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—— Abstract

tsNET is a recent graph drawing (GD) method that creates high quality layouts but suffers from
a very high runtime. We present a new GD method, NNP-NET, which reduces tsNET’s time
complexity to generate layouts for very large graphs in seconds. Additionally, we extend tsNET
to support drawing graphs with edge weights. We accomplish this by replacing tsNET’s t-SNE
projection with Neural Network Projection (NNP), a fast dimensionality reduction (DR) method
that can imitate any given DR method. Our experiments show that NNP-NET gets good quality
results when compared to other state-of-the art GD methods while yielding a better computational
scalability.
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1 Introduction

Multiple techniques have been proposed to create straight-line drawings of graphs, including
classical approaches such as force-directed methods [11, 16], spectral methods [4, 24] and
recently machine learning approaches [23, 20, 39]. Dimensionality reduction (DR) methods
take a particular approach to GD: They encode the graph structure in a high-dimensional
space and map, or project, this data to the 2D space so as to preserve data structure [18, 31, 25].
DR methods offer high flexibility on the information to preserve during projection, can encode
node or edge attributes, and are battle-tested in fields such as machine learning and data
visualization.

tsNET [30], a relatively recent method in the DR class, uses the well-known t-SNE
projection technique [42] to create high-quality graph layouts. Yet, tsNET has quadratic time
and space complexity in the number of graph nodes, making it unsuitable for graphs with over
a few thousand nodes. While the time complexity can be partially alleviated by GPU-based
t-SNE implementations [35, 7], and multilevel schemes and sparse matrices [47] can reduce
space complexity, a more radical approach is to entirely replace t-SNE. A good candidate
here is NNP [14] — a deep-learning projection method that can imitate any DR algorithm,
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has linear time complexity in input size, is very simple to use, is robust to small input
perturbations, and has out-of-sample ability. Yet, NNP training requires a high-dimensional
dataset rather than a distance matrix.

We address this challenge and propose NNP-NET, which replaces tsNET’s costly t-SNE
step with NNP in a simple and generic fashion, resulting in the following contributions:

Scalability: NNP-NET has a time and space complexity linear in the input graph size. It
handles graphs of over 1M nodes in similar and often lower time than DRGraph, the only
t-SNE based method we are aware of that can scale to such sizes;

Quality: NNP-NET produces layouts that visually look similar, and have similar quality
metrics, to those created by state-of-the art GD methods;

Genericity: NNP-NET can handle any type of graph, including edge-weighted graphs;
Stability: NNP-NET inherits NNP’s robustness to noise;

Ease of use: NNP-NET can be used out-of-the-box without tuning any parameters.

The structure of this paper is as follows. Section 2 presents relevant related work. Section 3
details our method. Section 4 compares NNP-NET with state-of-the-art GD methods on
a wide range of graphs and using various quality metrics. Section 5 discusses NNP-NET’s
strengths and limitations. Finally, Sec. 6 concludes the paper.

2 Background and Related Work

Given a graph G = (V, E) with nodes V = {v;}¥, and edges E = {(v;,v;) € V x V}, a
straight-line graph drawing algorithm bijectively maps nodes of V to points P = {p;}}¥, C
R™, where typically m = 2. Optional edge weights w;; € R* can control P by influencing
the target edge length ||p; — p;||. We set w;; =1 in case weights are not given.

2.1 Graph Layout Methods

Hundreds of GD methods have been proposed in the past decades [19, 38]. We next focus on
methods that aim to satisfy the contributions outlined in Sec. 1.

Force directed methods. Such methods create a layout by modeling the graph as a physical
system where attraction forces describe graph edges and repulsion forces aim to reduce
drawing visual clutter [16, 18, 28, 33]. Edge weights can be easily incorporated in the
attraction factor. Classical force directed methods have a time complexity of O(N?), which
is slow for large graphs. SFDP [27] and the fast multipole multilevel method (FM? [22])
use multilevel schemes to reduce this time complexity: A set of increasingly smaller graphs
{G*}¥ is created from the input graph G; the smallest graph G¥ is then laid out using a
suitable technique, after which its drawing is used to build the drawing for G¥~1, and next
for all G* until G. This yields a time complexity of O(N log(N)), significantly better than
the original O(N?) complexity, yet still below the linear O(N) we aim at.

Dimensionality reduction methods. Dimensionality reduction (DR) and GD have significant
overlap, where DR algorithms can be adapted to a GD context [34]. DR based methods
encode the graph adjacency information F into a distance matrix and then use classical DR
techniques (discussed next in Sec. 2.2) to create the drawing. For example, one can encode
the shortest-path distances between all node pairs in the distance matrix and then reduce
this to a 2D embedding using classical multidimensional scaling (MDS [40]). However, this
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approach has a time and space complexity of O(N?). PMDS [4] improves by using a smaller
matrix of distances from all nodes to a small set of so-called pivots. This makes PMDS
fast but the quality of the produced drawings falls behind other GD methods. tsNET [30]
follows a similar idea but replaces MDS by t-SNE [42], one of the highest-quality existing
DR methods [15]. To increase quality and robustness, t-SNE is started from a set of 2D node
positions computed using PMDS — a variation called tsNET*. While tsNET(*) layouts are
of high quality, the method has a O(N?) space and time complexity. DRGraph[47] improves
upon tsNET to achieve a linear time complexity. A sparse similarity matrix, where only the k
nearest neighbors of each node are present, is used. To accelerate t-SNE, a negative sampling
technique [32] is used to approximate the gradient of the cost function. A multilevel layout
scheme is used to reduce the number of t-SNE iterations. Yet, DRGraph cannot handle
weighted graphs and has many complex parameters which make its practical use challenging.

Machine learning methods. SGD? [3] improves upon the earlier method GD? [2] by using
stochastic gradient descent like its predecessor [46]. SGD? [3] directly optimizes for quality
metrics which allows one to control the desired properties of the resulting drawing. Time

complexity depends on the metric optimized for, which in the case for stress is O(N?).

Stress-Plus-X [10] takes a similar approach, optimizing for a specific set of metrics (stress,
edge crossings, minimum angle and upwardness). Other recent approaches exploit advances in
deep learning to support graph drawing. Yet, several challenges remain here. DNN? [20, 21]
and DeepGD [43], two recent methods in this area, were only trained to lay out graphs of
about 100 nodes due to long training times. DeepDrawing [45] uses a Long Short Term
Memory (LSTM) network in order to imitate a ground truth layout. This means that it

is only able to create a layout for a graph that it is trained on, making it hard to use.

DeepDrawing was only tested on graphs with about 100 nodes. SmartGD [44] optimizes
for different (combinations of) quality metrics just like SGD? [3], but is untested on larger
graphs. Graph Neural Drawers (GND) [39] uses graph neural networks and can handle
graphs of about 10K nodes. GND has a time complexity of O(|E|?). CoReGD [23] also uses
graph neural networks and can handle graphs of roughly 25K nodes. Yet, its complexity of
O(N log(N)) is above our linear target.

2.2 Dimensionality Reduction

Given a dataset X = {x;} C R", dimensionality reduction (DR) methods, also called
projections, M : X — Y, create a dataset Y = {y,;} C R™, m < n which preserves the
so-called data structure of X, such that points close (resp. far) in R™ are mapped to points
close (resp. far) in R™. DR methods accept as input either X or a matrix of the pairwise
distances between its data points. Many DR methods exist, each of which preserves different
data structure aspects and, as such, produce different drawings of the same dataset, differing
significantly in terms of quality, speed, robustness, out-of-sample ability, and ease of use [15].

NNP (Neural Network Projection) [14] is a meta-approach that aims to solve the scalability
and lack of out-of-sample ability for any other projection technique. Given a subset of X’ € X
(a few thousand points) and its projection X’ computed by any user-chosen method, NNP
learns the mapping X’ — M (X') by a simple neural network (3 fully connected hidden
layers, sizes 256, 512, 256). This mapping is used to project the entire dataset X. NNP
creates projections of quality close to the ground truth in time O(]X]); is robust to small
changes in the input data [6]; can imitate any user-chosen projection; handles datasets of any
dimensionality n; and has no free user set parameters. As such, NNP is an ideal candidate
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to replace t-SNE in tsNET for graph drawing. Yet, a key obstacle exists: NNP needs a
high-dimensional dataset X as input, not a distance matriz computed on X, making it not
directly applicable to graphs. We describe next how we overcome this limitation.

3 Method

As outlined earlier, we aim to replace the t-SNE step of tsNET with NNP. For this, we must
solve two problems: Given a graph G, how to (1) reduce G to a high-dimensional dataset, as
needed by NNP; (2) extract a representative subset of G to train NNP on. We address both
these problems next. An overview of the NNP-NET pipeline is shown in Fig. 1. Psuedo code
for the pipeline can be found in Appendix E.

Subgraph selection

coarsening

subgraph size S =10000

tsNET layout

<«—— perplexity = 40
<—— Barnes-Hut q = 0.25

( subgraph
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Figure 1 NNP-NET pipeline. For details, see Sec. 3.

3.1 Mapping the Graph to High-dimensional Data

NNP requires a dataset X = {z;} C R™ as input, where n is a free-to-choose parameter.
Creating X from G in linear time in relation to the graph size, one of our key goals, rules
out using G’s full distance matrix. We propose two methods to create the embedding
E = {e(v) }vev: (1) distance-to-pivot, uses a smaller matrix A as E, computed the same
way as PMDS [4] computes its pivot matrix; and (2) projection, project v to R™ dimensions
via PMDS using p = 250 pivots. Method (2) was chosen for its better layout quality while
sacrificing speed (see Appendix A). Another advantage of (2) is that PMDS can be freely
swapped with any other projection technique. Note also that, while PMDS cannot project
data to 2D accurately in general, we only use it as an intermediate mapping (to n > 2
dimensions); the final 2D layout is created by NNP. Setting n = 50 balances well between
quality and computing time (see Appendix B).
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3.2 Extracting Suitable Training Data

To train NNP, we need to extract a small but representative subgraph G’ C G. Following
various tests (Appendix C), we set the number of nodes in our subgraph of our training set
to be equal to S = 10000. Then G’ = (V/, E’) and S = |V’|. Many multilevel GD methods
extract such a subgraph G/, e.g., SFDP [27] and FM? [22]. These multilevel layout techniques
differ in that (1) they reduce G until it is not useful to reduce any further, while we reduce
to a fized size S; (2) they care about all intermediate levels; we only care about the final G'.

To consistently reduce G to S nodes, we use a multilevel scheme similar to DRGraph [47],
i.e., coarsen G into a sequence G, G, G?, ..., G’ of increasingly smaller graphs. Each iteration,
we repeatedly choose a center node ¢ € G* from all not yet clustered nodes that has the lowest
neighbor count. All not-yet-clustered direct neighbors of ¢ are added to ¢’s cluster. The
iteration ends when all nodes of G* are clustered. Finally, we create G**! using the cluster
centers ¢ as nodes, and connecting nodes corresponding to adjacent clusters. Iterations
continue until we reach the target size S.

Not all graphs can be reduced to the target size S by this coarsening method. To handle
this, we use a stopping heuristic that exits coarsening when |G*| > 0.95|G*~!|. We then
use a slower backup method to create G’ by selecting S such points from G*. This is done
using pivot-points in a max-min approach, like PMDS [4]- choose a first node randomly, then
add nodes in order of highest minimum distance to all already chosen nodes until we get S
nodes. This gives good results but has a complexity of O(NS). Appendix D compares the
pivot-points and coarsening methods showing that the latter yields better quality-vs-speed.

After constructing the subgraph G’, we lay out G’ using tsNET* and train NNP to mimic
the produced layout when given its corresponding embedding.

3.3 Smoothing

Training NNP on the subgraph G’ gives good results in terms of training error (see next
Sec. 4). Yet, the produced layouts contain some amount of high-frequency noise, visible
in e.g. graphs with a grid-like structure (Fig. 2 left). We remove such noise using three
Laplacian smoothing iterations (Fig. 2 right). Weights were used as follows:

1 Uj

2jevi Ywij jev, Wis

: (1)

V; =

where V; are all direct neighbors of v;. This is done for all nodes in the graph.

Figure 2 (a) NNP-NET drawing of the 3elt graph. (b) Effect of 2 Laplacian smoothing passes.
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3.4 Complexity

Table 1 shows the time complexity of all steps of our method. For creating the R"™ embedding
via PMDS (Sec. 3.1), both the dimension count n and pivot count p are constants, yielding
linear complexity in the number of nodes N. For creating the subgraph G’ (Sec. 3.2), if our
coarsening successfully reaches the target size S, the cost reduces to O(iN); the factor |G'|N
accounts for using the pivot fallback. Moreover, when using coarsening, since G* is reduced
by at least a factor of 5% at each coarsening step, i is upper bounded by > 7= (0.95)F = 20,
so the cost term O(iN) is indeed linear in N. Generating ground truth by running ts-NET*
on G’ does not depend on the input size N. Training also does not depend on N and is
linear in the number of training epochs A, which is set to a constant value. Inference is linear
in N. Altogether, the end-to-end time complexity of NNP-NET is linear in its input size V.
Separately, we note that NNP-NET’s space complexity is also linear in N.

Table 1 Time complexity of all steps of NNP-NET.

Algorithm step Time complexity Parameters
Create the R™ embedding of G(Sec. 3.1) O(npN + p®N) n dimensions, p pivots
Create subgraph G’ of size S (Sec. 3.2) O(iN + SN) 1 iterations, S nodes
Create ground truth by running ts-NET* on G’ O(Slog(S])) none
NNP training O(AnS) A training epochs
NNP inference to lay out G O(nN) none
Laplacian smoothing (Sec. 3.3) O(N) none
4 Results

4.1 Experimental Setup

Implementation. We implement NNP-NET in C++ (code publicly available [26]). We
use PMDS from OGDF [8], modified to allow for n > 3 output dimensions. We implement
tsNET(*) [30] to use both exact t-SNE and the tree-based Barnes-Hut t-SNE approxima-
tion [41] which reduces projection cost to O(Nlog(N)) from O(N?); we also parallelized
tsNET(*) to use multiple CPU cores. We implement NNP with TensorFlow [1] using the
CPU as the GPU proved slower in our tests due to the small size of this neural network.

Datasets and techniques. Table 2 (left) shows the graphs used in our testing, all coming
from the SparseSuite collection [9]. Most graphs used are on the larger side since a key goal
we have is to speed up tsNET (Sec. 1). We compare NNP-NET with SFDP [27], FM3 [22],
PMDS [4], DRGraph [47], all state-of-the-art GD methods that aim to handle large graphs;
and with tsNET [30] given we aim to mimic this method with reduced execution time.

Parameter values. FM? uses the OGDF implementation with default parameters. SEDP
uses the GraphViz implementation [13]. For DRGraph [47], we use the authors’ implement-
ation with their suggested parameter values. Tab. 2 (right) lists all NNP-NET parameter
values. We compute the tsNET* ground truth on the full graph G instead of G’ when S > N.
All tests are run on a PC with an Intel i7-11370H CPU and 16 GB of RAM.
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Table 2 Left: Graph datasets used in the evaluation. All graphs come from SparseSuite [9].
Right: Parameters used for NNP-NET.

Graph dataset V| |E| Weights
dwt__ 1005 1005 3808
sierpinski3d 2050 6144
MISKnowledgeMap 2427 28511 v
3elt 4720 13722
optdigits_ 10NN 5620 39825 v
fe_ 4elt2 11143 32818 Parameter Value
besstk36 23052 1143140 subgraph size S = |G| 10000
k49 norm_ 10NN 38547 309079 v n (embedding size) 50
fe_ besstk32 44609 985046 Laplacian smoothing passes 3
m_tl 97578 9753570 t-SNE perplexity 40
ship_ 003 121728 3777036 0 (Barnes-Hut approximation) 0.25
fe_ocean 143437 819186 p (PMDS pivot points) 250
0k2010 269118 1274148 v batch size (NNP training) 64
web-NotreDame 325729 1497134 epochs A (NNP training) 40
coPapersCiteseer 434102 16036720
gsm_ 106857 589446 21758924
tx2010 914231 4456272 v
com-Youtube 1134890 5975248
Flan_ 1565 1564794 59485419
com-LiveJournal 3997962 34681189

4.2 Quality Metrics

We assess the quality of graph drawings using neighborhood preservation, stress, and Shepard
diagrams, in line with [30, 47]. Metrics like edge length deviation [29], crossing number [37],
and node-edge occlusion [12], though frequently used in GD literature, are not very informative
for very large graphs.

Neighborhood preservation measures how well neighborhoods in G are preserved in
the drawing Y [36]. Let Ng(vi,rg) = {v; € V|d;; < rg} be the set of nodes v; with a
graph-theoretic distance d;; of at most r¢ from v;; we set rg = 2 following [30]. Let Ny (p;, k)
be the set of nodes whose drawings p; are the k;-nearest-neighbors of p; in the 2D layout
space, where k; = |Ng(yi, 7¢)|- Neighborhood preservation

N 9 m N 9 k;

Z| G Ui TG Y(p )| c [0 1] (2)
~ V[ & [Na(vi,r6) U Ny (pi, ki)

measures how similar Ng(v;,rg) and Ny (p;, k;) are (higher values are better).

Normalized stress measures how well the graph-theoretical distances d;; between all node
pairs are preserved by Euclidean distances in the graph drawing by

O'—Hlln

Z ZJ a”pl — p]||)2 c [07 1], (3)

2 2
v = ds

with lower values indicating better distance preservation. The factor a scales the drawing in
order to minimize stress for a fair comparison. Following [23], we compute it using

i = pill/dss
o ZutslIoi = pulldsy "
3. i = pill2/,
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Table 3 shows neighborhood preservation v for all our tested drawings. Results for the
largest graph com-LiveJournal are missing as it took too long to evaluate Eqn. 2. Other
missing values tell that the respective GD method could not complete on the respective
graph due to running out of RAM or took longer than 2 hours to compute. The NNP-NET
results are very close to tsNET* for most graphs, with NNP-NET doing worse for e.g.
MISKnowledgeMap and k49 norm__ 10NN but much better for fe bcsstk32. NNP-NET
results are consistently better than PMDS except for com_ YouTube. When compared
with DRGraph, results are more mixed, with no clear winner. Table 4 shows stress o for
all generated drawings. NNP-NET yields very similar values to tsNET* (both versions).
Similarly to v, we do not see a clear winner between NNP-NET and DRGraph. PMDS,
SFDP and FM? yield lower o values than NNP-NET - not surprising since these methods
optimize for stress while NNP-NET (like t-SNE) optimizes for neighborhood preservation.

Table 3 Neighborhood preservation v per graph and layout method (higher is better).

Neighborhood preservation per graph (higher is better)
Graph SFDP FM® PMDS DRGraph tsNETtF* tsNET* NNP-NET
exac approx
dwt__1005 0.5 0.53 0.47 0.5 0.62 0.59 0.53
sierpinski3d 0.51 0.51 0.2 0.52 0.55 0.53 0.52
MISKnowledgeMap 0.17 0.16 0.13 0.33 0.4 0.41 0.24
3elt 0.62 0.65 0.36 0.63 0.66 0.63 0.63
optdigits_ 10NN 0.52 0.5 0.35 0.62 0.61 0.63 0.61
fe_ 4elt2 0.47 0.52 0.25 0.56 0.6 0.59 0.59
besstk36 0.45 0.41 0.3 0.49 - 0.51 0.44
k49_norm_ 10NN 0.048 0.045 0.034 0.12 - 0.18 0.093
fe bcsstk32 0.32 0.38 0.21 0.41 - 0.24 0.37
m_tl 0.3 0.34 0.21 0.37 - 0.35 0.32
ship_ 003 0.21 0.21 0.17 0.24 - 0.2 0.24
fe__ocean 0.11 0.12 0.09 0.12 - - 0.09
0k2010 0.48 0.46 0.27 0.32 - - 0.44
web-NotreDame 0.38 0.31 0.33 0.46 - - 0.39
coPapersCiteseer - 0.079 = 0.058 0.17 - - 0.091
gsm_ 106857 - 0.17 0.12 0.24 - - 0.21
tx2010 0.42 0.39 0.26 0.21 - - 0.36
com-Youtube 0.015 - 0.092 0.055 - - 0.069
Flan_ 1565 - - 0.09 0.2 - - 0.21

Shepard diagrams refine distance-preservation insights captured by stress. These diagrams
are scatterplots that show how distances between point-pairs correlate over two different
spaces [5, 17, 47], with graph distance on the x-axis. Figure 3 shows these diagrams for our
tested graphs and methods. Scatterplots close to the main diagonal indicate cases where
the layout preserves graph distances well, e.g., for dwt 1005 and ship 003, for all methods.
Plots falling largely under this diagonal indicate layouts where the layout cannot “unclutter”
the graph. We see how this occurs for some of the very large graphs e.g. com-YouTube and
com-LiveJournal, unsurprising, given the difficulty to lay out such complex structures. Plots
falling above the diagonal indicate layouts where points are placed too far away from each
other, or, in other words, too long edges drawn in the layout, see e.g. fe beestk32 (ts-NET*
approx). Overall, we see that SFDP, FM?3, and PMDS preserve distances better than the
other methods, which is expected given their design. The remaining methods — which all are
based on ts-NET, so favor neighborhood preservation, have quite similar patterns of distance
preservation on the smaller graphs (Fig. 3 left column). For the larger graphs, which only
DRGraph and NNP-NET can handle, we observe either similar patterns or a tendency for
DRGraph to underestimate 2D distances more than NNP-NET, i.e., clutter nodes — see e.g.
tr_ 2010, CoPapers-CiteSeer, and ok__2010. Overall, we conclude that NNP-NET performs
at least as well as the other t-SNE based methods with respect to distance preservation.
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Table 4 Stress o per graph and method. Lower is better.

Stress per graph (lower is better)
Graph SFDP FM? PMDS DRGraph tsNE’}‘* tsNET* NNP-NET
exac approx
dwt__1005 0.029  0.026 0.029 0.03 0.036 0.029
sierpinski3d 0.079  0.078 0.104 0.08 0.077 0.086
MISKnowledgeMap | 0.149 0.171 0.159 0.191 0.188 0.186
3elt 0.057 0.062 0.056 0.059
optdigits_ 10NN 0.159 0.144 = 0.125
fe_ 4elt2 0.05 0.069 0.064
besstk36 0.069 0.071 0.068
k49 norm_ 10NN 0.162 | 0.153 0.155 _
fe_ besstk32 0.138 | 0.093 0.098 0.175 -
m_tl 0.095 0.079 0.074 0.103 -
ship_ 003 0.069 [ 0.086 0.036 0.042 -
fe_ ocean 0.04 0.036 0.045 0.106 -
0k2010 0.116 0.123  0.084 - - 0.121
web-NotreDame 0.226  0.178 - - 0.314
coPapersCiteseer - 0.185 - - 0.215
gsm_ 106857 - 0.089 - - 0.106
tx2010 0.13 0.159 - 0.137
com-Youtube 0.179 - - -
Flan_ 1565 - - - - 0.089
com-LiveJournal - - - - 0.27
FM  PMDS DRGraph tsNET* tsNET* NNP-NET SFDP  FM  PMDS DRGraph tsNET* tsNET* NNP-NET
(exact) (approx) (exact) (approx)
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Figure 3 Shepard distance-preservation diagrams for all tested methods on all graphs.

4.3 Visual Comparison

Table 5 shows the drawings created by all tested methods on all graphs, with edges drawn
half-transparent to limit visual clutter. As in Tables 3 and 4, missing entries indicate methods
that fail due to memory constraints or took too long to complete. We see that exact tsNET*
cannot handle graphs larger than fe felt2 (11143 nodes) due to its high runtime cost.
Approximate ts-NET* scales a bit better given its faster Barnes-Hut t-SNE implementation
but hits a limit beyond ship_ 0038 (121728 nodes). NNP-NET can handle all graphs. For the
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smaller graphs, NNP-NET yields drawings that are visually very similar to the ground-truth
ones from approximate tsNET*. Interestingly, for fe bcsstk32 and ship 003, approximate
tsNET* shows unexpected behavior where all nodes snap to a grid structure. NNP-NET
does not copy this behavior but yields more plausible drawings. For larger graphs (bcsstk36
and larger), NNP-NET creates different drawings from the other tested methods that can
handle such dataset sizes, i.e., SFDP, FM? PMDS, and DRGraph. NNP-NET spreads the
drawing better over the 2D space. We argue that this is desirable as it allows one to better
disentangle the depicted structures.

4.4 Drawing Weighted Graphs

NNP-NET uses the edge weights of the graph if they are provided. To show their effect,
we ran NNP-NET on a set of weighted graphs with and without using the weights (Fig. 4).
We see that weights affect indeed the obtained drawings (as they should), most visibly for
0k2010 and tx2010, where the unweighted drawings show more clutter and the weighted
ones a more structured, network-of-corridors-like, one. Table 6 shows that both stress and
neighborhood preservation improved when including weights.

k49_norm_10NN MISKnowledgeMap 0k2010 optdigits_10NN tx20

no weights

with weights

Figure 4 Comparison of NNP-NET drawings, with and without considering weights (Sec. 4.4).

4.5 Execution Time

Table 7 shows the execution times for all methods tested with missing values as already
explained. NNP-NET takes significantly longer on smaller graphs due to the dominating
high constant cost of computing the ground truth. For larger graphs, NNP-NET is slower
than PMDS, but yields better quality (see Tabs. 4 and 3). Compared to DRGraph, we see a
pattern reversal, with NNP-NET becoming faster for Flan_ 1565 and com-LiveJournal. To
better examine scalability, Fig. 5 shows the time each step of NNP-NET takes vs the node
count N (both axes use a logarithmic scale). The following trends are visible:

Embedding creation is roughly linear with N. The spiking outliers in the plot correspond
to weighted graphs which require Dijkstra’s algorithm instead of the much faster Breadth-
First Search (BFS) to compute shortest paths.

Subgraph creation follows the same linear trend in N. The three outliers indicate graphs
where our coarsening method could not reach the desired node count S = 10* and had to
use the much slower pivot method (Sec. 3.2).

Ground truth creation is roughly constant for NV > 10* nodes, a value matching S.
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Table 5 Drawings created by various methods on various graphs (continued on next page).

Graph SFDP FM3 PMDS DRGraph tsNET* tsNET* NNP-NET
(exact) (Approx)

dwt__1005

sierpinski3d

MIS-
Knowledge-
Map

3elt

optdigits__
10NN

fe_ 4delt2

bcsstk36

k49 norm__
10NN

fe_ bcsstk32

ship_ 003

fe_ ocean

Training and inference are roughly linear up to about 10* nodes, mainly due to the training
cost. After this point, training time becomes constant. The low curve slope for larger NV
values tells that inference costs relatively very little and scales very well with N.
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Table 5 Drawings created by various methods on various graphs (continued from previous page).

Graph SFDP FM3 PMDS DRGraph tsNET* tsNET* NNP-NET
(exact) (Approx)

0k2010

web-
NotreDame

CoPapers-
Citeseer

gsm__106857

tx2010

com-Youtube

Flan_ 1565

com-
LiveJournal

Table 6 Quality metrics for NNP-NET drawing when using vs not using edge weights (Sec. 4.4).

Stress o Neighborhood preservation v
Graph weights  no weights | weights no weights
k49 _norm_ 10NN 0.171 0.172 0.081 0.077
MISKnowledge-Map 0.185 0.183 0.376 0.364
0k2010 0.118 0.122 0.433 0.382
optdigits 10NN 0.139 0.143 0.613 0.611
tx2010 0.138 0.144 0.340 0.322

We further compare NNP-NET’s scalability with DRGraph, its strongest competitor vs
ability to handle very large graphs with good quality values. For this, we took the following
steps. (1) We ran NNP-NET using BFS for the weighted graphs when calculating graph
distances, i.e., ignoring weights — a fair comparison since DRGraph does not use weights. (2)
When using the slow pivot method for subgraph creation, we accounted a time of 1 second,
equal to the largest cost for all cases where this slow fallback was not needed. This is to
simulate a situation where the fallback is not needed.

Figure 6 compares the cost of DRGraph (blue) with NNP-NET ran normally (orange) and
with the theoretical cost of NNP-NET where we would not need the slow pivot method (steps
1 and 2 above; green). DRGraph shows a linear time complexity. In contrast, NNP-NET
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Table 7 Execution time in seconds for all tested methods, all graphs (Sec. 4.5).

Execution time per method
Graph SFDP FM3 PMDS  DRGraph tsNE"{* tsNET* NNP-NET
exac approx
dwt_ 1005 0.34 0.12 0.02 0.06 1.44 2.61 10.13
sierpinski3d 0.75 0.12 1.37 0.11 6.52 5.42 11.38
MISKnowledgeMap 1.23 0.76 1.20 0.13 40.42 13.71 24.27
3elt 1.71 0.20 0.07 0.27 110.70 18.92 21.14
optdigits_ 10NN 2.59 0.58 2.38 0.30 155.46 59.68 36.88
fe_ 4elt2 6.06 0.22 0.15 0.59 931.18 107.97 58.96
besstk36 10.89 2.28 0.53 1.49 - 288.91 56.96
k49 norm_ 10NN 37.28 2.14 37.13 2.66 - 1718.79 156.79
fe_ besstk32 28.25 3.07 2.47 3.64 - 572.96 86.68
m_tl 77.61 14.22 4.04 8.21 - 1133.24 87.81
ship_ 003 94.44 14.24 5.85 9.61 - 1456.06 66.40
fe_ocean 117.74 1.80 2.28 14.39 - - 94.24
0k2010 260.64 4.13 44.83 23.98 - - 94.18
web-NotreDame 270.48 10.26 6.13 25.49 - - 166.56
coPapersCiteseer - 99.34 23.69 45.49 - - 98.20
gsm_ 106857 - 57.28 35.35 55.86 - - 160.41
tx2010 1165.55 12.95  200.21 83.18 - - 254.17
com-Youtube 2209.56 - 23.47 132.47 - - 1293.10
Flan_ 1565 - - 55.92 171.44 - - 124.12
com-LiveJournal - - 220.14 618.30 - - 394.85

Embedding creation time

Subgraph creation time

Time (seconds)
g

10° 4

Time (seconds)
=
4

"
2

-
5
d

10° 104

10°
Number of Nodes

Ground truth creation time

100

10°
Number of Nodes

Training + inference time

108

102 4

Time (seconds)
)

Time (seconds)

3x 10!

2x 10!

=
<L

6100

Figure 5 Execution time of each individual component of NNP-NET (Sec. 4.5).

starts with a much higher execution time. For over roughly N = 10* nodes, its cost appears
almost constant (green curve) if we eliminate the effects due to (1) and (2). Actual timings
show the same trend, albeit with a bit more noise (orange curve). As Tab. 7 also showed, we
see how NNP-NET overtakes DRGraph at about N = 10° nodes. Given NNP-NET’s and
DRGraph’s appearent trend, NNP-NET will likely stay faster compared to DRGraph for

larger graphs.

10°
Number of Nodes

108

10°
Number of Nodes

108
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—e— DRGraph
10% NNP-NET

—8— NNP-NET (noise removed) /

10?

Time (seconds)
5

10% 104 10° 108
Number of Nodes

Figure 6 Execution time comparison between DRGraph, NNP-NET, and a theoretical execution
time of NNP-NET with reduced noise as explained in sec. 4.5.

5 Discussion

We next discuss how NNP-NET fulfills the contributions outlined earlier in Sec. 1.

Scalability: NNP-NET has linear time complexity in the graph node count N. In practice, it
takes significantly more time than other linear time complexity GD methods for smaller
graphs, becoming more competitive for larger graphs, eventually outperforming DRGraph.

Layout quality: The layouts generated by our method should be of similar quality to the
original tsNET* results. On smaller graphs, where we use the entire graph as ground
truth, our results are very close to the approximate tsNET* results. Layouts generated
for larger graphs using NNP-NET visually look good when comparing with competing
methods.

Robustness: NNP-NET could handle all the tested graphs with good results. No component
in NNP-NET’s pipeline uses complex (parameter-dependent) heuristics. As such, we can
reasonably claim that our method should be able to handle any graph dataset.

Ease of use: While our method has a number parameters that could be adjusted, all of these
were set to the same fixed values for all tests (Tab. 2 right), yielding consistent good
results. As such, we claim our method is practically parameter-free.

Edge weights: NNP-NET directly handles weighted graphs — something that other methods
such as DRGraph cannot. Including weights in the layout computation — apart from

the fact that some use-cases require this — has a positive effect on the layout quality
(Sec. 4.4).

We next discuss the three key steps of NNP-NET and outline strengths, limitations, and
potential ways to overcome the latter.

Embedding method: NNP-NET uses PMDS to create a high-dimensional embedding vector
per node. We also tested using the distance-to-pivot method for the embedding. This
method is faster (as only a subset of the work would have to be done), but gave worse
quality results in our testing (Appendix A). Since creating the embedding becomes the
cost bottleneck for large graphs, it is worth further studying this approach to see if it can
be used to create similar quality layouts in less time. Separately, other layout techniques
than PMDS could be used to generate this embedding. Exploring such alternatives is a
low-hanging fruit for further decreasing execution time.
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Ground truth: As one of our key goals was to accelerate tsNET*, we logically used tsNET*
to create the ground truth that NNP learns from. Using layouts created by other GD
methods could give better results. Reducing the size of subgraph G’, used for training,
clearly decreases quality (Appendix C), which can negate the benefit of using higher-
quality, but slower, methods to lay out G’. Conversely, using faster, but lower quality
methods to lay out G’ can significantly speed up our method for smaller graphs, but can
adversely affect quality. Finding the right balance here is a topic for future work.

Subgraph computation: We tested two methods to create the subgraph G’ from the full
graph G: using pivot points; and iteratively coarsening G. The coarsening method was
chosen as it had a significantly lower execution time (for details, see Appendix D). Yet,
this method likely distorts distances between nodes. The magnitude of these distortions
and their impact is not tested directly. As already outlined, the coarsening method does
not always reach the target node count S. While falling back to the pivot method allows
NNP-NET to handle its input, this has a high time cost. Experimenting with different
alternatives for the subgraph method is topic we will look into in future work.

6 Conclusion

We presented NNP-NET, a new graph drawing method that creates layouts for very large
graphs in the style of tsNET. Our results are not only very similar to the original tsNET
layouts, but also have a quality comparable to DRGraph, a competing method that also
uses tsNET as its base. NNP-NET leverages the speed and simplicity of Neural Network
Projections (NNP) to create graph layouts to achieve higher running times, and comparable
quality, on graphs over 1 million nodes, than its closest competitor, DRGraph.

Since all steps around NNP can be freely replaced, future work can focus on improvements
that these steps can provide: A different embedding method could give better resulting
graphs or reduce execution time. Changing the ground truth method would allow for different
drawing styles. Changing the subgraph extraction method is the most important aspect
to look into further, as can boost speed significantly for the graphs that our current fast
coarsening heuristic cannot handle.
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A Comparison of Embedding Methods

We further compare the two embedding methods described in Sec. 3.1, namely (1) using the
distances-to-pivot method and (2) the projecting method. Table 8 shows that the results
obtained by the two embedding methods are visually very similar, except for sierpinski3d,
where the distances-to-pivot method is farther from the ground-truth than the projection
method.

Table 9 shows the stress, neighborhood preservation, and error vs the ground truth
(measured by Euclidean distances between corresponding nodes in the two layouts). We
see that the projection method scores a consistently lower error to ground truth compared
to the distance-to-pivot method. It also has slightly better quality metric values — though
these are less important since the aim of the embedding step is to recreate the ground
truth as accurately as possible rather than creating the highest-quality layout. However, the
projection method is significantly slower than the distance-to-pivot one.

Table 8 Layouts created using the distance-to-pivot and projection embedding methods.

Graph 3elt dwt__1005 optdigits_ 10NN sierpinski3d
o G PN

¥

Ground truth

Distance-to-pivot

Projection

Table 9 Quality metrics obtained using the distance-to-pivot and projection embedding methods.

Graph Embedding Time  Neighborhood  Stress Error vs

method preservation ground truth

3elt distance-to-pivot | 0.015 0.499 0.078 0.024

3elt projection 1.228 0.547 0.077 0.014

dwt_ 1005 distance-to-pivot | 0.007 0.484 0.041 0.027

dwt_ 1005 projection 2.253 0.521 0.039 0.019

optdigits_ 10NN  distance-to-pivot | 0.799 0.586 0.134 0.025

optdigits_ 10NN projection 6.649 0.598 0.138 0.017

sierpinski3d distance-to-pivot | 0.005 0.462 0.132 0.028

sierpinski3d projection 3.487 0.498 0.137 0.017
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B Number of Embedding Dimensions n

We tested different values n € {10, 25, 50,100} for the number of dimensions n to embed in
(Sec. 3.1). Table 10 compares the obtained results and shows that these appear visually very
similar for different values of n. Table 11 compares the stress, neighborhood preservation,
and error to ground truth (the latter defined as in Appendix A). Neighborhood preservation
and stress slightly improve with increasing n. More importantly, the error to ground truth
decreases more visibly as n increases. In the same time, execution time increases quite
strongly with n. Our setting n = 50 balances well quality and time.

Table 10 Results for different embedding sizes n.
Graph Ground n =10 n =25 n =50 n = 100

Truth

D

3elt

bcsstk36

dwt_ 1005

optdigits__
10NN

sierpinski3d

C Setting the Extracted Subgraph Size S

We have compared results obtained for different values S € {1000, 2500, 5000, 10000} for
the size S of the coarsened subgraph G’ (Sec. 3.2). Table 12 shows these results. We see
that S can significantly affect the obtained layouts: for k48 norm__ 10NN, the results for
S = 10000 show visibly more clustering than those for S = 1000. For 0k2010, the results for
S = 10000 show more individual pathways than for S = 1000. For ship_ 003, a bend appears
for S = 1000, which is not present in any drawing created with higher S.

Table 13 examines the neighborhood preservation, stress, and execution time for different
S values. Neighborhood preservation clearly improves with increasing S. In contrast, stress
does not show a clear correlation with S. Execution time, as expected, significantly increases
with S. Since, however, visual results seem to be strongly affected by S, and since we see
improvement in neighborhood preservation with S, we can claim that higher S values will
lead to better layouts. As such, we choose conservatively for a high default value S = 10000.
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Table 11 Quality metrics for the different embedding sizes n.

Graph n Embedding Time  Neighborhood preservation  Stress  Error to GT
3elt 10 15.5 0.532 0.078 0.013
3elt 25 20.9 0.580 0.077 0.019
3elt 50 38.2 0.579 0.077 0.011
3elt 100 105.7 0.574 0.077 0.012
besstk36 10 30.2 0.411 0.102 0.027
bcsstk36 25 36.3 0.435 0.107 0.019
besstk36 50 54.4 0.457 0.105 0.014
bcsstk36 100 118.9 0.463 0.107 0.016
dwt__ 1005 10 5.5 0.504 0.033 0.018
dwt__1005 25 11.3 0.542 0.035 0.012
dwt_ 1005 50 28.8 0.543 0.035 0.012
dwt_ 1005 100 94.0 0.544 0.034 0.012
optdigits_ 10NN 10 57.7 0.607 0.139 0.029
optdigits 10NN 25 56.6 0.621 0.140 0.019
optdigits_ 10NN 50 45.6 0.623 0.140 0.015
optdigits 10NN 100 106.9 0.624 0.140 0.014
sierpinski3d 10 10.7 0.495 0.126 0.023
sierpinski3d 25 17.8 0.509 0.127 0.019
sierpinski3d 50 35.6 0.507 0.131 0.021
sierpinski3d 100 99.2 0.502 0.132 0.014

Table 12 Results using different sizes S for the subgraph G'.

Graph |G| = 1000 |G'|=2500 |G'|=5000 |G| =

besstk36

k49 norm
10NN

0k2010

ship_ 003

D Comparison of Subgraph Extraction Methods

We next compare the pivot-points and coarsening methods for computing the subgraph G’
from the input graph G (Sec. 3.2). Both methods receive the parameter S that determines
the size of the subgraph G’ to be extracted. Comparing results for the same value of S is,
however, not directly useful. Indeed, the pivot-points method becomes too slow to be useful in
practice for values S > 1000. In contrast, the coarsening method scales computationally well
to higher values. As such, we chose to compare the results that both methods produce when
S is set to the maximal values they accept, namely S = 1000 (pivot-point) and S = 10000
(coarsening).
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Table 13 Performance metrics for the different sizes S for the subgraph G'.

Graph S = |G’] | Neighborhood preservation Stress Time (seconds)
besstk36 1000 0.411 0.085 32.4
bcsstk36 2500 0.373 0.133 414
besstk36 5000 0.340 0.121 58.2
bcsstk36 10000 0.408 0.106 103.6

k49 norm_ 10NN 1000 0.030 0.170 74.8
k49 _norm_ 10NN 2500 0.047 0.169 102.6
k49 norm_ 10NN 5000 0.060 0.167 127.1
k49 norm_ 10NN 10000 0.083 0.169 219.0

0k2010 1000 0.392 0.111 90.2

0k2010 2500 0.408 0.109 103.2

0k2010 5000 0.424 0.120 107.8

0k2010 10000 0.436 0.120 160.2
ship_ 003 1000 0.155 0.124 45.1
ship_ 003 2500 0.208 0.073 56.2
ship 003 5000 0.214 0.092 85.0
ship_ 003 10000 0.229 0.089 131.3

Table 14 shows the obtained results. The pivot-point method clearly yields suboptimal
layouts due to its low S = 1000 setting — these are similar to what the coarsening method
produce for S = 1000 (see Fig. 12). Table 15 compares the values of neighborhood preservation,
stress and, execution time for the two methods. The coarsening method yields overall higher
neighborhood preservation values than pivot-points (except for besstk36 where it is slightly
lower). Stress values are however better for pivot-points, which is not too surprising, given
that those are chosen based on PMDS. Overall, the significantly higher execution time of
pivot-points (for larger graphs), even when using a S value ten times smaller than for the
coarsening method, determined us to choose coarsening as the default technique for subgraph

extraction.

Table 14 Results obtained by using pivot-points and coarsening to extract the subgraph G’.

Graph besstk36

0k2010

Pivot-
points,
S = 1000

k49 norm_ 10NN ship_ 003

Coarsening,
S =
10000
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E Pseudo Code

The following pseudo code is for the entire NNP-NET pipeline.

// Generate n-dimensional Embedding using PMDS
E < PMDS(G, n)

// Generate G’
G +« G
Gt ({}, {»
while size(G'.V) > S:
V® « sort(G'.V) // Sorted on degree
C < {} // Start with no clusters
// Choose center nodes and create their clusters
for v € V® WHERE v ¢ C:
C.add ({v, {v;: (v,v;) € E,v; € C}})
for ce C':
// Add center nodes to the next iteration
G"** V. add (c [0])
// Add all edges for this center node
for ¢ € C WHERE (v,v')€G'.E:veEcv €c:
G™"* E.add ({c[0], c’[0]})
// Check if the graph still gets reduced enough to continue
if size (G™™*. V) > size(G'.V)*0.95:
G’ + pivotfallback (G™***, S)
else
G/ — Gnewt
G ({}, {D)

// Generate ground truth

PY + tsNET*(G")

// Generating final positions
NNP « train(E, P©)

P < inference (NNP, E)

P < smoothing (P)

Table 15 Performance metrics using pivot-points and coarsening to extract the subgraph G'.

Graph Method + points Neighborhood preservation — Stress — Time
besstk36 Pivot, 1000 points 0.422 0.077  37.9
besstk36 Coarsening, 10000 points 0.408 0.084 103.6
k49_norm_ 10NN Pivot, 1000 points 0.045 0.166 209.4
k49_norm_ 10NN  Coarsening, 10000 points 0.083 0.171 219.0
ship_ 003 Pivot, 1000 points 0.194 0.083 78.4
ship_ 003 Coarsening, 10000 points 0.229 0.124 131.3
0k2010 Pivot, 1000 points 0.382 0.087 2554

0k2010 Coarsening, 10000 points 0.436 0.112 160.2
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