(H;) N E(Hz). This means that (X,Y,¢) is a valid representation of
G[Al @] Bl] € PRIG.

Showing that G[A2U Bs] € GIG is similar, but not quite symmetric. Let H; = G1[A2U Bs)
and Hy = Go[As U Bs). Since Gy and G5 are convex over V; and Vo, and As C V,, By C V7,
then Hy and Hs are convex over Ay and By respectively. Let us define (X1,Y7, ¢1) to be the
point-segment representation of Hy, such that X; are the points. Then ¢, : Ay — X1, By —
Y. Let (X2,Ys,¢2) be the point-segment representation of Ha, such that Yy are the points.
Then ¢5 : As — Xo, By — Y3. We construct a mapping ¢ : As — X, Bo — Y, where X is a
set of horizontal segments, and Y is a set of vertical segments in R2. For each w € Ay U Bo,
¢(w) is the object whose projection to the y-axis is ¢ (w) and whose projection to the z-axis
is ¢2(w). Note that for all a € A, ¢(a) is a horizontal segment and for all b € By, ¢(b) is a
vertical segment. It is easy to verify that ¢(a) intersects ¢(b), if and only if ¢ (a) intersects
¢1(b) and ¢2(a) intersects ¢2(b), which implies that there is an edge {a,b} in the graph
represented by ¢, if and only if {a,b} € E(Hy)N E(Hz). This means that (X,Y, ¢) is a valid
representation of G[A; U B;] € GIG. <
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For graphs G4, Ga, let Gy U G5 to denote the disjoint union of G; and Gs.
» Lemma 30. CONV? is closed under disjoint union.

Proof. Let G, G’ be any disjoint graphs in CONV?. Then we have graphs G, G2 € CONV,
such that G; N Gy = G, and graphs G7,G, € CONV, such that G} N G4 = G’'. Since
CONV is closed under disjoint union, then G; UG} € CONV and G U G5 € CONV. Then
(G1UGH) N (Gy UGYH) € CONV2. Since G only shares vertices with Gy, and similarly, G
only shares vertices with G5, then (G UG,)N(G2UGY) = (G1NG)U(GINGL) = GUG €
CONV?. <

» Lemma 31. PRIG C CONVZ.

Proof. Let G = (U UV, E) be any graph in PRIG, and (X,Y, ¢) the representation of G in
PRIG, such that X is a set of points and Y a set of rectangles in R2. Then we can construct
mappings ¢; and ¢s, such that for all w € V(G), ¢1(w) and ¢o(w) are the projections of
¢(w) to = and y axis respectively. Let G7 and G2 be the graphs represented by ¢ (w) and
¢2(w) respectively. Since ¢ (w) maps the vertices V(G) to points and segments based on
their partitions, then G; € CONV. Similarly for G5. Since for any u € U, v € V, we have
that ¢(u) intersects ¢(v) if and only if ¢ (u) intersects ¢1(v) and ¢o(u) intersects ¢o(v), then
G1 NGy = G, This proves that G € CONV2. <

» Lemma 32. GIG C CONV2.

Proof. The proof is symmetric to Lemma 31. <

Theorem 6: Any graph G = (U UV, E) € CONV? if and only if it is a disjoint union of
GIG and PRIG graphs.
This follows from Lemma 29, Lemma 30, Lemma 31, and Lemma 32.

C Segment Bottomless Rectangle Containment Bigraph

We say that (X, Y, ¢) is an interval containment representation of a graph G = (UUV, E), if
X, Y in R are intervals, ¢ : U — X,V — Y, and for all u € U, v € V, we have {u,v} € F if
and only if ¢(u) is contained within ¢(v). A graph G is an interval containment bigraph, if it
has an interval containment representation. According to [7], the class of interval containment
bigraphs is CHAIN?.

» Proposition 33. If a graph G = (U UV, E) € CHAIN has a point ray representation
(X,Y,9), ¢ : U~ X,V = Y, then it also has a point ray representation (X',Y’', ¢'),
¢ V=X, UY', where X, X' are points and Y,Y' are rays.

Proof. We are given G = (U UV, E) € CHAIN with a point ray representation (X,Y, @),

¢:U— X,V =Y, where X represents points and Y represents rays extending to co in R.

For v € Y, let v.p denote the minimum point in ray v. Then for all u € U, v € V', we say
that ¢(v).p < ¢(u), if and only if {u,v} € E.

We construct (X', Y’, ¢') such that for each u € U, ¢'(u) = (—o0, p(u)], ¢'(v) = ¢(v).p.

Then for all w € U, v € V, ¢'(u) and phi’(v) intersect if ¢'(v) < ¢'(u).p, which happens if
and only if ¢(v).p < ¢(u). This implies that (X', Y’, ¢') is a representation of G, where the
partition U is mapped to rays and V' to points. By flipping the representation, it is easy to
see that there is an equivalent representation where rays extend to co. <
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» Lemma 14. A graph G is of Ferrers dimension three (G € CHAIN3) if and only if it is a
bottomless rectangle segment containment graph.

Proof. Let (8,3, ¢) be a segment bottomless rectangle representation of graph G = (UUV, E),
such that ¢ : U — 8,V — B. We will see that G € CHAIN®.

First, we consider the graph G, = (UUV, E,) represented by the projections of &, B to the
x axis. Since G, is an interval containment bigraph, then G, € CHAIN? ([27], [7]). Secondly,
consider the graph Gy, = (UUV, E,) represented by the projections of &, B to the y axis. Since
G, is an intersection graph of points and rays, then G, € CHAIN. Since each b € B contains
s € 8 if and only if s.x C b.x and s.y C b.y, then G = G, NG, € CHAIN? . CHAIN = CHAIN®.

Next, we will show that any graph G = (U UV, E) € CHAIN® has a segment bottomless
rectangle representation. According to [7], there exist graphs G, = (U UV, E,) € CHAIN?
and G, = (UUV, E,) € CHAIN, such that G, N G, = G. Let (X;,Y,, ¢;) be an interval
containment representation of G, such that X represent the contained segments and Y
the containing ones. Let us consider the case that ¢, : U — X,V +— Y,, the case that
¢z : Vi X, U — Y, is symmetric. Let (X,,Y,,®,) be a point ray representation of G,
such that X, are points and Y, are rays, ¢, : U — X,V — Y, (Proposition 33).

We construct a segment bottomless rectangle representation (8,8, ¢), ¢ : U — S,V — B,
such that for all w € UUV, ¢(w).z = ¢z(w), ¢(w).y = ¢,(w). Let G’ be the graph
represented by (§,B,¢). For all u € U, v € V, ¢(u) is contained within ¢(v) if and only
if ¢, (u) is contained within ¢, (v) and ¢,(u) is contained within ¢, (v). This implies that
G’ = G, NGy, which means that (8,3, ¢) is a representation of G. <

D  Grid Intersection Graphs

We say o € N(v) is generous to v (or simply generous), if Algorithm 1 pays any credits to
v from o. We consider the remaining segments in N (v) stingy to v.

First, we will see that if for a section of a vertical node, not enough credits are gained
from Algorithm 1, then there are horizontal segments in that section, which will contribute
to Algorithm 2 instead.

» Lemma 34. Let S C N(v), and S’ C S be the stingy subset, such that

S| = 3(k — 1)

[S—5"<k-1

N(v) € DIRyp(S) UDIR gouwn (S) U S (S contains consecutive neighbors of v)
Then there exists a set S* € DIR,;gni(v), such that

[S*| > k-1

S*yC Sy

Noesus» 02 7# 0

Proof. The number of stingy nodes is at least 2(k — 1). Let the stingy subset of S be S’. For
any o € S', there are at least k — 1 segments in either DIR,,,(c) N.S” or DIR goun (o) N S’.

Let 0 € S’ be the segment with the smallest max(o.x). Let DIRgoun(0) NS’ = 57,,,,, and
DIR.,,(0)NS" = S,,,. We consider the case that |5}, | > k—1. The case that [S;,,| > k—1
is symmetric. Let @ be the (k — 1) rightmost down-heavy vertical segments in Algorithm 1,
that are each paid % credits from o. Let v/ € Q be the vertical segment with the largest
min(v".y).
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Since v/ € @ has the largest min(v/.y) and o € S’ has the smallest max(o.x), then
{o} U8 n NN (v') and QU{r} induce a biclique (Figure 10). Since |Q U {r}| = k and there
cannot exist a Ky i, then |S) N N(v')| <k — 2, which implies that min(v'.y) is greater

own

than min(S.y) (v' does not extend far enough down to include k — 1 stingy nodes below o).

Q
vV oo
P X
. , _
v’ e |Sdown|2k 1

Figure 10 Depicted are the stingy horizontal segments below v, the vertical segments @ (green),
and v.

Since v’ is down-heavy w.r.t o, then |[N(v') NDIR goun (0)| > 3(k — 1) (Definition 21). Let
I' = N(v') N DIRgown (o). Note that I'.y C S.y, because min(v'.y) is greater than min(S.y)
and max(T".y) < o.y. Due to how S was chosen (the last condition), this implies that the
nodes in I" that intersect v are in S.

Since (k—1) nodes of S/_,,., = DIRgown(0) NS’ cannot be in N(v'), then [I'NS’| < k—2.
Since |S — 8| <k—2,then ' =S| >3(k—-1)—(k—2)—(k—2)=k+ 1.

Let us consider the conditions for S* =T'— S. Since I' € N(v'), v/ € Q C DIR,jgne(v),
and none of I' — S intersect v, then I' =S € DIR, ;45 (V). We already saw that [I'— S| > k—1
and I'.y C S.y. Since o € S’ is the segment with the smallest max(o.z), then all intervals in
S’ projected to the x axis must include v".z. We have v'.x € (), cg/ 0.7, which fulfills the
last condition. <

» Lemma 35. Let S C N(v), and S' C S be the stingy subset, such that

S| > 3(k - 1)

IS —8<k-1

N(v) € DIRy,(S) UDIRgouwn (S) US (S contains consecutive neighbors of v)
Then there exists a set S* € DIRjcs+(v), such that

|S*| > k—1

S*yC Sy

Nocsugs 02 F 0

Proof. The proof is symmetric to Lemma 34. <

» Lemma 23. Let S C N(v), such that
1S] > 3(k - 1)
|N(v) NDIR,,(S)| > 3(k — 1) (S is not among the highest elements of N(v))
|N(v) N DIRgown(S)| = 3(k — 1) (S is not among the lowest elements of N(v))
N(v) € DIR,;,(S) UDIR gouwn (S) U S (S contains consecutive neighbors of v)
At least %(k — 1) credits are paid to v from horizontal segments o € X, such that o.y € S.y.

Proof. If S contains at least (k — 1) generous nodes, which each contribute at least % credits
(Algorithm 1), the lemma holds. Otherwise, let S’ be the set of stingy nodes in S. We have
that |[S — S| <k —2.

21:19

GD 2025



21:20

On Geometric Bipartite Graphs with Asymptotically Smallest Zarankiewicz Numbers

Let R € DIR,ign:(v) be the set of nodes such that R.y C S.y and for each ¢’ € R, o'z
intersects (),cg 0.2. According to Lemma 34, |R| > k — 1. Let R be the k — 1 segments
o € R with the smallest min(o.z).

We will see that Algorithm 2 pays % credits to v from every segment o € R. LetoeR
be an arbitrary segment. Let DIRgown(0) NS" = 57, and DIR,,(0) N S" = S;,,. Since
19| =2 3(k — 1) — (k — 2) = 2k — 1, then either [S],,.| > k or |S;,| > k. We consider the
case that |S7,,,,| > k. The case that [S;,| > k is symmetric. Let @ C DIRef¢(0) be the
(k — 1) rightmost down-heavy vertical segments in Algorithm 2, that are each paid % credits
from o. Note that if v € @, then we have shown that Algorithm 2 pays % credits to v from o.
Since, according to our choice of S, it is not among the lowest neighbors of N(v), then v is
down-heavy concerning o. This implies that v € @, unless all nodes of @) are to the right of
v. Since we have reached our goal in the case of v € @, let us now consider only the case that
Q € DIRignt(v) (Figure 11). Let v/ € @ be the vertical segment with the largest min(v'.y).

:

v’ j lS:iown|2k

Figure 11 Depicted are the stingy horizontal segments below v, the vertical segments @ (green),
and v.

o’.x on the x axis, then all

wn

Since v and some point in .z must intersect ﬂo_,esé
segments in ¢ (which are between them) also intersect all segments in S’ when projected
to the z-axis. Since v/ € @ has the largest min(v'.y), then S/ N N(v') and Q U {v}
induce a biclique (Figure 11). Since |Q U {r}| = k and there cannot exist a Ky, then
1S 0wn NN (V)| < k — 1, which implies that min(v'.y) is greater than min(S.y) (v’ does not
extend far enough down to include k stingy nodes below o).

Since v/ is down-heavy w.r.t o, then |[N(v') NDIR gouwn (o) > 3(k — 1) (Definition 21). Let
I' = N(v') N DIRgown(0). Note that Iy C S.y, because min(v'.y) is greater than min(S.y)
and max(T.y) < o.y. Due to how S was chosen (the last condition), this implies that the
nodes in I' that intersect v are in S. Since k nodes of S/, = DIRgown(0) NS” cannot be in
N(v'), then |TNS’| < k—1. Since |S—5’| < k—2, then [ =S| > 3(k—1)—(k—1)—(k—2) = k.

Since all nodes that intersect v in I', must be in S, then I' — S = I' N DIR,;gn: (V) U
I' N DIRjes(v). Since, according to our assumption, v’ € @ C DIR,ign(v), then no
horizontal segment in I' € N(v') can be to the left of v without intersecting v. Let
['=(I' = S) N DIRignt(r). Then we have |['| > k.

As discussed, when projected to the z-axis, all segments in @ intersect all segments in
S’. We have ¥ € Q and T’ € N(v'). Therefore, on the z-axis, we have a point v/.z that
intersects S’ as well as I. According to how we defined R, we have I CR.

Since for all o* € T, min(0*.z) < v’.z < min(o.z), then R contains T, if it contains o.
This implies that \R| > k, which is a contradiction, since we chose R such that it would only
contain k£ — 1 segments. This implies that the case that v € @ is impossible.

Let L € DIR;cs:(v) be the set of nodes such that L.y C S.y and for each ¢’ € L, o’.x
intersects (),cg 0.7. According to Lemma 35, [L| > k — 1. Let L be the k — 1 segments
o € L with the largest max(o.z). The proof that Algorithm 2 pays 2 credits to v from every
segment o € Lis symmetric. <
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E Lower bounds

» Lemma 36. If there exists a Ky 2-free PRIG graph G on n nodes and m edges, then there
exists a Ky, -free PRIG graph G’ on (k — 1) - n nodes and (k — 1)? - m edges.

Proof. Let G = (UUYV, E) be any K3 o-free graph in PRIG, and (X, Y, ¢) the representation
of G in PRIG, such that ¢ : U — X,V — Y, X is a set of points and Y a set of rectangles
in R2.

We construct a new graph G = (U’ U V', E’), that is represented in PRIG by (X', Y’ ¢'),
¢:U — X' V' — Y’ as follows. For every o € X, we create k — 1 copies in X’, and for every
v €Y, we create k — 1 copies in Y’. It is easy to see that |U’| = (k—1)|U]|, |V'| = (k—1)|V].
Let us see the number of edges. For every u € U, ¢(u) intersects with |N(u)| rectangles
in G. In G, a copy of ¢(u) intersects with all the copies of ¢(N(u)), which number in
(k—1) - |N(u)|]. Let v’ be a node in G’ that is represented by a copy of ¢(u). The degree of
u' is k — 1 times larger than the degree of u. Since the number of nodes in U’ is also k — 1
times larger than in U, then |E’| = |E| - (k — 1)2.

Finally, let us see that G’ is K}, ,-free. Suppose by contradiction that G’ has Ky i, as a
subgraph. Let Sy C U’ and Sy C V' be the nodes that induce Ky j in G’. Then there must
be at least two nodes u,u* € U, whose copies form Sy, and at least two nodes v,v* € V
whose copies form Sy. Since G'[Sy U Sy] is a biclique, then it has edges between all pairs of
nodes. There can be an edge between a pair of nodes {u/,v'}, v’ € U’, v' € V', if and only
if that edge existed in G between the nodes whose copies u’ and v’ are. This implies that
u,u* € U and v,v* € V must have induced a K52 in G. This is a contradiction. |

Similarly, we can construct copies of other geometric intersection graphs.

» Corollary 37. If there exists a Ko o-free GIG graph G on n nodes and m edges, then there
exists a Ky, p-free GIG graph G’ on (k — 1) - n nodes and (k — 1)* - m edges.

» Lemma 38. Zcyain(m,n;k) > (m+n)(k —1) — O(k?).

Proof. Consider a chain graph G = (U UV, E) where V' corresponds to the rightward rays
{r1,r2,...,rn} and U to the points {p1,pa2,...,pm}. Let all the points be placed on the real
line such that each point p; is at coordinate i. The rays r1,...,ry_1 start at the coordinate 0,
which contains all the points. The remaining rays rg, ..., r, start at coordinate (m — k+ 1.5),
so they contain k — 1 points (see Figure 12). Clearly, the graph does not contain a biclique
Ky k. The number of edges isn(k—1)+ (m—k+1)(k—1)=(n+m)(k—1)— (k—1)2. <«

-1

Th4p ——————————>

Tr-1—
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a1

Py Py P3 Pp—k+1 P,

Figure 12 A point-ray representation of the lower bound graph.
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E.1 Unit Grid Intersection Graphs

Although we do not know the correct bound for the grid intersection graphs, this section
presents a lower bound construction that suggests that the leading constant of Z(n;k) is
likely at least 3. This contrasts grid intersection graphs with chordal bigraphs (where the
tight bound has a leading constant 2).

Our lower bound holds for the special case where all segments have unit length; such an
intersection bigraph is called a Unit Grid Intersection Graph (UGIG).

» Theorem 39. We have Z(n; k) > (k — 1)3n — O(kvVkn) for unit grid intersection graphs.

First, we construct the graph G’ for Z(n;2) > 3n — 24/n, and then we apply Corollary 37
to get a graph for Z(n; k). Note that since the method used in the Lemma is duplication,
then the new graph created in the proof will also produce a UGIG. For any ¢t € N we can
construct a UGIG graph as follows (Figure 13).

Algorithm 3 GIG graph construction.

Create horizontal segments X: foreach i € [0,t —1],j € [0,2¢t — 1] do
add [81,8i + 7] at y-coordinate 4j + 1 to X
add [8i — 4, 8i + 3] at y-coordinate 45 + 3 to X
Create vertical segments Y: foreach i,j € [0,¢t — 1] do
add [8¢ + 2, 8¢ + 8] at x-coordinate 85 +1 to Y
add [8¢ — 2,8i + 4] at x-coordinate 8§ +2 to Y
add [8i, 8¢ + 6] at z-coordinate 85 + 5 to Y
add [8i + 4, 8i 4+ 10] at x-coordinate 8j + 6 to Y

01 2 3 45 6 7 8 910 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

@ N OO R WN 2O

Figure 13 The segments created in Algorithm 3 for ¢ = 3. Only the area of the graph with
intersections is depicted. (Some segments also have negative coordinates).
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Figure 14 A planar representation of the graph G’, where the first and second types of horizontal
segments are depicted by blue and light blue nodes, respectively, and red nodes depict vertical
segments.

Note that |X| =t-2t +¢-2t = 4% and [Y| = % + 12 +t? +t? = 4¢2. To count the number

of edges, we count the edges incident to horizontal segments Z degev (o). Consider the
oceX
segments that are added by the first line in the algorithm. For these segments, the degree

for j = 0 (y-coordinate 1) is 2, and for all others, the degree is 3 (Figure 13). The number
of edges incident to the first type of horizontal segments is 3 - 2t — t. Now, consider the
segments added by the second line in the algorithm. For these segments, all cases where
1 = 0 have one degree less than 3, as well as the cases where j = 2¢t — 1 (the case where both
are true has degree 3 — 2 = 1, see Figure 13). In total, the number of edges incident to these
segments is therefore 3 - 2¢2 — 2t — t. The constructed graph has |X| = [Y| = 4¢? and the
number of edges is Z dege (o) = 12t — 4t.
ceX

Figure 15 Areas bordered by segments are colored white, blue, green, or red.
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Let faces be the areas bordered by segments. To see that the graph is K3 o-free, note
that a GIG representation of a K3 o would form a rectangle. Since segments in each partition
have identical lengths, a rectangle that contains only non-rectangle faces cannot exist. Since
none of the faces in the graph are rectangles (Figure 15), the graph is K o-free. This finishes
the proof for Z(n;2) > 3n — 2y/n.

Next, we use Corollary 37, to create a Ky, j-free graph G = (U UV, E), where |U| =
V| = 4(k — 1)t? and |E| = (k — 1)2(12t> — 4t). Using the value n = 4(k — 1)t2, we get
|E| > (k—1)(3n — 24/(k — 1)n).
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